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Abstract 

Quadratic programming problems are of primary importance in various applications and arise as 
subproblems in many optimization algorithms. In this paper, we investigate quadratic programming 
problems in Hilbert spaces. By utilizing the Legendre property of quadratic forms and an asymptotically 
linear set with respect to a cone, we establish a sufficient condition for the existence of solutions to the 
considered problems through a Frank-Wolfe type theorem. The proposed condition is based on the 
special structure of Hilbert spaces, extending the applicability of quadratic programming methods. 
Finally, we provide a numerical example to illustrate the results obtained and demonstrate that existing 
approaches cannot be applied in certain cases. 
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1. Introduction 

We consider the quadratic programming problems of the following form 

                                          
  1

min : , ,
2

s.t.

f x Qx x c x

x

  

   

                                               (QP) 
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where   is a Hilbert space, :Q    is a continuous linear self-adjoint operator, c , Δ is a 

nonempty closed convex set, and ,  is the scalar product on .  

In 1956, Frank and Wolfe [1] proved the solution existence theorem for a (QP) problem. This result, 
called the Frank-Wolfe theorem, states that a quadratic function bounded from below over a nonempty 

polyhedral convex set in n  attains its infimum there. 

Theorem 1.1 (Frank-Wolfe Theorem) 

Consider the following problem 1 (QP )   

 

 

1
min : , ,

2         
s.t. Δ ,  n

f x Qx x c x

x x b

  

    

                                     1 (QP )  

where m nA  , mc  and .mb  If  : inf { : }f x x    is a finite real number then the 

problem has a solution. 

Many authors extended/generalized the Frank-Wolfe theorem to broader classes of functions and 

sets (see Blum and Oettli [2], Belousov [3], Belousov and Klatte [4], Bertsekas and Tseng [5], Semple 
[6], Schochetman, Smith and Tsui [7], Borwein [8], Martínez-Legaz, Noll and Sosa [9]). 

Given a quadratic function and a polyhedral convex set, verifying whether the function is bounded 
from below on the set is a rather difficult task. In 1971, Eaves [10] gave a tool for dealing with the task. 

Theorem 1.2 (The Eaves Theorem)  

Problem 1(QP ) has solutions if and only if the following three conditions are satisfied: 

 (i)    is nonempty; 

 (ii) If nv  and   0  Av then , 0Qv v  ; 

 (iii) If nv  and  nx are such that   0Av , , 0 Qv v  and    Ax b , then ,  0Qx c v  . 

In 1999, Luo and Zhang [11] proved the important result. 

Theorem 1.3 

Consider the following problem 2(QP )  

  1
min : , ,

2
1

s.t. : , , 0 , 1,2,...
2

n
i i i

f x Qx x c x

x Q x x c x i m

  
           

 
                     2(QP )  

with each n n
iQ  being positive semidefinite, n

ic  and i . Suppose that 1Q is positive 

semidefinite and 0 iQ   for 2,3, ,i m  . Then, if the objective function ( )f x  is bounded over Δ , 

then the infimum of 2(QP )  is attained. 

In 2000, by using the Legendre property of the quadratic form in the objective function, Bonnans and 

Shapiro [12] characterized the solution existence of the problem (QP)with Δ being a polyhedral set. 
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Theorem 1.4 

Consider the problem 3(QP )  

                                  
 

 

1
min : , ,

2
s.t.  Δ : , , 1,2, , .i i

f x Qx x c x

x c x b i m

  

     

                                    3(QP )  

Suppose that the quadratic form Q  is a Legendre form. Then the following conditions are 

equivalent: 

(i) Problem 3(QP )  has an optimal solution, 

 (ii) The optimal value of 3(QP )  is finite. 

Consider the quadratic programming problem (QP). Denote 

  0 1 01, , , {  |  0}, {  |  0} \i iI m I i I Q I i I Q I I         . 

Recently, by using the Legendre property of the quadratic form in the objective function and 
Condition (A), Dong and Tam [13] presented the following. 

