

Article type: Research article

Weak* fixed point property of fourier-stieltjes algebra on compact groups

Ngoc-Muoi Bui^{a,*}, Thi-Thu Tran^a, Quoc-Tuan Nguyen^a

^aHanoi Pedagogical University 2, 32 Nguyen Van Linh, Phuc Yen, Vinh Phuc, Vietnam

Abstract

Lau and Mah [3] showed that a Fourier-Stieltjes algebra B(G) on a separable compact group G has the weak* fixed point property, i.e. every nonexpansive mapping on a weak* compact convex subset of B(G) has a fixed point. We extend this result by showing that a similar fixed point property holds for norm continuous and asymptotically nonexpansive mappings.

Keywords: Fourier-Stieltjes algebra, semitopological semigroup, fixed point property.

1. Introduction

Let K be a non-empty convex subset of a Banach space X. Let $T: K \to K$ be a *nonexpansive* map, namely $||Tx - Ty|| \le ||x - y||$, for all x, y in K. Schauder [5] shows that T has a fixed point if K is norm compact. However, if K is weakly (resp. weak*) compact convex subset of a Banach (resp. dual Banach) space, then T does not necessarily have a fixed point, see [1] for more discussion. We called a dual Banach space X has *weak* fixed point property* if every nonexpansive mapping on a weak* compact convex subset of X has a fixed point.

Let $L^{1}(G)$ be the group algebra of G associated with the regular left Haar measure $d\lambda$ with convolution product. Define a norm on $L^{1}(G)$ by

 $\|f\|_* = \sup \|\pi(f)\|,$

where the supremum is taken over all nondegenerate * – representations $\pi: L^1(G) \to B(H_{\pi})$ for some Hilbert space H_{π} . Let $C^*(G)$ be the completion of $L^1(G)$ with respect to the $\|\cdot\|_*$ norm.

Let P(G) be the set of all positive definite functions on G, i.e. for each function $f \in P(G)$ there is a unitary representation $\pi: G \to B(H_{\pi})$ for some Hilbert space H_{π} and some $\xi \in H_{\pi}$ such that

Received date: 23-8-2022 ; Revised date: 26-8-2022 ; Accepted date: 30-8-2022

^{*}Corresponding author. E-mail: buingocmuoi@hpu2.edu.vn https://doi.org/10.56764/hpu2.jos.2022.1.1.54-61

This is licensed under the CC BY-NC-ND 4.0

 $f(s) = \langle \pi(s)\xi, \xi \rangle$ for all $s \in G$. Let B(G) be the linear span of P(G). In this way, B(G) becomes a Banach algebra with the pointwise multiplication, and it is the dual space of $C^*(G)$ with the norm defined by

$$\left\|\varphi\right\|_{B(G)} = \sup \left|\int \varphi(t)f(t)d\lambda(t)\right| : f \in L^{1}(G), \left\|f\right\|_{*} \leq 1$$

A semitopological semigroup S is a semigroup with a Hausdorff topology such that the product is separately continuous, i.e., for each fixed $t \in S$, both the maps $s \mapsto ts$ and $s \mapsto ts$ from S into S are continuous. We call S left reversible (resp. right reversible) if any two right ideals (resp. left ideals) of S always intersect, in other words, for each $s, t \in S$ we have $\overline{sS} \cap \overline{tS} \neq \emptyset$ (resp. $\overline{Ss} \cap \overline{St} \neq \emptyset$). We call S reversible if it is both left and right reversible. Examples of reversible semigroup includes topological groups, commutative semitopological semigroups and discrete inverse semigroups.

An *action of* a semitopological semigroup S on a Hausdorff topological space K is a mapping of $S \times K$ into K, denoted by $(s, x) \mapsto s.x$, such that $st \ x = s$. tx for all $s, t \in S$ and $x \in K$. We call the action *continuous* if the mapping $s, x \mapsto T_s x$ is separately continuous. A point $x_0 \in K$ is called a *common fixed point* for S if $s.x_0 = x_0$ for all $s \in S$.

