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Abstract 

For better understanding the influence of heterogeneity of complex networks and quarantine treatment 
on epidemic spreading, we present a study on a fractional network-based epidemic model with fuzzy 
transmission. Based on the next-generation method, we determine an important threshold value of the 
epidemiology theory, say 

0 . Then, we indicate that 
0 significantly depends on the topology structure 

of the network and malware load. Next, we prove that the threshold value 
0  not only determines the 

unique existence of endemic equilibrium 
*E  but also ensures the clean of malware programs on the 

network. 

Keywords: Fractional network-based SIQR epidemic model, fuzzy transmission, basic reproduction 
number, disease-free equilibrium, endemic equilibrium, asymptotic stability. 

1. Introduction 

In classical model, when the population is small and well-mixed, the rate of disease-causing 

contacts is often supposed to be equal. This assumption makes the model’s evaluation more simply and 

tractable. However, it is un-realistic when the population is sufficiently large. Therefore, many 

researchers have used mathematical network-based models to study the epidemic disease spreading in 

complex networks such as the Internet, Facebook, Instagram, social networks, sensor networks and 

biological chain networks, etc., in which the connectability of different node is certainly un-similar and 

of course, the infections of malware programs to these nodes are also not the same. Recently, various 

epidemic models with network-based settings have been analyzed for better understanding the 

dynamical behavior of epidemic diseases. Indeed, the paper [21] is known as a meaning pioneer work 

in this topic with a detailed study on both analytical and numerical perspectives for a network-based SIS 

epidemic model on scale-free network. The most important contribution of this work is the finding of a 

threshold value for which the epidemic is absent and the corresponding dynamical behavior. In [9], Huo 

et. al. proposed a three-compartmental epidemic model with susceptible, infected and recovered states 

to describe the virus infection on scale-free network. Firstly, the basic reproduction number 
0  was 

evaluated to study some characteristic properties of the proposed model. After that, by establishing an 
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appropriate Lyapunov function, the authors proved the importance of the number 
0  in the study of 

asymptotic behavior of endemic equilibrium. In [14], Li et. al. introduced an SIRS epidemic model to 

describe the virus propagation on heterogeneous network. This work proved that the presence or absence 

of the disease on network completely depends on the value of 
0 , i.e., the virus-free equilibrium is 

globally asymptotically stable if 
0 1  , while if 

0 1   then it is unstable. However, the contribution 

of this work has just simulated the widespread phenomena of virus, but, in reality, the further treatments 

such as vaccination or quarantine also need to be discussed in the model.  On the other hand, For 

investigating the influence of heterogeneity of the complex networks and quarantine strategy on 

epidemic spreading, Li et. al. [15] proposed a network-based SIQRS epidemic model and found out that 

the threshold value 
0 significantly depends on the topology of complex networks and quarantine rate. 

Furthermore, this work also presented the epidemic permanence and the local asymptotic stability of 

disease-free equilibrium. The flexibility and memory property of the network’s environment are also  

factors that need to be taken into consideration when modeling real-world phenomena on the complex 

heterogeneous network. This is the reason why in this work, we consider a network-based SIQRS 

epidemic model with fractional derivative instead of classical integer derivative as in [15]. Numerous 

studies have proved that fractional calculus has a considerable advantage and superiority when modeling 

many non-local phenomena and memory processes. Beside the rapid popularization of fractional 

calculus, the study of fractional dynamical systems has achieved a lot of noticeable results in sciences 

and engineering, see [6,7,9]. The stability theory of fractional differential equations is also an important 

branch in the quanlitative theory of fractional differential equations. Recently, Cong et al. [3] fully 

introduced Lyapunov’s first method for the study of fractional differential equations. In addition, with 

the introduction of Lyapunov function method (see [12]), the stability analysis of fractional differential 

systems by Lyapunov’s second method has attracted more and more attentions. However, to the best of 

our knowledge, the construction of an appropriate fractional Lyapunov function subject to a fractional 

differential equations is quite complicated and requires several strict assumptions. In fact, this theory is 

still in the first stage of development and needs more further studies. Some valuable references in 

fractional Lyapunov function can be found in [2, 12, 13, 19, 22]. For the better modeling and data-fitting, 

fractional calculus has been also applied to study the fractional epidemiology theory and applications. 

However, to the best of our knowledge, there have only a few studies on network-based epidemic models 

with fractional-order. Some of them can be found in [8,20]. 

