

HPU2 Journal of Sciences: Natural Sciences and Technology

Journal homepage: https://sj.hpu2.edu.vn

Article type: Research article

On the second-order sufficient optimality condition in nonconvex multiobjective optimization problems

Van-Tuyen Nguyen^{a*}, Thi-Yen Nguyen^b

^aHanoi Pedagogical University 2, Vinh Phuc, Vietnam ^bPhenikaa University, Hanoi, Vietnam

Abstract

The study of second-order optimality conditions is one of the most important topics in optimization theory and attracting the attention and interest of many authors. In this paper, we introduce a novel solution concept called "essential local efficient solutions of second-order" for nonconvex constrained multiobjective optimization problems. We then show that the new solution concept is stronger than the quadratic growth condition and under a mild constraint qualification, these solution concepts are equivalent. By using the second subderivative, we derive a sufficient optimality condition for a feasible solution to become an essential local efficient solution of second-order for the considered problem. Examples are provided to illustrate the obtained results.

Keywords: Essential local efficient solutions of second-order, second subderivative, second-order sufficient optimality condition

1. Introduction

Second-order optimality conditions have long been recognized as an important tool in optimization theory and, in recent years, have been developed rapidly, see, for example [1]–[16]. It is well known that first-order optimality conditions are usually not sufficient for optimality except in the case of convex optimization problems. Second-order optimality conditions not only complement first-order ones in eliminating non-optimal solutions, but they also provide criteria for recognizing the optimality at a given feasible solution.

^{*} Corresponding author, E-mail: nguyenvantuyen83@hpu2.edu.vn

https://doi.org/10.56764/hpu2.jos.2024.3.3.60-69

Received date: 23-9-2024 ; Revised date: 28-10-2024 ; Accepted date: 08-11-2024

This is licensed under the CC BY-NC 4.0

In this paper, we will focus on second-order sufficient optimality conditions for the following constrained multiobjective optimization problem

$$\operatorname{Min}_{\mathbb{R}^{m}} \left\{ f\left(x\right) \colon g(x) \in C \right\},\tag{MP}$$

where $f : \mathbb{R}^n \to \mathbb{R}^m$ and $g : \mathbb{R}^n \to \mathbb{R}^p$ are twice continuously differentiable mappings, and $C \subset \mathbb{R}^n$ is a nonempty and closed set. When m = 1, the above problem is called a mathematical program problem and is denoted by (P).

The study of second-order optimality conditions for (P), when C is convex, has been completely developed by Bonnas and Shapiro [1], Cominetti [2], Rockafellar and Wets [12], Mohammadi *et al.* [10], etc. More precisely, if C is convex polyhedral, second-order optimality conditions can be expressed in term of second derivative of the Lagrangian, see, for example [1], [12]. If C lacks the polyhedrality, then an additional term is needed to capture the curvature of C and there are various tools that can be utilized for such purpose, see [2], [10].

Recently, several important problem classes which can be reformulated in the form of problem (P) with non-convex C, such as, the mathematical program with complementarity constraints, the mathematical program with semi-definite cone complementarity constraints, etc. have attracted significant attention from the optimization community, see [17]–[20]. In these papers, the authors use the so-called lower generalized support function and the second subderivative to derive necessary and sufficient optimality conditions for (P) with C nonconvex. However, to the best of our knowledge, no papers have yet investigated second-order optimality conditions for multiobjective optimization problems of the form (MP). Motivated by the works reported in [11], [17], [18], in this paper, we introduce a new solution concept called "essential local efficient solutions of second-order" for the problem (MP) and study the sufficient optimality condition for the proposed solution.

We organize the paper as follows. Section 2 contains the preliminaries and auxiliary results. In Section 3, we present a second-order sufficient optimality condition for a feasible solution to be an essential local efficient solution of second-order to (MP). Section 4 provides some concluding remarks.

2. Preliminaries

Throughout this work we deal with the Euclidean space \mathbb{R}^n equipped with the usual scalar product $\langle \cdot, \cdot \rangle$ and the corresponding norm $\|\cdot\|$. We denote by $B_r(x)$ the open ball centered at x with radius r. The set of all positive integer numbers is denoted by N. Let Ω be a nonempty subset in \mathbb{R}^n . The *closure*, *interior*, *convex hull*, and *conic hull* of Ω are denoted, respectively, by $cl\Omega$, int Ω , conv Ω , and cone Ω . The distance $dist(x, \Omega)$ from a point $x \in \mathbb{R}^n$ to Ω is defined by

$$\operatorname{dist}(x,\Omega) \coloneqq \inf \left\{ \|y - x\| \colon y \in \Omega \right\} \quad \forall x \in \mathbb{R}^n.$$

The indicator function δ_{Ω} and the support function σ_{Ω} of Ω are defined, respectively, by

$$\sigma_{\Omega}(z^{*}) = \sup\{\langle z^{*}, z \rangle : z \in \Omega\},\$$
$$\delta_{\Omega}(x) = \begin{cases} 0 & \text{if } x \in \Omega,\\ \infty & \text{otherwise.} \end{cases}$$

Definition 2.1. Let $\Omega \subset \mathbb{R}^n$, $z \in \Omega$, and $u \in \mathbb{R}^n$.