Definition 1.1 ([4]). An action $S \times K \mapsto K$ is called of

(*i*) asymptotically nonexpansive type if for each $x, y \in K$ and $\varepsilon > 0$, there exist a left ideal I and a right ideal J in S such that

$$\|sx - sty\| \le \|s - ty\| + \varepsilon \quad \text{for all } s \in I \text{ and } t \in J;$$

$$(1.1)$$

(*ii*) strongly asymptotically nonexpansive type if for each $x, y \in K$, $\varepsilon > 0$ and each right ideal J of S, there exist a left ideal I of S such that

$$\|sx - sty\| \le \|s - ty\| + \varepsilon$$
 for all $s \in I$ and $t \in J$.

A map $T: K \mapsto K$ is called *asymptotically nonexpansive* if for each $x, y \in K$,

$$\lim_{k} \sup = \|T^{k}x - T^{k}y\| \le \|x - y\|$$
(1.2)

then is of asymptotically nonexpansive type. We have asymptotic nonexpansiveness is strictly weaker than nonexpansiveness, see [4] for an example. Furthermore, if a map T is asymptotically nonexpansive on K then the action of $S = T^k : k \in N$ on K is asymptotically nonexpansive type.

Lau and Mah [3] showed that

Theorem 1.2 ([3, Theorem 4.2]). Let G be a separable compact group. Let K be a non-empty weak* compact convex subset of the Fourier-Stieltjes algebra B G. Let S be a left reversible semitopological semigroup. Let $S \times K \mapsto K$ be a nonexpansive, norm continuous action of S on K. Then S has a common fixed point in K.

As a consequence, B(G) has a weak* fixed point property. Indeed, for a nonexpansive mapping T, consider the semigroup $S = \{T^k : k \in N\}$ generated by T. Then S has a common fixed point by Theorem

1.2, hence T has a fixed point. Motivated by Theorem 1.2, we show in this paper fixed point properties for a semigroup of asymptotically nonexpansive mappings. As a consequence B(G) has weak* fixed point property for asymptotically nonexpansive mappings. This provides a variance and generalization of some results in [3].

2. Materials and methods or Experiments

Let K be a nonempty subset of a Banach space X and let $\{D_{\lambda} : \lambda \in \Delta\}$ be a decreasing net of bounded non-empty subsets of X. For each $x \in K$ and $\lambda \in \Delta$, let

$$r_{\lambda}(x) = \sup\{ \|x - y\| : y \in D_{\lambda} \},\$$

$$r(x) = \lim_{\lambda} r_{\lambda}(x) = \inf_{\lambda} r_{\lambda}(x),$$

$$r = \inf\{r(x) : x \in K\}.$$
The set (possibly empty)
$$(2.3)$$

 $AC(\{D_{\lambda}:\lambda\in\Delta\})=\{x\in K:r(x)=r\}$

Consists of *asymptotic centers*, and *r* is called the *asymptotic radius*, of $\{D_{\lambda} : \lambda \in \Delta\}$ with respect to K.

The following lemma arises from the proof of [2, Theorem 3.1].

Lemma 2.1. Let S be a right reversible semitopological semigroup. Assume $S \times K \to K$ is a separately continuous action of S on a compact convex subset K of a locally convex space. Then there exists a subset L_0 of K which is minimal with respect to being nonempty, compact, convex and satisfying the following conditions (*1) and (*2).

(*1) there exists a collection $\Delta = \{\Delta_i : i \in I\}$ of closed subsets of K such that $L_0 = \bigcap \Delta$, and

(*2) for each $x \in L_0$ there is a left ideal $J_i \subseteq S$ such that $J_i \cdot x \subseteq \Delta_i$ for each $i \in I$.

Furthermore, L_0 contains a subset Y that is minimal with respect to being nonempty, compact, and S-invariant, i.e., $s.Y \subseteq Y$ for all $s \in S$.

Proof. We sketch the arguments in the proof of [2, Theorem 3.1]. By the Zorn's lemma such L_0 always exists. For each $x \in L_0$, let Φ be the collection of all finite intersections of sets in $\{\Delta_i : i \in I\}$. Order Φ by the reverse set inclusion. For any $\alpha = \Delta_1 \cap \Delta_2 \cap \ldots \cap \Delta_n \in \Phi$, choose left ideals J_i such that $J_i \cdot x \subseteq \Delta_i$ for i = 1, ..., n. By the right reversibility, there exists $s_\alpha \in \bigcap_{i=1}^n \overline{J_i}$. Thus, S $s_\alpha \cdot x \subseteq \alpha$. Let z be a cluster point of the net $\{s_\alpha \cdot x\}_{\alpha \in \Phi}$.