Since the nature of almost natural phenomena is vagueness and uncertainty, the mathematical 

modeling of real-world epidemic diseases must always accept the presence of uncertainties. However, 

to our best knowledge, there have been very few studies considering the environmental uncertainty in 

any epidemic model. It is well-known in many biological models that the epidemic disease occurs only 

if the viral load reaches a certain threshold and obviously, the concept of viral amount is quite difficult 

to express by exact or certain value. This leads to the use of fuzzy set theory initiated by Zadeh [23] to 

get the better modeling of epidemic diseases in realistic situations. Despite of the tremendous potential 

in the modeling of epidemic models, the uses of fuzzy sets in epidemiology theory are not frequent. 

Some noticeable applications of fuzzy sets in epidemic models can be found in Dong et. al. [6,7], Mondal 

et. al. [16], Nandi et. al. [18]. 

Motivated by aforesaid, this work is devoted to present a detailed study on a fractional network-

based four compartmental epidemic model with fuzzy transmission. The main contributions of this work 

can be highlighted as follows: 

https://sj.hpu2.edu.vn/
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(i) Formulate a fractional epidemic model in the form of mean-field reaction rate equations, namely 

fractional network-based SIQR  epidemic model, for describing and analyzing the malware spreading 

on complex heterogeneous network with quarantine treatment. 

(ii) Since the fact that disease infection often occurs only if the malware load on the network 

exceeds a certain threshold value and reaches a saturation level at certain malware load, we propose to 

introduce the fuzzy membership function into the transmission rate.  

(iii) Based on the next-generation method, we analytically compute the basic reproduction number 

0 , that is an important threshold value in epidemiology theory. This quantity plays a key role in not 

only the existence of endemic equilibrium 
*E  but also the local asymptotic behavior of malware-free 

equilibrium 
0.E   

(iv) By using the linearization method, we give a criteria for the local asymptotic stability of 

disease-free equilibrium 
0E based on the 4 4n n − Jacobi matrix’s eigenvalues that are related to the 

basic reproduction number 
0 . Next, by applying direct estimations and fractional contracttion 

principle, we can conclude that the attractivity of the equilibrium 
0E  depends upon a threshold value 

0 .  

The structure of this work is given as follows: 

2. Materials and methods or Experiments 

2.1. Model Formulation  

In this paper, we propose to use Barabási-Albert scale-free network [1] to describe for the 

heterogeneity of malware spreading on complex networks. Assume that when the network attains the 

scale-free stationary state, the probability distribution that a randomly given node has degree k follows 

the power-law 
3( ) .k mk−=  In addition, assume that the number of divided groups 100n =  and from 

1
( ) 1,

n

k
k

=
=  we get 0.8319m = . Moreover, the network structure ‘s parameter k  is computed 

by MatLab program: 2

1
1.3601.

n

k
k mk−

=
= In addition, the other used parameters are given as 

follows:  

0.12, 0.1, 0.5, 0.15, 0.3.A d r = = = = =   

2.1.1. The formulation of the fractional network-based SIQR  epidemic model  

Since the nature of complex network is heterogeneous, it is well-known that the total population 

can’t be well-mixed and the rate of disease-causing contacts is varied depending upon the node’s 

connectivity. Indeed, based on the number of connected links a node has per unit time, we classifly the 

total population into n groups and assume that nodes in a same group share the same dynamical property. 

Denote , ,k k kS t I t Q t  and kR t  by the densities of susceptible, infectious, quarantined and 

recovered nodes with degree k  at time t , respectively for 1,2,...,k n  and denote kT t  by the total 

number of nodes with degree k  at time t . The flowchart of SIQR epidemic model in th 
thk - group is 

given in Figure 1. 
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Figure 1. The flowchart of malware propagation among four compartments: Susceptible, 

Infectious, Quarantine, Recovered 

In this work, we present a study on the network-based epidemic model governed by the following 

fractional mean-field reaction rate equation: 

0

0

0

0

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

C q

t k k k k k

C q

t k k k k

C q

t k k k

C q

t k k k

D S t A S t t dS t R t

D I t S t t d I t

D Q t I t r d Q t

D R t rQ t d R t

 

 





 = −  − +


=  − +


= − +


= − +

                                                                 (1) 

where the notation 0 (.)C q

tD denotes for the Caputo fractional derivative of order 0,1q  of state 

function (see [10], pp. 92), ( )k v  is the degree-dependent fuzzy transmission rate, is the rate of being 

susceptible from the recovered state,   is the quarantine rate of infectious nodes and , ,r d Aare the 

recovered rate, the natural death rate, the natural birth rate, respectively. Futhermore, since the un-

correlation of node’s connectivity on the network is taken into account, the probability that a given link 

is connected to an infectious node can be expressed by the following function                                                                     

1

1
( ) ( ) ( )

n

i

i

t i i I t
k =

 =   

where 
1

( )
n

i
k i i  is known as the mean degree of the network. 