(i) The set *tangent/contingent cone* to Ω at z is defined by

$$T_{\Omega}(z) \coloneqq \{ u \in \mathbb{R}^n : \exists t_k \downarrow 0, u_k \to u \text{ with } z + t_k u_k \in \Omega \ \forall k \in \mathbb{N} \}.$$

(ii) The second-order tangent set to Ω at z with respect to the direction u is defined by

$$T_{\Omega}^{2}(z,u) \coloneqq \left\{ v \in \mathbb{R}^{n} : \exists t_{k} \downarrow 0, \exists v^{k} \rightarrow v, z + t_{k}u + \frac{1}{2}t_{k}^{2}v^{k} \in \Omega, \forall k \in \mathbb{N} \right\}.$$

Remark 2.2. It is well-known that $T_{\Omega}(z)$ is a nonempty closed cone. For each $u \in \mathbb{R}^n$, the set $T_{\Omega}^2(z,u)$ is closed and $T_{\Omega}^2(z,u) = \emptyset$ if $u \notin T_{\Omega}(z)$. However, we see that the set $T_{\Omega}^2(z,0) = T_{\Omega}(z)$ is always nonempty. If Ω is convex, then we have

$$T_{\Omega}(z) = \operatorname{cl} \left\{ d : d = \beta(x - z), \ x \in \Omega, \beta \ge 0 \right\},$$

and for each $u \in T_{\Omega}(z)$ one has

$$T_{\Omega}^{2}(z,u) \subset \text{cl cone}[\text{ cone}(\Omega-z)-u].$$

Moreover, if Ω is a polyhedral convex set, then we have

$$T_{\Omega}^{2}(z,u) = T_{T_{\Omega}(z)}(u).$$

Definition 2.3. Let $w \in \mathbb{R}^n$. For δ , $\rho > 0$,

$$V_{\delta,\rho}(w) \coloneqq \left\{ w' \in B_{\delta}(0) : \| \| w \| w' - \| w' \| w \| \le \rho \| w' \| \| w \| \right\}$$

is called a directional neighborhood of direction w.

Definition 2.4. Let $\Omega \subset \mathbb{R}^n$, $z \in \Omega$, and $w \in T_{\Omega}(z)$. The proximal prenormal cone $\widehat{\mathcal{N}}_{\Omega}^p(z,w)$ and the proximal normal cone $\widehat{\mathcal{N}}_{\Omega}^p(z,w)$ to Ω at z in the direction w are defined, respectively, by

$$\widehat{\mathcal{N}}_{\Omega}^{p}(z,w) \coloneqq \left\{ z^{*} \in \mathbb{R}^{n} : \exists \delta, \rho, \gamma > 0 \text{ such that } \left\{ z^{*}, z' - z \right\} \leq \gamma || z' - z ||^{2} \forall z' \in \Omega \cap \left(z + V_{\delta,\rho}(w) \right) \right\},$$
$$\widehat{\mathcal{N}}_{\Omega}^{p}(z,w) \coloneqq \widehat{\mathcal{N}}_{\Omega}^{p}(z,w) \cap w^{\perp}.$$

If $w \notin T_{\Omega}(z)$, we define $\widehat{N}_{\Omega}^{p}(z,w) = \widehat{\mathcal{N}}_{\Omega}^{p}(z,w) = \emptyset$.

Definition 2.5. Let $\varphi : \mathbb{R}^n \to \overline{\mathbb{R}} := [-\infty, \infty]$ be an extended real-valued function and $z \in \mathbb{R}^n$ such that $|\varphi(z)| < \infty$ and $z^* \in \mathbb{R}^n$.

(i) The subderivative of φ at z is defined by

$$\mathrm{d}\varphi(z)(w) \coloneqq \liminf_{\substack{t \downarrow 0, \\ w' \to w}} \frac{\varphi(z + tw') - \varphi(z)}{t} \quad \forall w \in \mathbb{R}^n.$$

(ii) The second subderivative of φ at z for z^* is defined by

$$d^{2}\varphi(z, z^{*})(w) \coloneqq \liminf_{\substack{t \downarrow 0 \\ w' \to w}} \frac{\varphi(z + tw') - \varphi(z) - t\langle z^{*}, w' \rangle}{\frac{1}{2}t^{2}} \quad \forall w \in \mathbb{R}^{n}.$$

Remark 2.6. (see [12]) (i) The second subderivative has the homogeneity property, i.e.,

$$d^{2}(\alpha \varphi)(z, z^{*})(w) = \alpha d^{2} \varphi\left(z, \frac{z^{*}}{\alpha}\right)(w) \quad \forall \alpha > 0,$$

and

$$d\varphi(z)(w) > \langle z^*, w \rangle \implies d^2\varphi(z, z^*)(w) = \infty,$$

$$d\varphi(z)(w) < \langle z^*, w \rangle \implies d^2\varphi(z, z^*)(w) = -\infty.$$

