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Abstract 

This paper investigates finite time H  event-triggered state feedback control problem of fractional-

order systems with delay. Based on Laplace trasform and “inf-sup” norm, a delay-dependent sufficient 

condition for designing H  event-triggered control is established in terms of the Mittag-Leffler 

function and Linear matrix inequalities. A numerical example is given to show the effectiveness of the 

obtained result. 
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1. Introduction 

Nowadays, fractional calculus for delay systems is one of the hot topics in the qualitative theory 

of dynamical systems (see [1, 2]).  

There are some main methods used to study stability analysis of fractional order systems with 

delay such as Lyapunov functionls [3], Fractional-order Hanalay inequality [4], and Gronwall 

inequality [5]. The Lyapunov function well known method gives a very effective approach to 

investigate the stability problem of ordinary differential equations. But it is more difficult to apply the 

                                                           
* Corresponding author, E-mail: thanh.nguyentruong@hust.edu.vn 

https://doi.org/10.56764/hpu2.jos.2023.2.3.67-76 

https://sj.hpu2.edu.vn/index.php/journal
https://doi.org/10.56764/hpu2.jos.2023.2.3.67-76


HPU2. Nat. Sci. Tech. 2023, 2(3), 67-76 

https://sj.hpu2.edu.vn                                                                                 68 

 

method for delay systems. Gronwall inequality approach or fractional-order Hanalay inequality does 

not give satisfactory solution because its conditions are always time delay - independent and it is 

difficult in estimating the delay solution .tx  To the best knowledge of authors, for stabilizability of 

fractional order systems with delay, controllers in many existing papers are state feedback (

( ) ( )u t Kx t= ) or output feedback control [6, 7, 8, 9]. Moreover, there are few results for finite time 

stability of those systems. This inspires us to propose a new effective approach for the finite time H
 

event-triggered state feedback control problem of fractional-order systems with delay in this paper.  

The present paper contributes as the following:  

+ A novel approach based on the fractional techniques and using event-triggered state feedback 

controller are proposed for solving the problem of finite time H
 control of fractional order systems 

with delay.  

+ A new dependent time delay sufficient condition for the problem of finite time H
 event-

triggered state feedback control is derived. And the condition is provided into solving LMI, in which 

the event-triggered state feedback controllers can be effectively designed. 

The layout of this article is organized: section 2, we provide some preliminaries on fractional 

derivatives, finite-time stability problem and some auxiliary lemmas needed in next section; section 3, 

a sufficient condition to design finite time H
 event-triggered state feedback control for fractional 

order systems with delay are presented. 

Notations:  For any matrix , 0 or 0n nA R A A    means that it is positive-definite or 

negative-definite matrix, respectively; 
max min( ) and ( )A A   denote the maximal and the minimal 

eigenvalues, respectively; The symbol ∗ stands for symmetric block elements in a matrix. 

2. Problem statement and preliminaries 

Firstly, we give some basic concepts of fractional calculus [1, 2] as follows. 

For (0,1],   the Riemann-Liouville integral and the Caputo fractional derivative of a function 

( )f t  are defined as 

1

0

1
( ) ( ) ( ) ,

( )

t

I f t t s f s ds 



−= −
    

 ( ) ( ) (0) ,RD f t D f t f
 = −   

respectively, where 
1( ) ( ),R

d
D f t I f t

dt

 −=  the Gamma function 
1

0

( ) .t ss e t dt



− − =    

Consider the fractional order control system with uncertainties:  

  

( ) ( ) ( ) ( ) ( ),

( ) ( ),

( ) ( ), [ ,0],

D x t Ax t Dx t h W t Bu t

z t Cx t

x h

 

   

= + − + +

=

=  −

                                                               (2.1) 
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where (0,1],   the state vector ( ),x t  the controller ( ),u t the disturbance ( ),t  the observer 

( ),z t  the system matrices , , , ,A B C D W  are given constant matrices,  the constant time delay 

0,h   the initial function  ( ),0 , nC h R −  and 
[ ,0]

sup ( ) .
s h

s 
 −

=   

Definition 1. ([10]) Given positive scalars 
1 2, ,c c T . The system (2.1) without controller ( )u t is 

robustly finite-time stable with respect to  ( )1 2, ,c c T  if for all [0, ]t T , we have 

2 2

1 2( ) .c x t c      

In this paper, we use an event-triggered state feedback controller as follows:  

                                            
1( ) ( ), [ , ),k k ku t Kx t t t t +=                 

where the feedback gain matrix K is determined later and the triggering sequence defined by 

 0 10, inf : ( ) ( ) ( ) .k k kt t t t x t x t x t+= =  −    

Definition 2. Given positive scalars 
1 2, ,c c T . The finite-time H

control problem for system 

(2.1) is solvable if there exist the event-triggered state feedback controller 

1( ) ( ), [ , ),k k ku t Kx t t t t +=   such that following closed loop system:  