 

2.1.2. The fuzzy transmission 

In this work, assume that the degree-dependent transmission rate of 
thk - group is .k k k

Moreover, with the aim of taking into consideraion the heterogeneity of complex network, the 

transmission paramrter  is proposed to express as a funcition of available malware programs. In 

particular, we use the following fuzzy set to describe this parameter. 

( )

0

0
0 1

1 0

1

0

max

if

if

if .

 

 
     

 

   

 


−
=  

−
  

 

It can be seen that the malware propagation always has a lower threshold value 
0 ,v  under which 

the chance of transmission is negligible. In addition, there exists an upper threshold value, say 
1,v

https://sj.hpu2.edu.vn/
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beyond which the transmission rate reaches the maximum value ( )v . When the malware load is 

in the range 1, ,ov v the transmission rate ( )v is an increasing linear function of malware load .v In 

addition, assume that the amount of  malware load has an upper bound 
max .v  Note that the values of 

0 1 max, ,v v v would depend upon both environmental characteristics and nature of malware programs, that 

is reasonable for the choice of fuzzy membership function. Furthermore, in order to express the concept 

“malware load”, it seems suitable to use linguistic variables. For instance, based on three above threshold 

values, we classify the malware load into three classes corresponding to linguistic terms “LOW (
lA )”, 

“MEDIUM (
mA )” and “HIGH (

hA )”. In addition, in each classification, we use fuzzy numbers to 

express the malware load (see Figure 2). This approach can be found in [16,18]. 

 

 

Figure 2. The membership function of fuzzy transmission rate and longuistic variables of the 

amount of malware program 

2.1.3. The positiveness of the network-based SIQR  epidemic model 

We assume that the initial conditions of the network-based epidemic model ( )1  satisfy 

(0) 0, (0) 0, (0) 0, (0) 0, 1,2,..., .k k k kS I Q R k n  (1) 

It can be verified that solution of Cauchy problem (1) - (2) is defined for all 0t and 1,...,k n  

(see Appendix for more details). From the view point of epidemiology, we only need to focus on the 

positiveness and positively invariant set of solution. For simplicity, we denote 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )

1 1 1 1

4

, , , ,..., , , ,

: , 1, .

n n n n

n

k k k k

x t S t I t Q t R t S t I t Q t R t

x t S t I t Q t R t k n
d



+

+

=

 
 =  + + +  = 

 

 

Due to the presence of epidemic disease on network, we assume that ( ) 0t  for each 0t . 

Theorem 2.1. Assume that the initial condition ( )2 belongs to .+  Then, for each 0t , the 

solution x t  of Cauchy problem ( ) ( )1 2−  belongs to 
+ . 

Proof. We assume by contrary that there exists a time 
* 0t such that 

*( ) 0,kS t ( ) 0kS t for 

all 
*0 t t  and ( ) 0kS t  if 

*.t t Then, our proof is proceeded in two following cases: 

Case 1: If the function ( )kI t  is non-negative for all 0t then by applying the fractional 

comparison principle (see Lemma 10, [13]), the differential inqualities 
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0 ( ) ( ) ( ) ( ) ( ) ( ),C q

t k k k kD Q t I t r d Q t r d Q t  

which implies that ( ) (0) ( ( ) ) 0.q

k k qQ t Q r d t − +  Similarly, we have ( ) 0kR t   for all 0t 

. Therefore, at 
*t t= , we have 0 ( ) ( ) 0C q

t k t t kD S t A R t
= = +  . By using Lemma 2.8, it implies that the 

function ( ) 0kS t  , which contradicts to our assumption. 

Case 2: Assume that there exists a time 
0 0t   such that

0( ) 0kI t = , ( ) 0kI t   for all 
0[0, )t t  

and ( ) 0kI t  for all 
0.t t  We have if 

0 *t t then by doing similar arguments as in Case 1, we can 

prove that the functions ( )kQ t , ( )kR t are all non-negative on 
0[0, t ]  and 

*( ) 0kS t  , which leads to 

the contradiction. If 
0 *t t then we have ( ) 0S t   for all 

0[0, ]t t . As a result, the differential 

inequality
0 ( ) ( ) ( ) ( ) ( ) ( ) ( d) I ( )C q

t k k k k kD I t S t t d I t t   =  − +  − + implies that ( ) 0kI t  for all 

0[0, ]t t , that is a contradiction. Finally, we can conclude that ( )kS t  > 0 for all 0t  . Similarly, we 

can also prove that ( )kI t , ( )kQ t  and ( )kR t  are all non-negative for each 0t   and 1,k n= . 