(ii) If φ is twice differentiable at z and $z^* = \nabla \varphi(z)$, then we have

$$\mathrm{d}^{2}\varphi(z,\nabla\varphi(z))(w) = w^{T}\nabla^{2}\varphi(z)w \ \forall w \in \mathbb{R}^{n}.$$

(iii) Let $\Omega \subset \mathbb{R}^n$, $z \in \Omega$, and $z^* \in \mathbb{R}^n$. Then, by definition, we have

$$d^{2} \delta_{\Omega}(z; z^{*})(w) = \liminf_{\substack{t \downarrow 0 \\ w' \to w}} \frac{\delta_{\Omega}(z + tw') - \delta_{\Omega}(z) - t\langle z^{*}, w' \rangle}{\frac{1}{2}t^{2}} = \liminf_{\substack{t \downarrow 0, w' \to w \\ z + tw' \in \Omega}} \frac{-2\langle z^{*}, w' \rangle}{t}.$$

We now summarize some properties of the second subderivative that will be used in the next section.

Lemma 2.7. (see [17, Lemma 2.7]) Let $\varphi : \mathbb{R}^n \to \overline{\mathbb{R}}$ be a lower semicontinuous function and $z \in \mathbb{R}^n$ such that $|\varphi(z)| < \infty$ and $z^* \in \mathbb{R}^n$. Then there exist sequences $t_k \downarrow 0$ and $w_k \to w$ such that

$$d\varphi(z)(w) = \lim_{k \to \infty} \frac{\varphi(z + t_k w_k) - \varphi(z)}{t_k},$$
$$d^2 \varphi(z, z^*)(w) = \lim_{k \to \infty} \frac{\varphi(z + t_k w_k) - \varphi(z) - t_k \langle z^*, w_k \rangle}{\frac{1}{2} t_k^2}.$$

Lemma 2.8. (see [18, Proposition 2.18]) Let $\Omega \subset \mathbb{R}^n$, $z \in \Omega$, and z^* , $w \in \mathbb{R}^n$. The following statements hold:

(i) If
$$w \in T_{\Omega}(z)$$
 or $\langle z^{*}, w \rangle < 0$, then $d^{2}\delta_{\Omega}(z; z^{*})(w) = \infty$.
(ii) For $w \in T_{\Omega}(z)$, $d^{2}\delta_{\Omega}(z; z^{*})(w) > -\infty$ iff $z^{*} \in \widehat{\mathcal{N}}_{\Omega}^{p}(z, w)$.
(iii) If $d^{2}\delta_{\Omega}(z; z^{*})(w)$ is finite, then $z^{*} \in \widehat{\mathcal{N}}_{\Omega}^{p}(z, w)$.
(iv) $d^{2}\delta_{\Omega}(z; z^{*})(w) \leq -\sigma_{T_{\Omega}^{2}(z, w)}(z^{*})$ iff $w \in T_{\Omega}(z)$ and $\langle z^{*}, w \rangle \geq 0$ or $T_{\Omega}^{2}(z, w) = \emptyset$.

3. Second-order sufficient optimality conditions

Consider the following constrained optimization problem

$$\operatorname{Min}_{\mathbb{R}^m} \left\{ f(x) : g(x) \in C \right\},\tag{MP}$$

where $f: \mathbb{R}^n \to \mathbb{R}^m$ and $g: \mathbb{R}^n \to \mathbb{R}^p$ are twice continuously differentiable mappings with $f(x) \coloneqq (f_1(x), ..., f_m(x)), g(x) \coloneqq (g_1(x), ..., g_p(x)),$ and $C \subset \mathbb{R}^n$ is a *nonempty and closed* set. The feasible set of (MP) is denoted by

$$S \coloneqq g^{-1}(C) = \left\{ x \in \mathbb{R}^n : g(x) \in C \right\}.$$

We always assume that S is nonempty. We say that u is a critical direction of problem (MP) at $\overline{x} \in S$ if

$$\begin{cases} \left\langle \nabla g(\overline{x}), u \right\rangle \in T_{C}(g(\overline{x})), \\ \left\langle \nabla f_{i}(\overline{x}), u \right\rangle \leq 0, \forall i \in I \coloneqq \{1, \dots, m\} \end{cases}$$

The set of all critical directions of (MP) at $\overline{x} \in S$ is denoted by $K(\overline{x})$. We say that the set-valued mapping $x \rightrightarrows g(x) - C$ is *metrically subregular* at $(\overline{x}, 0)$ in direction $u \in \mathbb{R}^n$ if there exist $\kappa, \delta, \rho > 0$ such that

$$\operatorname{dist}(x,S) \leq \kappa \operatorname{dist}(g(x,C)) \quad \forall x \in \overline{x} + V_{\delta,\rho}(u).$$

The generalized Lagrangian $L: \mathbb{R}^n \times \mathbb{R}^m_+ \times \mathbb{R}^p \to \mathbb{R}$ with respect to the problem (MP) is given as

$$L(x, \lambda, \mu) \coloneqq \langle \lambda, f(x) \rangle + \langle \mu, g(x) \rangle.$$

We now introduce the concept of essential local efficient solutions of second-order for (MOP) inspired by the work of Penot [11].