Theorem 1.5 

Consider the problem 4(QP )   

  1
min : , ,

2
,

1
s.t. Δ : , , 0 , 1, 2, , ,

2 i i i

f x Qx x c x

x Q x x c x i m

  
           


                       4(QP )  

where   is a Hilbert space, ,Qx x is a Legendre form, iQ is a positive semidefinite continuous linear 

self-adjoint operator on  , , ic c  , and i  are real number, 1,2, ,i m  . Suppose that f is 

bounded from below over nonempty Δ  and the following condition: 

Condition A: If 1I   , then 

  10 Δ, , 0  , 0iv Qv v c v i I       

is satisfied. Then, problem 4(QP )  has a solution. 

The purpose of this paper is to extend the results on solution existence for (QP)  problem in 

Euclidean spaces to Hilbert spaces. The idea of using the Legendre property of the quadratic form in the 

objective function and weakly asymptotically linear in proving the main result.  

2. Preliminaries 

Let be a real Hilbert space with a scalar product ,    and the induced norm . .  

 *  A sequence kx in is said to be converge weakly to 0 ,x  the notation 0 ,kx x or 0 ,
w

kx x  

if 0, ,kx a x a for each  .a  
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 * A sequence  kx in is said to be converge strongly to 0 ,x  the notation 0kx x , if  

 0 0kx x   . 

 *  A function :q  is said to be quadratic form on if there exists a bilinear symmetric 

function  ,B   on  such that    ,q x B x x  . 

In this paper, we will only consider the continuous quadratic forms By Riesz Theorem [14, Theorem 

2.34] it admits the following representation   ,q x Qx x , where : Q   is a continuous linear 

self-adjoint operator. 

The operator : Q   is said to be positive semidefinite (positive) if the quadratic from 

  ,q x Qx x  is nonnegative (positive, respectively). 

A function   1
, ,

2
f x Qx x c x  , where : Q    is a continuous symmetric linear 

operator and c , is called quadratic. 

Definition 2.1 (see [12, p.193] or [15]) 

A quadratic form :q  is said to be a Legendre form if 

(i) it is weakly lower semicontinuous, and 

(ii) 0kx x whenever 0  kx x  and    0kq x q x . 

It is clear that in the case where  is of finite dimension, any quadratic form  q x  on  is a 

Legendre form. 

A quadratic function   1
, ,

2
f x Qx x c x   is said to be a Legendre function if ,Qx x is a 

Legendre form. 

Definition 2.2 (see [16]) 

Recession cone of a nonempty closed convex set Δ   is defined by 

 0 Δ Δ, Δ,  0 .v x tv x t         ∣  

Lemma 2.1 (see [13] and [16]) 

If Δ  is nonempty, then 

 0 Δ 0, ,  0, 1, , .i iv Q v c v i m       ∣  

The following property of 0  will be used many times in our paper.  

Lemma 2.2 (see [16]) 

Let Δ   be a nonempty closed convex set. If   Δ,k kx x    and 
k

k

x
v

x
  as ,k 

then 0 Δv  . 

Definition 2.3 (see [17, Definition 2.3.1] for the case n  ) 
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A nonempty and closed set C of   is said to be an asymptotically linear set if for each 0   and 

for each sequence  kx  satisfying 

  , , as ,
k

k k

k

x
x C x v k

x
    

there exists 0k N  such that 0 .kx v C k k     

Remark 2.1 

Every polyhedral set is asymptotically linear (see after [17], Definition 2.3.2] for the case 

),n   but the converse is not true (see, for instance, [18]). Under the assumption that the constraint 

set is asymptotically linear, the existence of solution for quadratic programming and quadratic fractional 
programming has been studied in [14] and [19]. 

The concept of asymptotically linear sets with respect to a cone was introduced by Nghi [18]. 

Definition 2.4 (see [18] for the case  n  )  

Let  C  be a nonempty closed and convex set and let 0K C  be a cone. Then,   C is said to 

be asymptotically linear with respect to  K if for each sequence  kx C  satisfying   kx  and 

k w

k

x
v K

x
  , there exists  0   such that kx tv  , for every  0,  t  for every k  large enough.  

The class of asymptotically linear sets with respect to a cone K  contains, in particular. The class 

of asymptotically linear sets. A set C  is asymptotically linear if and only if C  is asymptotically linear 

with respect to any 0K C . 