According to the assumption (0) ,x + we have (0) (0) (0) (0) R (0)k k k k k

A
T S I Q

d
= + + +  . 

By summing up all fractional differential equations of the system (1), we immediately obtain 

0 ( ) ( ).C q

t k kD T t A dT t= −                         (2) 

Then, by using Example 4.9 in [10] and Lemma 2.7 in Appendix for
1 ,q q= 2 1q =  and

qx t= − , 

the general solution of the fractional differential equation (3) is given by 

, 1 ,1( ) (0) ( ) At ( ) (0) ( ) [1 ( )]q q q q q

k k q q q k q q

A
T t T dt dt T dt dt

d
+= − + − = − + − − . 

Since 0 ( ) 1q

q dt −   for all 0t  , we have ,1( ) ( ) [1 ( )]q q

k q q

A A A
T t dt dt

d d d
 − + − − = , 

which means that +  is a positively invariant set for the epidemic model (1). 

2.2. The basic reproduction number ℜ0 and equilibrium points 

2.2.1. The basic reproduction number 
0  

Firstly, it should be noted that equilibrium points of the fractional network-based SIQR epidemic 

model (1) is stationary points of the following system 

( ) ( ) I 0

( ) 0

( ) 0.

k k k k

k k k

k k

k k

A
S I Q R

d

v S d

I r d Q

rQ d R

 






+ + + =

  − + =
 − + =


− + =

                                                                                                                                                                       (3) 

The disease-free equilibrium is a stationary point of the system (4), where  0kI = for all 1, .k n=  

Thus, we can find that the epidemic model (1) admits a disease-free equilibrium 
0E  given by 
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0

4

( ,0,0,0,..., ,0,0,0).

n

A A
d d

 =  

Now, our aim is to find a threshold value which plays a key role in the investigation of local 

asymptotic behavior of the epidemic model (1). This value is called basic reproduction number and 

denoted by 
0 . To do this, we will apply the next-generation matrix method introduced in Diekmann 

[4]. The rate matrix F of new infection’s appearance can be given by 

 

1 1 1 1

2 2 2 2

( )1 (1) ( )2 (2) ... ( ) n (n) ( )

( )1 (1) ( )2 (2) ... ( ) n (n) ( )

( )1 (1) ( )2 (2) ( ) n (n) ( )

(1) 2 (2) ( )

n n n n

v v v v

v v v v

v v v v

n n
A A

F
d k d k

   

   

   

   
   
   = =
   
   
   

 

and the transition matrix V of infected states is ( d) nV Id= + , where 
nId  is the n × n identity 

matrix. Finally, the basic reproduction number 
0  is given by 0 ,

( )

kA k

d d k




 =

+
in which the 

notation
1

( ) ( )
n

k k

k

k v k k 
=

=  is the network structure’s parameter. 

2.2.2. The sensitivity analysis of the threshold value 
0  

Now, we will discuss how different parameters contribute to the change of 
0.  According to Nakul 

et. al. [17], the sensitivity index of a quantity depending on a parameter   can be determined by 

.





 
 = 

 
By the definition of 

0 this quantity depends on some model’s parameters such as 

,d,A, ( )   and the parameter of network structure. Therefore, by direct computations, we obtain 

0 0 0 0 0

2( )

( 2 )
1 1 1 .A dk

k

d

d d
  

 

 

     +
 =  =  =  = −  = −

+ +
 

Remark 2.1. Here, we can conclude that the basic reproduction number 
0  is the most sensitive 

with the death rate d and the increase of quarantine rate   will reduce the value of 
0 . In addition, it 

will experience a 10% increase of the value 
0  if we increase the parameter ( )   by a same 

percentage. Similarly, we also have the value of 
0 increases with the increase of structure parameter 

2k

k

, which means that the epidemic disease could be controlled if the value 2k

k

is decreasing, 

whereas the higher value of 2k

k

could follow that more efforts must be done to eliminate malicious 

objects on the network.  