Then \overline{Sz} is a closed S-invariant subset of L₀. By Zorn's lemma, there exists a minimal subset $Y \subseteq \overline{Sz} \subseteq L_0$ with respect to being nonempty, closed and S-invariant.

The following lemma is crucial for our results.

Lemma 2.2 ([3, Theorem 4.1]). Let G be a separable compact group. Let K be a nonempty weak* closed convex subset of B(G). Let $\{D_{\lambda} : \lambda \in \Delta\}$ be a downward directed net of nonempty bounded subsets of K. Then the set of asymptotic centers of $\{D_{\lambda} : \lambda \in \Delta\}$ with respect to K is nonempty, norm-compact and convex.

We establish in the following weak* fixed point properties of B(G) that provides a variance of [3] for various nonexpansive mappings.

Theorem 2.3 Let G be a separable compact group. Let K be a non-empty weak* compact convex subset of A(G). Let $S \times K \to K$ be a norm continuous action of a semitopological semigroup S on K. Assume either

(i) S is commutative and the action is of asymptotically nonexpansive type, or

(*ii*) *S* is reversible and the action is of strongly asymptotically nonexpansive type.

Then S has a common fixed point in K.

Proof. We follow the idea in proving Theorem 1.2 in [3]. For a fixed $z \in k$ and $s \in S$, let $W_s = \overline{sSz}$. Direct S by the order $s \ge t$ if $sS \subset \overline{tS}$. Then $\{W_s : s \in S\}$ is a decreasing net of subsets of K. By Lemma 2.2, the set C of asymptotic center of $\{W_s : s \in S\}$ with respect to K is a non-empty convex norm-compact set.

We show that for each x in C, there is a left ideal I of S such that $Ix \subset C$. Indeed, for each $\varepsilon > 0$, there is a $t \in S$ such that $r_t(x) = \sup\{||x - y|| : y \in W_t\} \le r + \frac{\varepsilon}{2}$. Hence $tSz \subset W_t \subset \overline{B}[x, r + \frac{\varepsilon}{2}]$,

where $\overline{B}[x, r]$ is the closed ball center at x with radius r. Then

$$||ts'.z-x|| \le r + \frac{\varepsilon}{2}$$
, for all $s' \in S$. (2.4)

Since the action is asymptotically nonexpansive type, for $x, t, z \in K$ and $\varepsilon > 0$, there are left ideals I and J of S such that

$$\|ss't.z - s.x\| \le \le \|s't.z - x\| + \frac{\varepsilon}{2} \le r + \varepsilon$$
, for all $s \in I$ and $s' \in J$,

where the second inequality follow from (2.4) and the commutativity of S. Therefore, there exists an $s_1 \in tIJ \subset S$ such that

$$s_1Sz \subset IJtz \subset B[s.x, r + \varepsilon].$$

Thus, $W_{s_1} \subset \overline{B}[s.x, r + \varepsilon]$. In other word, $sx \in C$ for all $s \in I$. Hence, $Ix \subset C$.

Similar to the case (ii), for given $x, z \in C, \varepsilon > 0$ and a right ideal tS of S, there is a left ideal I of S such that

$$\|s.x-stx'.z\| \le \|x-ts'.z\| + \frac{\varepsilon}{2} \le r + \varepsilon$$
, for all $s \in I, s' \in S$.

Hence
$$stSz \subset W_{st} \subset B \ s.x, r + \varepsilon$$
, and thus $s.x \in C$ for all $s \in I$.

Follow Lemma 2.1 and the preceding discussion, there exists a subset L_0 of C which is minimal with respect to being nonempty, norm-compact, convex and satisfying the following conditions.

*1 there exists a collection $\Lambda = \Lambda_i : i \in I$ of closed subsets of C such that $L_0 = \cap \Lambda$, and

*2 for each $x \in L_0$ there is a left ideal $J_i \subseteq S$ such that $J_i . x \subseteq \Lambda_i$; for each $i \in I$. Furthermore, L_0 contains an S-invariant subset \overline{Su} for some $u \in L_0$.

