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Abstract 

In this paper, we present some new results on chain rules for the first-order tangent cone and the second-
order tangent set of constraint systems under the assumption on the calmness of the constraint set 
mapping with canonical perturbation. The obtained results improve and extend the corresponding results 
in [3], [11], and [12]. 
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1. Introduction 

The investigation of optimality conditions is one of the most attractive topics in optimization 

theory. In order to derive optimality conditions for a local minimum point x  of a constrained 

optimization problem, we must examine ways to perturb x  while remaining in the constraint system   

of the considered problem. One of the fundamental concept in this analysis is that of a tangent direction. 

Tangent directions are crucial for developing optimality conditions for nonlinear optimization problems. 

More specifically, if a point x  is a local minimum of the following problem  

( )min
x

f x


, 

where 
n   and : nf →  is a Fréchet differentiable on 

n
, then x  satisfies the following 

relation  

( ) ( )
*

f T ,x x−     , 

where ( )T x,  is the set of all tangent directions to   at x  and  the superscript* denoting the 

polar cone of ( )T x, , i.e.,  

( ) ( ) : 0
* nT , u u, v v T , .x x =         
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All optimality conditions, in one way or another, decrypt this inclusion. In general, the sets of 

tangent directions may be nonconvex, which makes the analysis of optimality conditions difficult. 

For a general optimization problem, the constraint set usually has the following form 

( ) :x g x K , =    

where 
n mg : →  is a Fréchet differentiable mapping, 

n  , 
mK   are closed subsets. 

It is easy to prove that (see Theorem 3.1 below) 

( ) ( ) ( ) ( )( ) :T ,x v T ,x g x v T K ,g x .       

In general, the equality in the above relation is not guaranteed, unless the constraint system satisfies 

a constraint qualification condition. In [12, Theorem 6.31], Rockafellar and Wets proved that the 

equality holds under the metric regularity of the constraint system  . Recently, Mohammadi  et al. [11, 

Proposition 4.2] have shown that if 
n = , then the equality also holds under the (very weak) metric 

subregularity constraint qualification. 

In this paper, we present some new results on chain rules for the first-order tangent cone and the 

second-order tangent set of constraint systems, which improve and extend the corresponding results in 

[3], [11], and [12].       

2. Materials and methods or Experiments 

2.1. Preliminaries  

2.1.1. Tangents and normals 

Let   be a nonempty closed subset in 
n

and x  . 

Definition 2.1. (i) The regular/Fréchet normal cone  ( )N x ,   to   at x  is 

( ) ( ) : : as withnN x , v v,x x o x x x x x . =   −   − → ‖ ‖  

(ii) The limiting/Mordukhovich normal cone ( )N x ,  to   at x  consists of all vectors 
nv  

such that there exist sequences 
kx x



→  and 
kv v→  with ( ) as k kv N x k .,  →  

It follows directly from the definition of normal cones that they always satisfy the following 

inclusions 

 

( ) ( )
( ) ( ) ( )1 2 1 2

N ,x N ,x ,

N ,x N ,x N ,x .

  

    + 
 

 

We say that the set   is normally regular at x   if  ( ) ( )N x , N x , =  . As shown in [10, 

Proposition 1.5], if the set   is locally convex around x , i.e., there exists a neighborhood U of x  such 

that U  is convex, then   is normally regular at x  and the normal cone to   at x  reduces to the 

normal cone in the sense of convex analysis, i.e, 

( )  0: for all* n *N x , x x ,x x , x U . =   −     

We now present an example that there exists a normally regular set but not locally convex. For this 
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task, we recall the concept of a locally convex function. A function 
nf : →  is called locally 

convex around x  if there is a 0   such that B( x , )f |  is convex. It is easy to check that the function 

f  is locally convex around x  if and only if its epigraph is locally convex at ( )( )x , f x . 