2.2.3. The influence of the fuzzy transmission rate to 
0  

Since ( ) ( )k k   = , the quantity 
0 can be known as a function of malware load .  Now, we 

will discuss the influence of malware load to the value of 
0. We will consider three cases of malware 
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load w.r.t. the linguistic meanings “LOW”, “MEDIUM” and “HIGH”. 

 Case I. If the malware load is “LOW”, i.e., the fuzzy number ( , , )l c c cA     = − +  satisfies 

0c  +  , then the transmission rate ( ) 0.k  =  In addition, it is clear that the basic reproduction 

number 
0 then becomes zero, which means that the epidemic disease is absent on the network. This 

case can be understood that the disease is not enough to cause the infection or malware programs 

attacked to some nodes that have less importance with the network. 

Case II. If the malware load is “MEDIUM”, i.e., the fuzzy number ( , , )m c c cA     = − +

satisfies 
0c  −   and 

1c  +  , then the transmission rate ( )k  is known as a linear function 

w.r.t. malware load  . As a result, the basic reproduction number 
0 0: ( ) = , given by 

2

0
0

1 0

( ) ,
( )

A k

d d k

  


  

−
 =

+ −
 

is an increasing function w.r.t. malware load  , which leads to a fact that the higher malware load 

is, the bigger value basic reproduction number 
0  gets, where 2 2

1

(i).
n

i

k i
=

=  

Case III. If the malware load is “HIGH”, i.e., the fuzzy number ( , , )h c c cA     = − +  satisfies 

1c  −  , then the transmission rate ( )k k  = is a constant function w.r.t malware load .  Thus, 

the basic reproduction number 
0  only depends on parameters and network structure. 

2.2.4. The existence and uniqueness of the endemic equilibrium 

Next, the following theorem presents an interesting result on the existence and uniqueness of an endemic 

equilibrium ( )E EE  of the fractional network-based SIQR epidemic model ( )1 . 

Theorem 2.2. The following assertions are fulfilled:  

(i) If 
0 1   then the epidemic model ( )1 can’t have any endemic equilibrium. 

(ii) If 
0 1   and 

( )
11

r

r d d
A d




+

+ +

  
 +   

  
 then the epidemic model ( )1  has exactly a unique 

endemic equilibrium ( )1 1 1 1

* * * * * * * *

* n n n nE S ,I ,Q ,R ,...,S ,I ,Q ,R= , where 

(iii) 

( ) ( )( )

( )

( )
( )

( )
1

1

1
*

k

*

* k

k

* * * * * *

k k k k k k*

k

n
* * *

k i

ir
d d

r d d

d r
S I , Q I , R I ,

r d r d d

I i i I .
k

 

 
  



  

  

=

 


+ +  + +

+ +

+
= = =

 + + +

=  =
  

    


                     

(iv) Proof. Firstly, note that at the endemic equilibrium state, the quadruple 

( )* * * *

k k k kS ,I ,Q ,R satisfies the system ( )4  and the compartments 
kI  are nonzero. Thus, the quantity 

( )
1

1 n

ii
i i I

k =
 =   is also positive. Now, we will express the terms 

k kS ,Q  and
kR  by 

kI .In 
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particular, we have 

( ) ( ) ( )

( )

( )
( ) ( )1

k

k

k

k k k k k k

k

k
r

d d

r d d

d r
S I , Q I , R I ,

r d r d d

I .
 

  


 

  

  


+ +  + +

+ +

 

+
= = =

 + + +

=
 
  

 

So, we obtain the following self-consistency equation 

( ) ( )

( )
( )

1 1

1
i

i

i

n

i

i i

r
d d

r d d

.
k

 

 
  



=

 


+ +  + +

+ +

 =
  

    

                     (4) 

Our aim to find a condition for which ( )5  has a solution ( )0 1* ,  . For this aim, we define 

( )
( ) ( )

( )
( )

1 1

1
i

i

i

n

i

i i

r
d d

r d d

F .
k

 

 
  



=




+ +  + +

+ +

 =
  

    



 

Here, we can see that the function ( )F   is continuous in  0,1  and differentiable on ( )0,1 .  In 

addition, for each ( )0 1, ,  we have  ( )
( ) ( )

( )
0

1

1
i

n

i

i i

d d
F

k

 

=



+
  =  and ( ) 0F  =  if and 

only if 0. =  Moreover, at   1, =  we have  

( )
( ) ( )

( )
( )

( ) ( )

( )1 1 1 11

1 1
1 1

i

ii

i i

n n

i i
rr

dd d
r d dr d d

i i i i
F .