Definition 3.1. Let $\overline{x} \in S$. We say that:

(i) \overline{x} is a *local efficient solution* of (MP) if there exists $\delta > 0$ such that there is no $x \in S \cap B_{\delta}(\overline{x})$ satisfying

$$f(x) \in f(\overline{x}) - \mathbb{R}^m_+ \setminus \{0\}.$$

(ii) \overline{x} satisfies the quadratic growth condition if there exist two positive numbers $\beta > 0$ and $\delta > 0$ such that

$$\psi(x) \coloneqq \max\left\{f_1(x) - f_1(\overline{x}), \ldots, f_m(x) - f(\overline{x})\right\} \ge \beta \left\|x - \overline{x}\right\|^2 \quad \forall x \in S \cap B_{\delta}(\overline{x}).$$

(iii) \overline{x} is an *essential local efficient solution of second-order* for problem (MP) if there exist two positive numbers $\gamma > 0$ and $\delta > 0$ such that

$$\varphi(x) \coloneqq \max\left\{f_1(x) - f_1(\overline{x}), \dots, f_m(x) - f(\overline{x}), \operatorname{dist}(g(x), C)\right\} \ge \gamma \left\|x - \overline{x}\right\|^2 \quad \forall x \in B_{\delta}(\overline{x}).$$

The following result gives the relationships between above solution concepts.

Proposition 3.2. Consider the following statements:

(i) \overline{x} is a local efficient solution of (MP).

(ii) \overline{x} satisfies the quadratic growth condition.

(iii) \overline{x} is an essential local efficient solution of second-order for problem (MP).

Then the implications (iii) \Rightarrow (ii) and (ii) \Rightarrow (i) always hold. Furthermore, if the mapping $x \Rightarrow g(x) - C$ is metrically subregular at $(\bar{x}, 0)$ in every critical direction $u \in K(\bar{x}) \setminus \{0\}$, then the implication (ii) \Rightarrow (iii) is also valid.

Proof. (iii) \Rightarrow (ii): The proof follows immediately from the definitions.

(ii) \Rightarrow (i): Suppose, for the sake of contradiction that \overline{x} satisfies the quadratic growth condition but not is a local efficient solution of (MP). Then, by definition, there exist two positive numbers

 $\beta > 0$, $\delta > 0$, and some $x_0 \in S \cap B_{\delta}(\overline{x})$ such that

$$\max\left\{f_1(x) - f_1(\overline{x}), \dots, f_m(x) - f(\overline{x})\right\} \ge \beta \left\|x - \overline{x}\right\|^2 \quad \forall x \in S \cap B_{\delta}(\overline{x}).$$
(1)

and

$$f_i(x_0) \le f_i(\overline{x}) \quad \forall i \in I \tag{2}$$

with at least one strict inequality. By (2), $x_0 \neq \overline{x}$. This and (1) imply that

$$\max\left\{f_1(x_0)-f_1(\overline{x}),\ldots,f_m(x_0)-f(\overline{x})\right\}\geq \gamma \|x-\overline{x}\|^2>0,$$

contrary to (2).

We now show that (ii) \Rightarrow (iii) under the metric subregularity of the mapping $g(\cdot) - C$ at $(\overline{x}, 0)$. Suppose, for the sake of contradiction that \overline{x} is not an essential local efficient solution of second-order for (P). Then for any $k \in \mathbb{N}$, there exists $x_k \in B_{1/k}(\overline{x})$ such that

$$\varphi(x_{k}) = \max\left\{f_{1}(x_{k}) - f_{1}(\overline{x}), \dots, f_{m}(x_{k}) - f_{m}(\overline{x}), \operatorname{dist}(g(x_{k}), C)\right\} < \frac{1}{k} \|x_{k} - \overline{x}\|^{2}.$$
(3)

It is clear that $x_k \neq \overline{x}$ for all $k \in \mathbb{N}$ and $x_k \to \overline{x}$. Hence,

$$\liminf_{k \to \infty} \frac{f_i(x_k) - f_i(\overline{x})}{\|x_k - \overline{x}\|^2} \le 0 \quad \forall i \in I.$$
(4)