If L_0 contains one point then u is a common fixed point of S. Suppose that L_0 contains more than one point. For each $s \in S$, let $U_s = \overline{sSu}$. Then $U_s : s \in S$ is a decreasing net of subsets of L_0 . Then the asymptotic center AC $U_s : s \in S$ with respect to L_0 is a nonempty compact convex proper subset of Lo. Following an approach in [4], we show that AC $U_s : s \in S$ also satisfies properties *1 and *2.

Let r be the asymptotic radius of $U_s : s \in S$ with respect to L_0 . For each $n \in N$, let $C_n = \left\{ x \in L_0 : r \ x \ \leq r + \frac{1}{n} \right\}$. Then C_n is a nonempty closed convex subset of L_0 . Moreover $AC \quad U_s : s \in S \quad = \bigcap_{n=1}^{\infty} C_n$.

Let $x \in AC$ $U_s: s \in S$ and consider a fixed C_n . Since $x \in C_{3n}$, we have $r \ x \le r + \frac{1}{3n}$ Hence there exists an $t \in S$ such that

 $r_t \ x = \sup \ \|x - y\| : y \in U_t \ \le r + \frac{1}{2n}.$

From (1.1), there are a left ideal I and a right ideal J of S such that

$$||sx - ss'u|| \le ||x - s'u|| + \frac{1}{2n}$$

for all $s \in I$ and $s' \in J$. Take $t_0 \in \overline{J} \cap \overline{tS}$, we can assume $J = t_0 S$ for some $t_0 \in S$ such that $\overline{Ju} = U_{t_0} \subset U_t$ for all $t \in J$. Hence

$$\|sx - sy\| \le \|x - y\| + \frac{1}{2n} \le r + \frac{1}{n}$$

for all $s \in I$ and $y \in U_{t_0}$. Thus

$$\|sx-z\| \le r + \frac{1}{n}$$

for all $s \in I$ and $z \in U_{st_0} = \overline{st_0 Su}$. Hence

$$r \ sx \ \le r_{st_0} \ sx \ = \sup \ \|sx - y\| \colon y \in U_{st_0} \ \le r + \frac{1}{n}$$

for all $s \in I$. In other words, $Ix \subset C_n$. This implies that the proper subset $AC = U_s : s \in S$ of L_0 has also properties *1 and *2. The contradiction shows that L_0 consists one point and it is a

common fixed point of S.

As consequence, B(G) has the weak* fixed point property for asymptotically nonexpansive mappings.

Corollary 2.4. Let G be a separable compact group, let K be a weak* compact convex subset of B(G). Let T be a norm-continuous and asymptotically nonexpansive map from K into K. Then T has a fixed point in K.

Proof. Let $S = T^n : n \in N$ be the commutative discrete semigroup generated by T. Then the action

of S on K is separately norm continuous and asymptotically nonexpansive type. From Theorem 2.3, S has a common fixed point in K, then so is T.

3. Conclusions

We have showed that if G is a separable compact group then the Fourier-Stieltjes algebra B(G) has a fixed point property for the semigroup of asymptotically nonexpansive type mappings. As a consequence, B(G) has the weak* fixed point property for asymptotically nonexpansive mappings. This extends some results of Lau and Mah [3] in literature.

Acknowledgments

This research was also funded by Hanoi Pedagogical University 2 Foudation for Sciences and Technology Development via grant numver HPU2.UT-2021.03

References

- [1] D. Alspach, A fixed point free nonexpansive map, Proc. Amer. Math. Soc. (1981), 423-424.
- [2] R. D. Holmes and A. T.-M. Lau, Asymptotically nonexpansive actions of topological semigroups and fixed points, *Bull. London Math. Soc.*, 3 (1971), 343–347.
- [3] A. T.-M. Lau and P. Mah, Fixed point properties for Banach algebras associated to locally compact groups, J. Funct. Anal., 258 (2010), 357–372.
- [4] S. Saeidi, F. Golkar and A. M. Forouzanfar, Existence of fixed points for asymptotically nonexpansive type actions of semigroups, J. *Fired Point Theory Appl.*, 20 (2018), no. 2, Art. 72.
- [5] J. Schauder, Der Fixpunktsatz in Funktionalraumen, Studia Math., 2 (1930), 171-180.