k k  
   



   

= = + ++ + + +
+ ++ +

 
=  

    
          

 

 

It is easy to see that a non-trivial solution of the equation ( ) 1F  =  is also a non-trivial solution 

of ( )5 . In the case 
0 1  , since ( ) 0 1F ,    the equation ( ) 0F  = has no solution and hence, 

the first assertion is completed. If 
0 1  then it directly follows that ( )0 1F   and hence, by 

Intermediate Value theorem, the equation ( ) 1F  =  has at least one solution ( )0 1, ,  which is also 

a non-trivial solution of ( )5 . Moreover, for each ( )0 1, , we have 

( )
( ) ( ) ( )

( )

( )
( )

2

1

1

1

i

i i

i

i

n

i

r
i i

r d d

r
d

r d d

d
F .

d d k

 
   



 
  



=

+ +
+ +


+ +  + +

+ +

  
     

 = −
   

    



 

Due to the presence of epidemic disease on network, the degree-dependent parameters ( )i   are 

positive for some 1 2i , ,...,n= . Hence, we obtain ( ) 0
d

F
d

 


, which implies that ( )F   is 

decreasing on ( )0 1, .  As a consequence, the self-consistency equation ( )5  has a unique solution

( )0 1* ,  and this solution will uniquely solve the endemic equilibrium
*E .  
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2.3. The asymptotic behavior of the disease-free equilibrium
0E  

Theorem 2.3. The disease-free equilibrium 
0E  is locally asymptotically stable if 

0 1   and 

unstable if otherwise. 

Proof. In order to investigate the local asymptotic stability of the disease-free equilibrium 
0E , we 

will apply the linearization method for the epidemic model ( )1 . For this aim, let us consider Jacobi 

matrix at the point 
0E  subjecting to the epidemic model ( )1  in the following form 

0

11 12 1

21 22 2

1 2 4 4

n

n

E

n n nn n n

M M M

M M M

M M M


 
 
  =
 
 
 

 

where for each 1i, j ,n= ,  the 4 4 - square matrices 
ii ijM ,M  are given by 

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )

0 0 0 0 0 0

0 0 0 0 0, .

0 ( ) 0 0 0 0 0

0 0 ( ) 0 0 0 0

i i

i i

ii ij

v i i v j i
d

d k d k

v i i v j i

d k d k
dM M

r d

r d

 


 





 
− +

 

   
   
   
   

− − −= =   
   

− +   
   

− +   

 

According to Theorem 5 in [3], the disease-free equilibrium 
0E  is locally asymptotically stable if 

and only if all eigenvalues  
1,4

j
j n


=

 of Jacobi matrix 
0

 satisfy 

arg( ) , 1,2, ,4 .
2

j

q
j n


  =  

Now, by applying the mathematical induction principle, the characteristic polynomial with respect 

to the matrix 
0

  can be given by 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

1

nn n n n

k

k

P r d d d d d k k .
d k

          
−

=

 
= + + + + + + + + + −  

 
  

It can be easily verified that the characteristic equation ( ) 0P  =  has 4n  real solutions with 

multiplicity, in which the negative solutions ( ) ( )r d , d , d   = − + = − + = −  all have the 

multiplicity n  and the negative solution ( )d = − + has the multiplicity  1n− . The last solution of 

the characteristic equation ( ) 0P  =  is 

( ) ( ) ( ) ( )( )0

1

1
n

k

k

d k k d .
d k

    
=


= − + + = +  −  

By using the assumption 
0 1  , it follows that the eigenvalues  

1,4
j

j n


=
 of the Jacobi matrix 
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0
 are  all negative and hence, arg( )j =  for all 1,4 .j n=  In addition, since (0,1],q it implies 

that arg( )
2

j

q
 =   for all 1,4 .j n=  Therefore, we can conclude that the disease-free equilibrium 

0E  is locally asymptotically stable. Otherwise, this equilibrium is unstable. 

The rest of this section is to prove the global asymptotic stability of the disease-free equilibrium 

0E  of the epidemic model ( )1  

Theorem 2.4. If  
0 1   then the disease-free equilibrium 

0E  is globally asymptotically stable on 

the region ,+ i.e., the epidemic disease fades out. 