1( ) ( ) ( ) ( ) ( ), [ , ),

( ) ( ), [ ,0],

k k kD x t Ax t Dx t h W t BKx t t t t

x h

 

   

+= + − + + 

=  −
                                      (2.2) 

 is robustly finite-time stable w.r.t ( )1 2, ,c c T  and the  −optimal level condition holds 

2

[0, ]

2

[0, ]

sup ( )

sup ,
sup ( )

t T

t T

I z t

I t













   where the supremum is taken over zero initial condition and all 

admissible disturbances ( )t  satisfying 
2

( ) , 0t d t                                                           (2.3) 

Remark 1. It is notable that for 1, T = =  ,  the  −optimal level condition: 

                              

22

[0, ] 0

2
2

[0, ]

0

( )sup ( )

sup sup ,
sup ( )

( )

t T

t T

z t dtI z t

I t
t dt




 

 












  




                                          

which is widely known [11, 12]. 

Proposition 1. ([13]) Let : n nV R R→  be a convex and differentiable function on 
nR  such that 

(0) 0.V = If (0,1],  ( ) nx t R  be a continuous function on [0, ), a matrix 0TP P=  , then 

[ ( ) ( )] 2 ( ) ( ), 0.T TD x t Px t x t PD x t t     

Proposition 2. (Schur lemma, [14]) For , , ,n nX Y Z R   and positive definite matrices 
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,TY Y=  we have 0 0.
T

T X Z
X Z YZ

Z Y

 
+    

− 
 

3. Main results 

In this section, we will give sufficient conditions for designing the feedback gain matrix K of the 

event-triggered state feedback controller 
1( ) ( ), [ , ),k k ku t Kx t t t t +=   for system (2.1). The 

following notations are defined for simplicity: 

The Mittag–Leffler function ,

0 0

( ) , ( ) ,
( ) ( 1)

n n

k k

z z
E z E z

k k
  

  

 

= =

= =
 +  +

    

( ),a E hT 

=  

[ / ]
*

2 ,

0

( 1) ( ) ( ),
T h

j

j

a E hT

  
=

= −   1

*

2

,

2 1
( 1)

T
h









=
 

+ 
 + 

  

[ / ] 1
1

1 max

0

( ) ( 1) ,
T h

j

j

P a a 
+

−

=

= −   
2*

2 1 2
[0, ]

. sup ( ) ,
s T

I s   


=   
1.K YP−=   

Theorem 1. For positive scalars ,
1 2, , ,c c T  finite-time H

 control problem for the system 

(2.1) is solvable if there exists a symmetric positive definite matrix P  and a free-weight matrix Y  

such that the following conditions holds:   

  

   

 

1

0 0

* 0 0 0 0 0

* * 0 0 0 0

0,* * * 2 0 0

* * * * 0 0

* * * * * 0

* * * * * *

T T

T

BY AP BY AP hP I DP W PC P

hP

I

I P BY

I

I

I





 + + + − +
 

− 
 −
 

 −
 

− 
 −
 

−  

            (3.1) 

   

*

1 1 1 2

21

min

( 1)

( )

T
c d

c
P



  


 −

+
 +

 .                                                                                              (3.2) 

The event-triggered state feedback controller 
1

1( ) ( ), [ , ).k k ku t YP x t t t t−

+=   

Proof. Consider the functional 1( ) ( ) ( ).TV t x t P x t−=  Take the Caputo derivertive of ( )V t  

along the solution of (2.2), we have for 
1[ , ),k kt t t +   

  ( )1( ) 2 ( ) ( ) ( ) ( ) ( )T

kD V t x t P Ax t Dx t h W t BKx t − + − + +   

                 ( )12 ( ) ( ) ( ) ( ) ( ) ( )T

kx t P BK A x t Dx t h W t BK x t x t−= + + − + + −   
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  1( ) ( ) ( )hx t h P x t h hV t h−− − − + −   

    1( ) ( ) ( )hx t P x t hV t−− + ( )2 2 2 2

1 1( ) ( ) ( ) ( )Cx t t Cx t t   + − + − + .              (3.3) 

From (3.3) and the following inequalities 

     

  ( )      
2

1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,
T TT T

k k kx t P BK x t x t x t P x t x t x t BK BK x t x t− −−  + − −  

      
2220 ( ) ( ) ( ) ,kx t x t x t − −  for all 

1[ , ),k kt t t +                                   

it follows that:  

            ( )D V t                                           

where [ , , , ] ,T

h kx x v =  

              : ( ),x x t= : ( ), : ( ) ( ), : ( ),h k kx x t h v x t x t t = − = − =
4 4

,ij 
  =     

   
2

1 1 1 1 2

11 ;
T TP BK A BK A P hP C C P I− − − −  = + + + − + + +   

1

12 ;P D− =  
1

13 ;P W− =  
14 0; = 1

22 23; 0;hP− = −  =  
24 0; =   

33 1 ;I = −   44 ;
T

BK BK I = −  

Noting that 
1K YP−=  and  

      
4 4

0 ( , , , ) ( , , , ) : 0,ijdiag P P I P diag P P I P


      = =   
  

where      2 2
11 ;

T TBY AP BY AP hP PC CP I P = + + + − + + +  

               12 ;DP =  13 ;W =  14 0; =  22 23; 0;hP = −  =  24 0; =   

               33 1 ;I = −    2
44 .