By passing to a subsequence we may assume that $\frac{x_k - \overline{x}}{\|x_k - \overline{x}\|} \to u \neq 0$ as $k \to \infty$. We first claim that $u \in K(\overline{x})$. Indeed, for each $k \in \mathbb{N}$, put $t_k := \|x_k - \overline{x}\|$ and $u_k := \frac{1}{t_k}(x_k - \overline{x})$. Then it follows from (3) that $\operatorname{dist}(g(x_k), C) < \frac{1}{k}t_k^2$. Hence, there exists $y_k \in C$ such that $\|g(x_k) - y_k\| < \frac{1}{k}t_k^2$. Put $r_k := \frac{y_k - g(x_k)}{t_k^2}$. Then we see that $\|r_k\| \to 0$ as $k \to \infty$ and $y_k = g(x_k) + t_k^2 r_k \in C$ for all $k \in \mathbb{N}$. Since $x_k = \overline{x} + t_k u_k$, by Taylor's expansion, we have

$$g(x_k) = g(\overline{x}) + t_k \langle \nabla g(\overline{x}), u_k \rangle + o(t_k).$$

Hence,

$$v_{k} \coloneqq \frac{g(x_{k}) + t_{k}^{2}r_{k} - g(\overline{x})}{t_{k}} = \frac{t_{k} \langle \nabla g(\overline{x}), u_{k} \rangle + o(t_{k}) + t_{k}^{2}r_{k}}{t_{k}} = \langle \nabla g(\overline{x}), u_{k} \rangle + t_{k}r_{k} + \frac{o(t_{k})}{t_{k}} \rightarrow \langle \nabla g(\overline{x}), u_{k} \rangle$$

as $k \to \infty$. Furthermore, $g(\overline{x}) + t_k v_k = g(x_k) + t_k^2 r_k = y_k \in C$ for all $k \in \mathbb{N}$. Hence, $\langle \nabla g(\overline{x}), u \rangle \in T_C(g(\overline{x}))$. We deduce again from (3) that $f_i(x_k) - f_i(\overline{x}) < \frac{1}{k} t_k^2$ for all $k \in \mathbb{N}$ and $i \in I$. This and the Taylor's expansion of f_i at \overline{x} , $i \in I$, imply that $\langle \nabla f_i(\overline{x}), u \rangle \le 0, \forall i \in I$, and hence, $u \in K(\overline{x})$, as required.

Now, by the assumption on the metric subregularity of the mapping $g(\cdot) - C$ at $(\bar{x}, 0)$ in the

direction $u \in K(\bar{x})$, there exists $\ell > 0$ such that for all k large enough we can find some $\hat{x}_k \in S$ with

$$\|\hat{x}_k - x_k\| \leq \ell \operatorname{dist}(g(x_k), C) < \frac{\ell}{k} t_k^2.$$

Clearly, $\hat{x}_k \to \overline{x}$ as $k \to \infty$ and $\|\hat{x}_k - x_k\| \le o(\|x_k - \overline{x}\|^2)$. Since \overline{x} satisfies the quadratic growth condition, there exist two positive numbers $\beta > 0$ and $\delta > 0$ satisfying (1). Hence, for each k large enough, there exists $i_k \in I$ such that

$$f_{i_k}\left(\hat{x}_k\right) - f_{i_k}\left(\overline{x}\right) \ge \beta \left\| \hat{x}_k - \overline{x} \right\|^2.$$
(5)

Let I_k be the set of all indices $i_k \in I$ satisfying (5). Since $I_k \subset I$ for all k, without any loss of generality, we may assume that $I_k = \overline{I}$ is constant for all $k \in \mathbb{N}$ large enough. Fix $i \in \overline{I}$, then one has

$$f_{i}\left(\hat{x}_{k}\right) - f_{i}\left(\overline{x}\right) \geq \beta \left\|\hat{x}_{k} - \overline{x}\right\|^{2}$$

for all k large enough. Clearly, f_i is locally Lipschitz around \overline{x} with some constant $l_i > 0$. Hence,

$$0 < \beta \le \liminf_{k \to \infty} \frac{f_i(\hat{x}_k) - f_i(\overline{x})}{\|\hat{x}_k - \overline{x}\|^2} \le \liminf_{k \to \infty} \frac{f_i(x_k) - f_i(\overline{x}) + l_i \|\hat{x}_k - x_k\|}{\left(\|x_k - \overline{x}\| - \|\hat{x}_k - x_k\|\right)^2}$$
$$= \liminf_{k \to \infty} \frac{f_i(x_k) - f_i(\overline{x}) + o\left(\|\hat{x}_k - x_k\|^2\right)}{\|\hat{x}_k - x_k\|^2 + o\left(\|\hat{x}_k - x_k\|^2\right)} = \liminf_{k \to \infty} \frac{f_i(x_k) - f_i(\overline{x})}{\|\hat{x}_k - x_k\|^2},$$

contrary to (4). The proof is complete.