Proof. Let ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 1 1 1( ) , , , ,..., , , ,n n n nx t S t I t Q t R t S t I t Q t R t


= denote for the non-

negative solution of the fractional network-based SIQR  epidemic model (1). It suffices to prove that 

the disease-free equilibrium 
0E  is attractive, i.e., 0lim ( ) .

t
x t E

→
=  Then, for each 1,k n=  and 0,t 

since 0 ( ) ( ) ( ) ( ) ,k k k k

A
S t I t Q t R t

d
 + + +  it implies that 

0 ( )

( ) ( ) ( ) ( ) ( ).

k

k k k k k

A
S t

d

A A
R t S t I t Q t S t

d d


 


 = − − −  −


 

From the first differential of (1), we have  

( )

0 ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( )
( ).

C q

t k k k k k

k k

k

D S t A S t t dS t R t

A
A dS t S t

d

A d
d S t

d

= −   − + 

 
 − +  − 

 

 +
= −  +

 

Consider the auxiliary fractional differential systems ( )0

( )
( ) ( ).C q

k kt

A d
D S t d S t

d

 +
= −  + We 

can see that this fractional differential equation admits a unique equilibrium 
0

,k

A
S

d
=  which is globally 

asymptotically stable. Then, by using fractional comparison principle (see Lemma 10 in [13]), it follows 

that for any 0,  it is true that 
0

( ) kkS t S  +  for all t  sufficiently large. Thus, for all t  sufficiently 

large, the second equation of (1) implies  

( )0

0 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )C q
kt k k k k k

A
D I t S t d I t t d I t

d
       

 
 +  − + = +  − + 

 
 

And 
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0

1

1

1 1

0

1
( ) ( ) ( ) ( ) ( ) ( )

1
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) 1 ( ) ( )
( ) ( )

( ) ( ) 1
( )

n
C q

t k k

k

n

k

k

n n

k k

k k

k

A
D t k k t d I t

k d

A
k k t d t

k d

A
d t k k k k

d d k d k

k
d t

d k

   

   


    

 

 




=

=

= =

  
  +  − +  

  

 
= +  − +  

 

  
= +  − + 

+ +  

 
= +   − + 

+





 

.




 

 Since the assumption 
0 1  , we can choose 0   small enough such that 0 1.

( )

kk

d k

 


 + 

+

In addition, since the assumption that the disease is present on the network, we have (0) 0  . Hence, 

by using fractional comparison principle, we receive 

00 ( ) (0) ( ) 1 ,
( )

k q

q

k
t d t

d k

 




  
   − + − −    +  

 

which implies that lim ( ) 0
t

t
→

 =  (see Theorem 4.6 in [5], pp. 72). By definition of the function 

( )t and the non-negativity of ( ),kI t we deduce that lim ( ) 0,k
t

I t
→

= that means for any 0,  there 

exists 
0 0T  such that ( )kI t   for all 

0t T  and for each 1,2, , .k n=  Then, for all 
0,t T the 

third fractional differential equation of (1) implies that  we have 

0 ( ) ( ) ( ) ( ) ( ) ( ).C q

t k k k kD Q t I t r d Q t r d Q t = − +  − +  

By doing similar arguments as in solving the fractional differential equation (3), we directly obtain 

( ) .kQ t
r d




+
 Next, for all 

0,t T we also have 

( )

( )

( )

0 ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( )
( ) ( ) .

C q

t k k k k k k

k k

k k

A
D S t A S t d t S t Q t I t

d

A
A S t d t

d r d

A d
S t d

d r d

 
= − +   +  − − − 

 

  
 −  + +   + −   + 

+ 

 +  
= −   + −  + +   

+ 

 

Thus, we directly get that 
( )

1 ( )
( )

( )
k

k

A d
S t

d d r d

 
 

   

 +  
 − +  + + +  

 for all 
0t T . 

Next, by letting 0, → we immediately obtain lim ( )k
t

A
S t

d→
=  and lim ( ) 0.k

t
Q t

→
= Finally, since the 

fact that 0 ( ) ( ) ( ) ( )k k k k

A
S t I t Q t R t

d
 + + +   and ( )lim ( ) ( ) ( ) ,k k k

t

A
S t I t Q t

d→
+ + = it yields 
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lim ( ) 0.k
t

R t
→

=  

Therefore, the proof is completed. 

2.4. Appendix 

In the following, we briefly recall a framework of fractional calculus and fractional differential 

equations, see [5] for more details. 

For 0q   and [ , ] ,a b  let :[ , ]f a b →  be a function such that 
1([ , ]).f L a b  Then, the 

Riemann-Liouville fractional integral operator of order q is defined by 

11
( ) : ( ) ( ) , [ , ].