T
BY BY P = −  

Using Schur lemma and 
2 2P I P−  − , the condition (3.1) leads to 0 . 

Hence 
2 2

1( ) ( ) ( ) ( ) ( ) .D V t hV t hV t h Cx t t   + − − +                                             (3.4) 

Step 1. Robustly finite-time stability.  

     From 
2

( ) 0Cx t−  , we have   

                       
2

1( ) ( ) ( ) ( ) .D V t hV t hV t h t  −  − +  

Let ( ) ( ) ( ).G t D V t hV t= −  Applying the Laplace transform to the both sides of the 

expression, we have   

2 2
( ) ( ) ( ) ( )T hV t hV t h Cx t t    + + − − +

https://sj.hpu2.edu.vn/


HPU2. Nat. Sci. Tech. 2023, 2(3), 67-76 

https://sj.hpu2.edu.vn                                                                                 72 

 

                                 L ( ) ( ) L ( ) ( ) L ( ) ( )G t s D V t s h V t s = −   

                                                         1L ( ) ( ) (0) L ( ) ( ),s V t s V s h V t s −= − −   

and hence 

                                 ( )1 1L ( ) ( ) ( ) (0) L ( ) ( ) .V t s s h V s G t s − −= − +  

Using the inverse Laplace transform to the above identity gives the following: 

                               
1

,

0

( ) (0) ( ) ( ) ( ( ) ) ( ) .

t

V t V E ht t s E h t s G s ds  

  

−= + − −  

Thus, we obtain for all [0, ],t T   

1

,

0

( ) (0) ( ) ( ) ( ( ) ) ( ) ( )

t

V t V E ht t s E h t s D V s hV s ds   

  

−  = + − − −    

          
21

, 1

0

(0) ( ) ( ) ( ( ) ) ( ) ( )

t

V E ht t s E h t s hV s h s ds  

    −   + − − − +
    

         
1

,

0

(0) ( ) ( ) ( ( ) ) ( )

t

V E ht t s E h t s hV s h ds  

  

−= + − − −  

                                         
21

1 ,

0

( ) ( ( ) ) ( )

t

t s E h t s s ds 

  −+ − −   

         
[ , ]

(0) ( ) [ ( ) 1] sup ( )
s h t h

V E ht E ht V s 

 
 − −

 + −  
2

1 , ( ) ( ) ( )E ht I t 

   +    

         
[ , ]

(0) ( ) [ ( ) 1] sup ( )
s h t h

V E hT E hT V s 

 
 − −

 + −  

2

1 ,
[0, ]

( ) ( ) sup ( ) .
s T

E hT I s 

   


+    

Since the function 
[ , ]

( ) : sup ( )
s h t

H t V s
 −

=  is non-decreasing with respect to t, letting

( )a E hT 

= ,  we obtain that: 

          
2

1 ,
[0, ]

( ) (0) ( 1) ( ) ( ) ( ) sup ( ) , [0, ].
s T

H t aH a H t h E hT I s t T 

   


 + − − +     

By induction and the inequalites ( ) 1E hT

  ,  we have 

          
2 21

max 1 2(0) ( ) ,H P    −  +  

         
2

1 2( ) , [0, ],H t t T   +       

then  
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2

1 2
[ , ]

( ) sup ( ) , [ , ].
s h t

V t V s t h T  
 −

  +   −                                                        (3.5) 

where  

[ / ] 1
1

1 max

0

( ) ( 1) ,
T h

j

j

P a a 
+

−

=

= −  

[ / ]
*

2 ,

0

( 1) ( ) ( ),
T h

j

j

a E hT

  
=

= −    

           

[ / ]
2 2*

2 1 , 1 2
[0, ] [0, ]0

( 1) ( ) ( ) sup ( ) . sup ( )
T h

j

s T s Tj

a E hT I s I s  

       
 =

= −  =  . 