Remark 3.3. The converse of Proposition 3.2 is not true in general. For example, let $f: \mathbb{R} \to \mathbb{R}^2$, $x \mapsto (x^3, -x^3)$, $g: \mathbb{R} \to \mathbb{R}$, $x \to -x^2$, and $C = -\mathbb{R}_+$. Clearly, $S = \mathbb{R}$ and $\overline{x} = 0$ is an efficient solution of (MP). We claim that \overline{x} is not an essential local efficient solution of second-order. Indeed, if otherwise, there exist $\gamma > 0$ and $\delta > 0$ such that

$$\max\left\{f_1(x)-f_1(\overline{x}), f_2(x)-f_2(\overline{x}), \operatorname{dist}(g(x), C)\right\} \ge \gamma \|x-\overline{x}\|^2 \quad \forall x \in B_{\delta}(\overline{x}),$$

or, equivalently, $\max\{x^3, -x^3\} \ge \gamma |x|^2 \quad \forall x \in (-\delta, \delta)$. This implies that $|x| \ge \gamma \quad \forall x \in (-\delta, \delta)$, a contradiction.

The following result gives a sufficient optimality condition for an an essential local efficient solution of second-order of problem (MP).

Theorem 3.4. Let \overline{x} be a feasible solution of (MP). Suppose that for every $u \in K(\overline{x}) \setminus \{0\}$ there exist $\lambda \in \mathbb{R}^m$ and $\mu \in \mathbb{R}^p$ not both zero such that the following conditions hold:

$$\nabla_{x} L(\bar{x}, \lambda, \mu) = 0, \tag{6}$$

$$\nabla_{xx}^{2} L(\overline{x}, \lambda, \mu)(u, u) + d^{2} \delta_{C}(g(\overline{x}); \mu)(\nabla g(\overline{x})u) > 0.$$
⁽⁷⁾

Then \overline{x} is an essential local efficient solution of second-order of problem (MP).

Proof. The proof of the theorem follows some ideals of Benko et al. [18]. Suppose, for the sake of contradiction that \bar{x} is not an essential local efficient solution of second-order of problem (MP). Then

https://sj.hpu2.edu.vn

for each $k \in \mathbb{N}$, there exists $x_k \in B_{1/k}(\overline{x})$ such that

$$\varphi(x_k) = \max\left\{f_1(x_k) - f_1(\overline{x}), \dots, f_m(x_k) - f_m(\overline{x}), \operatorname{dist}(g(x_k), C)\right\} < \frac{1}{k} \|x_k - \overline{x}\|^2.$$

This implies that

$$f_i(x_k) - f_i(\overline{x}) \le \frac{1}{k} ||x_k - \overline{x}||^2, i = 1, ..., m,$$
 (8)

$$\operatorname{dist}(g(x_k), C) \leq \frac{1}{k} \|x_k - \overline{x}\|^2.$$
(9)

Clearly, $x_k \neq \overline{x}$ for all $k \in \mathbb{N}$ and $x_k \to \overline{x}$ as $k \to \infty$. For each $k \in \mathbb{N}$, put $t_k \coloneqq ||x_k - \overline{x}||$ and $u_k = t_k^{-1}(x_k - \overline{x})$. Since $||u_k|| = 1$, by passing a subsequence if necessary we may assume that $u_k \to u$ with ||u|| = 1 as $k \to \infty$. It follows from (8) that

$$\lim_{k \to \infty} \frac{f_i(x_k) - f_i(\overline{x})}{t_k} = \lim_{k \to \infty} \frac{\left\langle \nabla f_i(\overline{x}), t_k u_k \right\rangle + o(t_k)}{t_k} = \left\langle \nabla f_i(\overline{x}), u \right\rangle \le 0$$
(10)

and

$$\liminf_{k \to \infty} -\frac{f_i\left(\overline{x} + t_k u_k\right) - f_i\left(\overline{x}\right)}{\frac{1}{2}t_k^2} \ge \lim_{k \to \infty} \frac{1}{k} = 0, \ i = 1, \dots, m.$$

$$(11)$$

By (9) and the closedness of C, for each $k \in \mathbb{N}$, there exists $c_k \in C$ such that

$$\|c_k - g(x_k)\| = \operatorname{dist}(g(x_k), C) \le \frac{1}{k} t_k^2.$$

Put $r_k \coloneqq \frac{c_k - g(x_k)}{t_k^2}$ and $v_k \coloneqq \frac{g(x_k) - g(\overline{x}) + t_k^2 r_k}{t_k}$. Then $r_k \to 0$ as $k \to \infty$ and
 $g(\overline{x}) + t_k v_k = g(x_k) + t_k^2 r_k = c_k \in C$ for all $k \in \mathbb{N}$.