( )

t
q q

a t
a

f t t s f s ds t a b
q

− = − 
   

Let :m q=     be the smallest integer greater than or equal to .q  Then, the Caputo fractional 

derivative operator of order q  of a function ([ , ])mf C a b  is defined by 

( )1 ( )1
( ) : ( ) ( ) ( ), [ , ],

( )

t
C q n q m m q m

a t a t
a

D f t t s f s ds D f t t a b
m q

− − −= − =  
 −   

where 
m

m d
D

dx
=  denotes for the 

thm  order derivative. In general, the Caputo fractional derivative 

for a vector-valued function ( )1 2, , , nf f f f


=  is defined component-wise by 

( )1 2( ) ( ), ( ), , ( ) .C q C q C q C q

a t a t a t a t nD f t D f t D f t D f t=  

Consider the initial value problem for the following fractional differential equations 

( ) ( ) ( ( )), 0,C q

a tD x t Ax t f x t t= +                                                         (5) 

subject to the initial conditions 

0(0) ,x x=                                                                                                                                                                                            (6) 

where ( )n nA Mat   and : n nf →  is a continuously differentiable function and satisfies 

Lipschitz condition. According to Corollary 6.9 in [5], it implies the global unique existence of solutions 

of the initial value problem (6) – (7). As a result, we can rewrite the network-based SIQR epidemic 

model (1) in the compact form 0 ( ) ( ) ( ( )),C q

tD x t x t f x t=  +  in which 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( )

1 1 1 1( ) , , , ,..., , , , ,

0 0 ( ) ( )

0 ( ) 0 0 ( ) ( )
, ( ) .

0 ( ) 0 0

0 0 ( ) 0

n n n n

k k

k k

n n n n

x t S t I t Q t R t S t I t Q t R t

d A S t t

d S t t
f x t

r d

r d

 

 







 

=

− −    
   

− + 
    = =
   − +
   

− +   

 

Note that the Jacobi matrix 
( )f x

x




 of ( )( )f x t  is bounded on 

+  and hence, by Remark 1.2.1 in 

[11, pp. 6], we can conclude that ( )( )f x t  is Lipschitz on on ,+ which guuarantees the unique global 
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existence of solution to the initial value problem (1) – (2).  

Let :[0, ) n n   →  be the solution of the initial value problem (6) – (7). Next, we recall from 

Definition 7.2 in [5] the notions of stability and asymptotic stability of trivial solution of (6). 

Definition 2.5. [5, pp. 157] The trivial solution 0x  of the fractional differential equations (6) is 

said to be 

• Stable if for all 0,  there exists ( ) 0  =  such that the solution 
0( , )t x  of the initial 

value problem (6) – (7 ) satisfies 0( , )t x  for all 0t   whenever 0 .x   

• Asymptotically stable if it is stable and there exists some 0  such that 0lim ( , ) 0
t

t x
→

=  

whenever 0x   (attractive). 

Remark 2.6. The trivial solution 0x  of the fractional differential equations (6) is said to be 

globally asymptotically stable if its stability does not depend on the initial condition 
0 .nx   

Lemma 2.7. [5, pp. 69] For each 
1 2, 0q q  , we have 

1 2 1 2 2, ,

2

1
( ) ( ) ,

( )
q q q q qx x x

q
+= +


where 

1 2, ( )q q x  is the Mittag – Leffer functions of two parameters 
1q and 

2q . 

As a consequence of Theorem 1 in [19], we have the following lemma  

Lemma 2.8. Assume that (0,1]q  and the both the function ( )t  and its Caputo fractional 

derivative 
0 ( )C q

tD t  belong to the space  ,C a b . Then we have 

(i)   If ( ) 0C q

a tD t   then the function ( ) ( ).t a   

(ii)  If ( ) 0C q

a tD t  then the function ( ) ( ).t a  . 

3. Conclusions 

In this work, we study the analysis of a fractional network – based SIQR epidemic model with 

fuzzy transmission to discuss the malware attacking on complex heterogeneous network. To better 

fitting with real – world scenario, this work also use linguistic variables and funzzy membership function 

to discuss the influence of malware load in the malware infection on the network. Based on the next – 

generation matrix, we analytically evaluate the basic reproduction number 
0 , that is an essential 

threshold value of the epidemiology theory value, and then, investigate the asymptotic stability of 

malware – free equilibrium and the presence of endemic equilibrium on the network. In some further 

studies, we are going to answer some other interesting questions on the network – based epidemic model 

such as condition for the presence of epidemic disease, bifurcation analysis or control problems. 
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