We have the following lemma. 

Lemma 2.3     

Consider (QP) with 
1

Δ : , , α 0 , 1, 2, ,
2 i i ix Q x x c x i m

        
 

 , where iQ  is a 

positive semidefinite continuous linear self-adjoint operator on ,  ic    and i  are real number. Let 

 0 Δ , 0K v Qv v   ∣ . If Condition (A) is satisfied then Δ  is an asymptotically linear set 

with respect to K . 

Proof. By a similar argument as in [20, Theorem 2.1], we obtain the desired conclusion. 

3. Main result 

We now consider the quadratic programming problems of the following form 

  1
min : , ,

2
s.t.

f x Qx x c x

x

  

   

                                          (QP)  
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where   is a Hilbert space, :Q    is a continuous linear self-adjoint operator, c , Δ  is a 

nonempty closed convex set. Let  0 Δ , 0K v Qv v   ∣ . We propose sufficient conditions 

for the solution existence of the problem (QP) through a Frank-Wolfe type theorem as follows.  

Theorem 3.1 

Suppose that ,Qx x  is a Legendre form, Δ  is an asymptotically linear set with respect to K , 

and f  is bounded from below over nonempty Δ . Then, the problem (QP) has a solution. 

Proof. Let  * inf { Δ}f f x x ∣ . For each positive integer k , let 

  * 1
ΔkS x f x f

k
     
 

∣ . By the continuity of f  and *f   ,   kS is nonempty and closed. 

We show that kS  has an element of minimal norm. Let  0 inf , .ky y y S   

There exists a sequence   k
ky S such that 0 . lim k

k
y y


  Since   ky is bounded, it has a 

weakly convergent subsequence, we can assume that 
w

ky y as   .k  Since Δ is closed convex set, 

by Mazur's theorem, Δ is weakly closed. Hence y . Since ,Qy y  is weakly lower semicontinuous, 

we have 

,  lim , .k k

k
Qy y Qy y


  

From this, it follows that 

     1 1
, ,  lim , ,

2 2
k k k

k
f y Qy y c y Qy y c y



     
 

.   

    *f . 

Combining this with y  we have that ky S . Hence 0  y y  and y  is an element of the 

minimal norm of kS . Consider the sequence  kx  in kS  and we prove that  kx  is bounded. Suppose 

that  kx  is unbounded. Without loss of generality we may assume that kx   as   k   and 

0 kx  for all k. Let ,:
k

k

k

x
v

x
  we have 1kv  . Since  kv  is bounded, it has a weakly convergent 

subsequence, we may assume 
w

kv v . Because  k
kx S , we have  

   *1 1
 , ,   .

2
k k k

kf x Qx x c x f
k

     (1) 

We prove the following 

 , 0 and , 0, for eachkQv v Qx c v k    (2) 

By multiplying both sides of (1) by 2

1
kx

 and letting  k  and using the fact that ,Qx x  is 
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weakly lower semicontinuity, we have 

 
1 1

,  liminf ,   0.
2 2

k k

k
Qv v Qv v


   (3) 

If either ,  0 or  , 0Qv v Qv v   and , 0kQx c v   then 

   
2

, ,
2

k k kt
f x tv f x Qv v t Qx c v         as  t , 

which contradicts the fact that f  is bounded from below over Δ . Hence, we have , 0Qv v   and 

  ,  0kQx c v  . 

We next prove that 

 0.v   (4) 

Multiplying both sides  of the inequality in (1) by 2

1
kx

 and let  k , we have 

 
1

limsup , 0.
2

k k

k
Qv v


  (5) 

Combining (3), (5) and , 0Qv v  , we conclude that  

 lim , , .k k

k
Qv v Qv v


  (6) 

Since ,Qx x  is a Legendre form, so that 
w

kv v  and (6), we have .kv v  By the fact that 

1kv   for all k , we obtain that 1v   so 0v  . Since Δ  is an asymptotically linear set, there exists 

0k   such that 

 0 for all and for all 0  small enough.kx tv k k t     (7) 

By (2), we have 

 

   

 
2

1
, ,

2

1
, ,

2 2

k k k k

k k

f x tv Q x tv x tv c x tv

t
f x Qv v t Qx c v

     

   
 (8) 

                                                            kf x . 