Example 2.2. Let the function 
2f : →  be defined by ( ) 3 3 2 2 2

1 2 1 2 2f x x x x x x= + + +  for all

( ) 2

1 2x x ,x=  . We claim that f  is not locally convex around ( )0 0x ,= . Indeed, let ( )1 0
T

x ,=  

and ( )2 0
T

x ,= −  for some 0  . Then for ( )0 1,   we have ( )1 3f x = , ( )2 3f x = −  and 

( )( ) ( )
31 2 31 2 1f x x   + − = − . Hence, 

( )( ) ( ) ( ) ( )1 2 1 21 1f x x f x f x   + −  + −  

whenever ( )
3

2 1 2 1 −  −  and which is true for all 
1

0
2

  . This implies that f  is not 

locally convex around x . Consequently, epi f  is not locally convex at ( )( )x , f x . We now show that 

epi f  is normally regular at ( )( )x , f x . Indeed, we have  

( ) ( )  ( ) ( )  ( )2 2 1:ep :i 0f x, f x x, f x     −

−=    =   −  = , 

where the function 
2:  →  is defined by ( ) ( )x, f x  = −  for all ( ) 2x,   . 

Clearly,   is strictly differentiable on 
2   and since ( )( ) ( )0 0 1 0

T
x , f x , , , = −   

( )( )x , f x  is surjective. Thanks to [10, Theorem 1.19] 

 

(about the normal regularity of inverse images under strictly differentiable mappings) and the 

convexity of 
−

, ( )1epi f  −

−=  is normally regular around ( )( )x , f x . 

Proposition 2.3. Let 
nf : →  be an arbitrary  function and 

nx . If f  is strictly 

differentiable at x , then epi f  is normally regular around ( )( )x , f x . 

Proof. Let the function 
n:  →  be defined by ( ) ( )x, f x  = −  for all 

( ) nx,   . Then, we have 

( ) ( )  ( ) ( )  ( )1:epi : 0n nf x, f x x, f x     −

−=    =   −  = . 

Clearly,   is strictly differentiable on 
n   and since ( )( ) ( ) 0

1
f x

x , f x ,
 

 =  − 
 

( )( )x , f x  is surjective. Thanks to [10, Theorem 1.19] and the convexity of 
−

, ( )1epi f  −

−=  

is normally regular around ( )( )x , f x . 

 

Definition 2.4. (i) The Bouligand tangent/contingent cone ( )T x,  to   at x  is 

( )  : 0n k k

k kT ,x v t , v v, x t v k . =     → +     

(ii) The regular/Clarke tangent cone ( )T x,  to   at x  is 
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( )  : 0n k k k k

k kT ,x v x x , t , v v, x t v k .


 =      → + →     

It is well-known that ( )T x,  is a closed cone, ( )T x,  is a closed and convex cone, and 

( ) ( )xT ,x T ,   . Moreover, by [12, Theorem 6.28], we have 

( ) ( ) ( ) ( )and
* *

N ,x T ,x T ,x N ,x . =   =         

Definition 2.5. The second-order tangent set ( )2T v,x ,  to   at x  for 
nv  is 

( )2 21
: 0

2

n k k

k k kT ,x ,v w t , w w,x t v t w k .
 

 =     → + +    
 

 

By definition, it is easy to check that  ( )2 vu T ,,x   if and only if  

( )2 21

2
d x tv t u,K o t .
 

+ + = 
 

 

 

Moreover, the mappings ( )T ,x  and ( )2T ,x ,v  are isotone, i.e., if
1 2  , then   

( ) ( ) ( ) ( )2 2

1 2 1 2andT ,x T ,x T ,x ,v T ,x ,v .       

It is well-known that the set ( )2T v,x ,  is closed but it may be empty. Moreover, if   ( )2T v,x ,   

is nonempty, then ( )v T ,x  . When   is a polyhedral set then 

( ) ( )( )2T ,x ,v T T ,x ,v =  . 

2.1.2. The calmness 

Definition 2.6. Let : m nM  be a multifunction and ( ) gphy ,x M . We say that: 

(i) M  is pseudo-Lipschitz/Lipschitz-like/having Aubin property at ( )y ,x  (or, synonymously, the 

inverse multifunction 
1M −
 is metrically regular (MRCQ) at ( )x , y ) if there exist 0,    such that  

( )( ) ( ) ( ) ( ) ( )1 1 2 2 1 2d x,M y d y , y x M y B x , , y , y B y , .         

(ii) M  is calm at ( )y ,x  (or, synonymously, the inverse multifunction 
1M −
 is metrically 

subregular (MSCQ) at ( )x , y ) if there exist 0,    such that  

( )( ) ( ) ( ) ( ) ( )d x,M y d y, y x M y B x , , y B y , .         