Moreover, by the differentiability of g one has

$$\lim_{k\to\infty} v_k = \lim_{k\to\infty} \frac{g(x_k) - g(\overline{x}) + t_k^2 r_k}{t_k} = \lim_{k\to\infty} \frac{t_k \langle \nabla g(\overline{x}), u_k \rangle + o(t_k) + t_k^2 r_k}{t_k} = \langle \nabla g(\overline{x}), u \rangle.$$

Hence $\langle \nabla g(\overline{x}), u \rangle \in T_C(g(\overline{x}))$. This and (10) imply that $u \in K(\overline{x})$. By the assumption of the theorem, there exist $\lambda \in \mathbb{R}^m_+$ and $\mu \in \mathbb{R}^p$ satisfying (6) and (7). By definition of the second subderivative and (11), we have

$$d^{2} \delta_{C}(g(\overline{x}); \mu) (\nabla g(\overline{x})u) = \liminf_{\substack{t \downarrow 0 \\ w \to \nabla g(\overline{x})u}} \frac{\delta_{C}(g(\overline{x}) + tw) - \delta_{C}(g(\overline{x})) - t\langle \mu, w \rangle}{\frac{1}{2}t^{2}} = \liminf_{\substack{t \downarrow 0, w \to \nabla g(\overline{x})u \\ g(\overline{x}) + tw \in C}} \frac{-\langle \mu, w \rangle}{\frac{1}{2}t} \le \liminf_{k \to \infty} \frac{-\langle \mu, t_{k}v_{k} \rangle}{\frac{1}{2}t_{k}^{2}} = \liminf_{k \to \infty} \frac{-\langle \mu, g(x_{k}) - g(\overline{x}) + t_{k}^{2}r_{k} \rangle}{\frac{1}{2}t_{k}^{2}}$$

$$\leq \liminf_{k \to \infty} -\frac{\left\langle \lambda, f(x_{k}) - f(\overline{x}) \right\rangle}{\frac{1}{2}t_{k}^{2}} + \liminf_{k \to \infty} -\frac{\left\langle \mu, g(x_{k}) - g(\overline{x}) + t_{k}^{2}r_{k} \right\rangle}{\frac{1}{2}t_{k}^{2}}$$

$$\leq \liminf_{k \to \infty} -\frac{L(x_{k}, \lambda, \mu) - L(\overline{x}, \lambda, \mu)}{\frac{1}{2}t_{k}^{2}}$$

$$= \liminf_{k \to \infty} -\frac{\nabla_{x}L(\overline{x}, \lambda, \mu)(t_{k}u_{k}) + \frac{1}{2}\nabla_{xx}^{2}L(\overline{x}, \lambda, \mu)(t_{k}u_{k}, t_{k}u_{k}) + o(t_{k}^{2})}{\frac{1}{2}t_{k}^{2}}$$

$$= -\nabla_{xx}^{2}L(\overline{x}, \lambda, \mu)(u, u),$$

contrary to (7). The proof is complete.

The following result is a consequence of Theorem 3.4 and Proposition 3.2.

Corollary 3.5. Let \overline{x} be a feasible solution of (MP). Suppose that for every $u \in K(\overline{x})$ there exist $\lambda \in \mathbb{R}^m_+$ and $\mu \in \mathbb{R}^p$ not both zero such that conditions (6) and (7) hold. Then \overline{x} satisfies the quadratic growth condition.

We finish this section by presenting an example to illustrate Theorem 3.4.

Example 3.6. Let $f: \mathbb{R} \to \mathbb{R}^2$, $x \mapsto (x^2, -x^2)$, $g: \mathbb{R} \to \mathbb{R}$, $x \to -x^2$, and $C = -\mathbb{R}_+$. Then, $S = g^{-1}(C) = \mathbb{R}$. We now show that $\overline{x} = 0$ is an essential local efficient solution of second-order of problem (MP). It is easy to check that $K(\overline{x}) = \mathbb{R}$. Choose $\lambda = (1,0)$ and $\mu = 0$. Then we have $\nabla_x L(\overline{x}, \lambda, \mu) = 0$ and

 $\nabla_{xx}^{2}L(\overline{x},\lambda,\mu) + d^{2}\delta_{C}(g(\overline{x});\mu)(\nabla g(\overline{x})u) = \nabla_{xx}^{2}L(\overline{x},\lambda,\mu) + d^{2}\delta_{C}(0;0)(0) = 2 > 0.$

Hence, by Theorem 3.4, \overline{x} is an essential local efficient solution of second-order of problem (MP).

4. Conclusions

In this paper, we have presented a second-order sufficient optimality condition for an essential local efficient solution of second-order to nonconvex multiobjective optimization problems with operator constraint. It is meaningful if we can establish a necessary optimality condition for this problem that has no-gap between the proposed sufficient optimality condition. We aim to investigate this problem in future work.

References

- [1] J. F. Bonnans and A. Shapiro, *Perturbation analysis of optimization problems* (Springer series in operations research and financial engineering). New York, USA: Springer, 2000. doi: 10.1007/978-1-4612-1394-9.
- R. Cominetti, "Metric regularity, tangent sets, and second-order optimality conditions", *Appl. Math. Optim.*, vol. 21, pp. 265–287, Jan. 1990, doi: 10.1007/bf01445166.
- [3] N. Q. Huy and N. V. Tuyen, "New second-order optimality conditions for a class of differentiable optimization problems", J. Optim. Theory Appl., vol. 171, pp. 27–44, Jul. 2016, doi: 10.1007/s10957-016-0980-4.
- [4] N. Q. Huy, D. S. Kim, and N. V. Tuyen, "New second-order Karush–Kuhn–Tucker optimality conditions for vector optimization", *Appl. Math. Optim.* vol. 79, pp. 279–307, Apr. 2019, doi: 10.1007/s00245-017-9432-2.