Combining (7) and (8), we have  

 0, .k
kx tv S k k     (9) 

By (4) and ,
k w

k k

k

x
v v v

x
  , we have   
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 21
lim ,   lim , , 0.

k
k

k kk k

x
x v v v v v

x x 
     

Hence, there exists 1 0k k  such that 

 1., 0,kx v k k    (10) 

Let 1inf { , ; }kx v k k   . By (10), we have  0  .  

We show that  0  . If otherwise then there exists  mk  such that lim , 0. 
m

m

k

k
x v


 From this it 

follows that 
1

lim , 0.
m

mm

k

kk
x v

x
   

On the other hand, 
1

lim , , .  
m

mm

k

kk
x v v v

x
  Hence 0v  , a contradiction (4). Thus  0  . 

We have 

  2 2 2222 , , 0, .k k k kx tv x t x v t v x t         (11) 

Combining (9) and (11), we have  k
kx tv S   and  1, , 0, .k kx tv x k k t        This 

contradicts the fact that kx  is the element of the minimal norm in KS . Hence, we have  kx  is bounded. 

Since  kx  is bounded, it has a weakly convergent subsequence. We can assume that 
w

kx x . 

Since kx   for all k  and Δ  is weakly closed, we have Δ.x  On the other hand, ,Qx x  is a Legendre 

form, and it therefore weakly lower semicontinuous, we have 

1 1
, liminf ,

2 2
k k

k
Qx x Qx x


 . 

Hence by (1), we have 

   * *1 1 1
, , liminf , , .liminf

2 2
k k k

k k
f x Qx x c x Qx x c x f f

k 

            
   

 

It follows that x  is a solution of (QP). The proof is complete. 

The following example is constructed to show that there is a (QP) whose constraint set is an 
asymptotically linear, but condition (A) applied for (QP) is not satisfied. 

Example 3.1 

Consider the programming problem (QP), where 2   

 
1 0

0 0
Q

 
  
 

 , 1

0 0

0 0
Q

 
  
 

, 2

0 0

0 0
Q

 
  
 

, 3

1 0

0 0
Q

 
  
 

, 4

1 0

0 0
Q

 
  
 

, 

  0,0c  ,  1 1,0c   ,  2 1,0c  ,  3 0, 1c   ,  4 2, 1c    ,  

 1 2 3 41, 0, 2        . 
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We can rewrite the problem as follows: 

 

 
  

2
1

2
1 2 1 1

2 2
1 2 1 1 2

min :

s.t. ; 1 0, 1 0 ,

0, 2 2 0}.

f x x

x x x x x

x x x x x

  
       


   

  

 

∣  

We have   2
1 2 1 20 Δ , : 0, 0v v v v v      .  

Let  0,1 0 Δv   , we have , 0Qv v   but 3 , 1 0c v    . Hence, condition (A) is not 

satisfied.  

We next show that Δ  is an asymptotically linear set. Indeed, suppose with a sequence    Δkx   

such that  , 0,1 0 Δ
k

k

k

x
x v

x
    . Let  1 2,  Δk k kx x x   satisfy 1 21, 0k kx x   

and 2 .kx   Let  0  , then there exists a number 0k   such that 0k k   and 2 5kx   . We 

have    1 20, : ,k k kt x tv x x t     . Since  2

1 1kx   and 2 2 5k kx t x     , we have 

   2

1 2 0k kx x t   . We obtain that      2

1 1 2 22 2 5 0k k k kx x x t x t        . So Δkx tv   

with 0k k  . Thus, Δ  is an asymptotically linear set. 

Since   2
1: 1f x x     for all Δx , by Theorem 3.1, we obtain that the problem in this example 

has a solution. 

4. Conclusion 

In this paper, we propose a sufficient condition for the solution existence of constrained quadratic 
programming in Hilbert spaces (Theorem 3.1). A numerical example is presented to illustrate the 
obtained result.  
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