From definition, the calmness of a multifunction is strictly weaker than the pseudo-Lipschitz 

property. The late property admits a complete pointwise characterization via the coderivative criterion. 

As shown in [9], a closed multifunction : m nM  is pseudo-Lipschitz at ( ) gphy ,x M  if and 

only if 

( )( )  0 0*D M y,x ,=  

where ( )*D M y,x  refers to Mordukhovich's coderivative of M at  ( )y ,x , i.e., 

( )( ) ( ) ( )( ) : : gph* m nD M y,x v u u, v N M , y ,x , v .=  −    

https://sj.hpu2.edu.vn/
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Calmness/metric subregularity was used as a qualification condition in the theory of subdifferential 

calculus and necessary optimality conditions; see, e.g., [7, 8, 10, 12]. This property also plays an 

important role in the theory of weak sharp minima and error bounds; see, e.g., [1, 2, 6]. Despite the 

intensive applications of the calmness, to the best of our knowledge, so far there have been no pointwise 

characterization for this property. 

2.2. Main results  

In this section, we consider the following constraint system 

                          ( ) :x g x K , =                                                                              (1)  

where 
n mg : →  is a continuous mapping, 

n  , 
mK   are closed subsets. The 

constraint set mapping with canonical perturbation 
m nM :  associated with the system (1) is 

defined as follows 

       ( ) ( ) :M y x g x y K .=  +                                                                                 (2) 

Clearly, ( ) ( )1M y g K y−=  −  for all 
my  and ( ) ( )10M g K−=  =  . As shown in 

[6], the calmness of M  at ( )0 gph,x M  is equivalent to the following metric qualification condition: 

there exist 0   and  such that 0   

( ) ( ) ( )( )( ) ( )d x, d x, d g x ,K x B x , ,    +    

provide that g  is locally Lipschitz around x . Some sufficient conditions for the calmness of the 

multifunction M  can be found in [4]. 

The following result gives first-order chain rules for tangents and normals to the constraint system 

(1) under the calmness of M . 

Theorem 2.7. Assume that g  is Fréchet differentiable at x  ,   and K  are normally regular 

at x  and ( )g x , respectively, and M  is calm at ( )0, x . Then the following equalities hold 

  ( ) ( ) ( )( ) ( )
T

N ,x g x N K ,g x N ,x , = +                                                                     (3) 

( ) ( ) ( ) ( )( ) :T ,x v T ,x g x v T K ,g x . =                                                                (4) 

Proof. We first prove the equality (3). It follows from [6, Proposition 3.4] and the fact that 

( )( ) ( ) ( )
T* * *D g x y g x y=  for all 

* ny   that 

( )
( )( )

( )( ) ( )

( ) ( )( ) ( )

*

* *

y N K ,g x

T

N ,x D g x y N ,x

g x N K ,g x N ,x .



  + 

= + 

 

In the other hand, by the normal regularity of two sets  , K  and [10, Corollary 1.15], we have  

( ) ( )( )
( )( )

( )( ) ( )

( ) ( )( ) ( )
( ) ( )( ) ( )

1

1

1

T

T

N ,x N g K ,x

N g K ,x

N g K ,x N ,x

g x N K ,g x N ,x

g x N K ,g x N ,x .

−

−

−

 = 

 

 + 

 + 

= + 
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and so complete the proof of (3). 

We are now in position to prove (4). Let ( )v T ,x   then by definition ( )v T ,x   and there 

exist sequences 0kt   and 
kv v→  such that 

k

kx t v+   for all k . The late inclusion implies 

that ( )k

kg x t v K+   for all k . By the differentiability of g  at x , we have 

( ) ( ) ( )( ) ( ) ( ) ( )( )
( )kk k k

k k k k

k

o t
g x t v g x t g x v o t g x t g x v K k .

t

 
+ = +  + = +  +    

 
 

This and the fact that ( )( )
( )

( )( )kk

k

o t
g x v g x v

t
 + →  imply that ( ) ( ) ( )( )g x v T K ,g x  . 

Thus  

( ) ( ) ( ) ( )( ) :T ,x v T ,x g x v T K ,g x      . 