Besides, since 
21

min( ) ( ) ( )V t P x t −  and the inequalities (2.3) and (3.2) if 
2

1,c   the 

inequality holds: 

          

2

2 1 2

1 1 1

min min min

2 **
1 1 1 21 1 1 2

[0, ]

21 1

min min

( ) ( )
( )

( ) ( ) ( )

. sup ( )
( 1)

, [0, ].
( ) ( )

s T

V t H t
x t

P P P

T
c dc I s

c t T
P P





  

  

     


 

− − −



− −

+
  

++
 +

    

  

Therefore, the closed loop system (2.2) is robustly finite-time stable w.r.t ( )1 2, ,c c T . 

Step 2. The  −optimal level condition  

From (3.4), it follows that: 

   
2 2 2

1( ) ( ) ( ) ( ) ( ) ( ) .z t Cx t D V t hV t hV t h t    − + + − +                                  

Hence and the zero initial condition 0  and (3.5), we have  

    
2 2

1( ) ( ) ( ) ( ) ( )I z t I D V t hI V t hI V t h I t       − + + − +  

                    
2

1( ) (0) ( ) ( ) ( )V t V hI V t hI V t h I t   = − − + + − +  

                   
2 2

1 2 1(0) 2 [ ] ( )V hI I t      + + +  

                   ( )2 2

1 2 1(0) 2 ( )
( 1)

t
V h I t


    


= + + +

 +
 

                   
2

2 1
[0, ]

2 sup ( )
( 1) s T

T
h I s


  

 

 +
 +

 

                    
2 2*

1 2 1
[0, ] [0, ]

2 . sup ( ) sup ( )
( 1)s T s T

T
h I s I s


     

 

= +
 +

 

                   
2*

1 2 1
[0, ]

2 sup ( )
( 1) s T

T
h I s


   

 

 
 + 

 + 
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2*

1 2
[0, ]

2 1 sup ( )
( 1) s T

T
h I s


  

 

 
= + 

 + 

2

[0, ]

sup ( )
s T

I s 


= . 

Consequently,  

       

2

2 2 [0, ]

2
[0, ] [0, ]

[0, ]

sup ( )

sup ( ) sup ( ) .
sup ( )

s T

s T s T

s T

I z s

I z s I s
I s



 


  





 



    

This completes the proof.  

Remark 1. In Theorem 1, the scalars 
1 2, , , ,c c T d  are given positive. Therefore, to check the 

conditions of the theorem, we prescribe these parameters firstly. Since the scalars 
1 2, ,c c  are not 

involved in (3.1) we first find the unknowns of LMI (3.1) by using LMI Tollbox algorithm and then 

verify the inequality (3.2). 

Remark 2. The system (2.1) as 0D =  can be simplified to 

                                 

0

( ) ( ) ( ) ( ),

( ) ( ),

(0) .

D x t Ax t W t Bu t

z t Cx t

x x

 = + +

=

=

                                                      (3.6)  

 

In [15], the authors discuss the problem of finite time H
 state feedback control ( ( ) ( )u t Kx t= ) 

for the system (3.6). Their approach, however, is not suitable for fractional-order delayed systems. 

Furthermore, it is unable to utilize event-triggered state feedback control to address the H
 control 

problem for system (3.6). It is worth noting that Theorem 1 can be used to obtain a sufficient condition 

for solving the finite-time H
 control problem for the system (3.6). This demonstrates the usefulness 

of Theorem 1 in the paper. 

4. A numerical example 

Example 4.1.  Consider the system (2.1), where  0.1, 0.1, 0.1, 1, 1,h d  = = = = =   

 

1 0.1 0.01 0. 0.4 0.1
, , ,

0.1 1 0 0.01 0.1 0.4
A D W

−     
= = =     

−     
 

 

1 2 0.1 0.1
, .

3 4 0.1 0.1
B C

   
= =   
   

 

By using LMI Toolbox in Matlab, the LMI (3.1) is feasible with 

                                    
0.9963 0.0411 0.5481 -0.3743

, .
0.0411 0.9963 -0.3743 0.2807

P Y
   

= =   
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For 
1 21, 3, 10,c c T= = =  we can calculate    

           ( ) 1.1521,a E hT

= =  

[ / ]
*

2 ,

0

( 1) ( ) ( ) 1.5585,
T h

j

j

a E hT

  
=

= −  =   

             1

*

2

0.7080,

2 1
( 1)

T
h









= =
 

+ 
 + 

 

[ / ] 1
1

1 max

0

( ) ( 1) 1.4225.
T h

j

j

P a a 
+

−

=

= − =    

 

And the condition (3.2) satisfies due to  

              

*

1 1 1 2

21

min

( 1)
2.9906 3.

( )

T
c d

c
P



  


 −

+
 +

=  =  

Hence finite - time H
 control problem for the system (2.1) is solvable w.r.t. (1, 3, 10)  with the 

event-triggered state feedback controller:  

               1

0.5666 0.3990
( ) ( ) ( ), [ , ).

0.3880 0.2978
k k k ku t Kx t x t t t t +

− 
= =  

− 
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