- [5] N. Q. Huy, B. T. Kien, G. M. Lee, and N. V. Tuyen, "Second-order optimality conditions for multiobjective optimization problems with constraints", *Linear and Nonlinear Analysis*, vol. 5, no. 2, pp. 237–253, Sep. 2019.
- [6] N. H. Hung, H. N. Tuan, and N. V. Tuyen, "On second-order sufficient optimality conditions", HPU2. J. Sci., vol. 74, pp. 3–11, Aug. 2021.
- [7] N. H. Hung, H. N. Tuan, and N. V. Tuyen, "On the tangent sets of constraint systems", *HPU2. Nat. Sci. Tech.*, vol. 1, no. 1, pp. 31–39, Aug. 2022, doi: 10.56764/hpu2.jos.2022.1.1.31-39.
- [8] A. Jourani, "Regularity and strong sufficient optimality conditions in differentiable optimization problems", *Numer. Funct. Anal. Optim.*, vol. 14, no. 1–2, pp. 69–87, Jan. 1993, doi: 10.1080/01630569308816508.
- [9] D. S. Kim and N. V. Tuyen, "A note on second-order Karush-Kuhn-Tucker necessary optimality conditions for smooth vector optimization problems", *RAIRO - Oper. Res.*, vol. 52, no. 2, pp. 567–575, Jul. 2018, doi: 10.1051/ro/2017026.
- [10] A. Mohammadi, B. S. Mordukhovich, and M. E. Sarabi, "Parabolic regularity in geometric variational analysis", *Trans. Amer. Math. Soc.*, vol. 374, no. 3, pp. 1711–1763, Aug. 2021, doi: 10.1090/tran/8253.
- [11] J. P. Penot, "Second-order conditions for optimization problems with constraints", SIAM J. Control Optim., vol. 37, no. 1, pp. 303–318, Jan. 1998, doi: 10.1137/S0363012996311095.
- [12] R. T. Rockafellar and R. J. -B. Wets, Variational analysis (Grundlehren der mathematischen Wissenschaften). Heidelberg, Germany: Springer Berlin, 1998. doi: 10.1007/978-3-642-02431-3.
- [13] N. T. Toan, L. Q. Thuy, N. V. Tuyen, and Y. -B. Xiao, "Second-order KKT optimality conditions for multiobjective discrete optimal control problems", J. Global Optim., vol. 79, no. 1, pp. 203–231, Jan. 2021, doi: 10.1007/s10898-020-00935-7.
- [14] N. V. Tuyen, N. Q. Huy, and D. S. Kim, "Strong second-order Karush-Kuhn-Tucker optimality conditions for vector optimization", *Appl. Anal.*, vol. 99, no. 1, pp. 103–120, Jun. 2018, doi: 10.1080/00036811.2018.1489956.
- [15] N. V. Tuyen, C. F. Wen, Y. B. Xiao, and J. C. Yao, "On second-order sufficient optimality conditions for C¹ vector optimization problems", J. Nonlinear Convex Anal., vol. 23, no. 12, pp. 2859–2874, Dec. 2022.
- [16] Y. B. Xiao, N. V. Tuyen, J. C. Yao, and C. F. Wen, "Locally Lipschitz vector optimization problems: Second-order constraint qualifications, regularity condition, and KKT necessary optimality conditions", *Positivity*, vol. 24, no. 2, pp. 313–337, Apr. 2020, doi: 10.1007/s11117-019-00679-z.
- [17] M. Benko and P. Mehlitz, "Why second-order sufficient conditions are, in a way, easy or revisiting calculus for second subderivatives", J. Convex Anal., vol. 30, no. 2, pp. 541–589, Jun. 2023.
- [18] M. Benko, H. Gfrerer, J. J. Ye, J. Zhang, and J. Zhou, "Second-order optimality conditions for general nonconvex optimization problems and variational analysis of disjunctive systems", *SIAM J. Optim.*, vol. 33, no. 4, pp. 2625–2653, Otc. 2023, doi: 10.1137/22m1484742.
- [19] N. T. V. Hang and M. E. Sarabi, "A chain rule for strict twice epi-differentiability and its applications", *SIAM J. Optim.*, vol. 34, no. 1, pp. 918–945, Feb. 2024, doi: 10.1137/22M1520025.
- [20] A. Mohammadi and M. E. Sarabi, "Twice epi-differentiability of extended-real-valued functions with applications in composite optimization", *SIAM J. Optim.* vol. 30, no. 3, pp. 2379–2409, Jan. 2020, doi: 10.1137/19M1300066.