To prove the inverse inclusion, we get from (3) and the normal regularity of   at x  that 

 

( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

** T

* *T

*
T

*
T

T ,x N ,x g x N K ,g x N ,x

g x N K ,g x N ,x

g x N K ,g x T ,x

g x N K ,g x T ,x .

  =  =  +     

 =      

 =   
 

 =   
 

 

We claim that  

( ) ( )( )  ( ) ( )( ):
*

Tn .v g x v T K,g x g x N K,g x     
 

 

Indeed, let 
nv  such that ( ) ( )( )g x v T K ,g x  .  It follows from the normal regularity of 

K  at ( )g x  that 

( )( ) ( )( ) ( )( )
*

T K,g x T K,g x N K,g x . = =    

Hence, for any ( )( )d N K ,g x  we have  

( ) ( ) 0
T

v, g x d g x v,d . =    

This implies that ( ) ( )( )
*

T
v g x N K,g x  

 
, as required. Therefore 

( ) ( ) ( ) ( )( ) ( )

( ) ( )( )  ( )

( ) ( ) ( )( ) 
:

:

*
T

n

T ,x T ,x g x N K ,g x T ,x

v g x v T K ,g x T ,x

v T ,x g x v T K ,g x .

    =   
 

     

=    

 

The proof is complete.                

Remark 2.8. In [12, Theorems 6.14 and 6.31], Rockafellar and Wets proved that the equalities (3) 

and (4) hold under the following constraint qualification 
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( )( )
( ) ( ) ( )

0

*

*

T *

y N K,g
y

g y N ,

x

x x

 
 =

−   

.                                                               (5) 

Actually, the constraint qualification (5) is equivalent to the pseudo-Lispchitz of M  at ( )0, x  (or, 

synonymously, 
1M −
 is MRCQ at ( )0x , ). As shown in [3, Corollary 2.2], this condition is nothing 

more than the Robinson constraint qualification (RCQ), i.e., 

  ( )( ) ( )( )0 int g x x K g x .   − − −                                                                           (6) 

Furthermore, when  0 q

pK +=  , 
n =  then the RCQ reduces to the classical Mangasarian-

Fromowitz constraint qualification; see, e.g., [3, 10, 12]. Since, the pseudo-Lipschitz property is strictly 

stronger than the calmness, Theorem 2.7 improves the corresponding results in [12, Theorems 6.14 and 

6.31]. Moreover, this theorem extends the recent result by Mohammadi  et al. [11, Proposition 4.2] 

where 
n .=    

The following simple example is designed to clarify this remark. 

Example 2.9. Let ,K+ −= =  and g : → , g( x ) x= . Then we see that 

( )   : 0x g x K . =   =  

Let 0x =  . Clearly,   and K  are convex and so they are normally regular. Moreover, it is 

easy to check that the multifunction ( ) ( )1M y g K y−=  −  is calm at ( )0, x . Thus, by Theorem 

2.7, we have 

( ) ( ) ( )( ) ( )
( ) ( )0 0

T
N ,x g x N K ,g x N ,x

N K , N , + −

 =  + 

= +  = + =
 

and 

( ) ( ) ( ) ( )( ) 
( ) ( )( )  

:

0

T ,x v T ,x g x v T K ,g x

T ,x T K ,g x .+ −

 =    

=   =  =
 

Clearly, the condition (5) does not satisfy and 
n .  Thus [11, Proposition 4.2] and [12, 

Theorems 6.14 and 6.31] cannot be applied for this example.  

Remark 2.10. The normal regularity of   and K  in Theorem 2.7 is essential. This means that 

the calmness of M  alone is not sufficient for the equalities (3) and (4) in case of arbitrary closed sets 

  and K . To see this, let us consider the following example. 

Example 2.11. Let ( ) 2

1 2 2 1:x x ,x x x = =   − , ( ) 2

1 2 2 1:K x x ,x x | x |= =   − , 

and
2 2g : → , ( )g x x= . Then, 

( ) 1 2 :x x ,x x K K = =   =  =  . 

Let ( )0 0x ,=  . An easy computation shows that ( )  0N K ,x =  and 

( ) ( )  ( ) 2 2: 0 : 0N K ,x v,v v v, v v .=    −    

Hence, K  is not normally regular at x . Clearly, M  is calm at ( )0, x . However, 
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( ) ( ) ( ) 0:N ,x N ,x v,v v =  =   

and 

( ) ( )( ) ( ) ( )( ) ( ) ( ) 2

1 2 2 1:
T

g x N K,g x N ,x N K,g x N ,x v ,v v |v | . +  = +  =   −  

Thus (3) does not hold. 

 The following theorem provides a chain rule for second-order tangent sets to the constraint 

system (1). 

Theorem 2.12. Assume that g  is twice Fréchet differentiable at x  ,   and K  are normally 

regular at x  and ( )g x , respectively, and M  is calm at ( )0, x . Then, for any ( )v T ,x   we have    

( ) ( ) ( ) ( )( ) ( ) ( )( ) 2 2 2 2:T ,x ,v u T ,x ,v g x u g x v,v T K ,g x , g x v . =    +            (7) 

Proof. The proof follows some ideals of Cominetti [3, Theorem 3.1]. Since   ,  we have  

( ) ( )2 2T ,x ,v T ,x ,v   . Let ( )2u T ,x ,v  . By definition, for any 0kt   there exists a sequence 

ku u→  such that 
21

:
2

k k

k kx x t v t u= + +   for all k . This and the twice differentiability of g  

at x  imply that 

( ) ( ) ( )( ) ( )( ) ( )

( ) ( ) ( ) ( )( ) ( )

2 2

2 2 2

1

2
1

2

k k k k

k

k

k k k

K g x g x g x x x g x x x ,x x o t

g x t g x v t g x u g x v,v o t

= + − +  − − +

 = +  +  + + 

 

for all k . This and the fact that ( ) ( )( ) ( ) ( )( )2 2kg x u g x v,v g x u g x v,v + → +  as 

k →  imply that ( ) ( )( ) ( ) ( )( )2 2g x u g x v,v T K ,g x , g x v +   . Hence, 

( ) ( ) ( ) ( )( ) ( ) ( )( ) 2 2 2 2:T ,x ,v u T ,x ,v g x u g x v,v T K ,g x , g x v .     +    

Now let u  be an arbitrary element belonging to the right-hand side of (7). Since ( )2u T ,x ,v  , 

for any 0kt   there exists a sequence 
ku u→  such that 

21
:

2

k k

k kx x t v t u= + +   for all k . By 

the twice differentiabiliy of g  at x , we have 

( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( ) ( )

2 2 2

2 2 2

1

2
1

2

k k

k k k

k k k

g x g x t g x v t g x u g x v,v o t

g x t g x v t g x u g x v,v o t .

 = +  +  + + 

 = +  +  + + 

 

For each k ,  put ( ) ( ) ( ) ( )( )2 21
:

2

k

k kw g x t g x v t g x u g x v,v = +  +  +  . It follows from 

 ( ) ( )( ) ( ) ( )( )2 2g x u g x v,v T K ,g x , g x v +    that ( ) ( )2k

kd w ,K o t= .  From the above 

arguments and 

( )( ) ( )( ) ( )k k k kd g x ,K d g x ,w d w ,K , +  

we have ( )( ) ( )2k

kd g x ,K o t= . Since M  is calm at ( )0, x , there exist 0    such that 

https://sj.hpu2.edu.vn/
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( ) ( ) ( )( )( ) ( )( )k k k kd x , d x , d g x ,K ) d g x ,K    +   

for all k  large enough. Hence ( ) ( )2k

kd x , o t = . This means that ( )2u T ,x ,v  , as required.  

The proof is now complete.          

         

Remark 2.13. In [3, Theorem 3.1], Cominetti proved that the equality (7) holds under the Robinson 

constraint qualification (RCQ).  Since the RCQ (6) is equivalent to the pseudo-Lispchitz of M  at ( )0, x  

and it is strictly stronger than the calmness of M  at ( )0, x , Theorem 2.12 improves [3, Theorem 3.1]. 

Furthermore, since 
n ,  our result extends the corresponding results in [11, Theorem 4.5] and [12, 

Proposition 13.13].   

3. Conclusions 

In this paper, we have presented some new calculus rules for first-order tangent cones and second-

order tangent sets of general constraint systems. In future work, we aim to apply these results to derive 

necessary optimality conditions for optimization problems with constraint sets of the form (1). 
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