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Abstract

In this paper, the Dirichlet problem for the augmented k — Hessian equations in the bounded domain
with nonsmooth data will be investigated. We introduce the concept of (w,k) — convex function, show

that all viscosity subsolutions and supersolutions of the considering Dirichlet problem are (w,k)—

convex. Furthermore, we prove some sufficient conditions for the existence and uniqueness of the
viscosity solutions of the Dirichlet problem.
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Tom tit

Bai bao nay nghién ciru bai toan Dirichlet d6i v6i phuong trinh kiéu k-Hessian trong mién bi chan
véi dit kién khong nhét thiét tron. Chung t6i gioi thigu khai niém ham (w,k) - 16i, chi ra ring moi
nghiém dudi nhét, nghiém trén nhét cia bai toan Dirichlet déu 1a (w,k)— 16i, dong thoi ching
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minh mot sé diéu kién da vé sy ton tai va tinh duy nhat nghiém nhét cua bai toan Dirichlet dang
Xét.

Tir khoa: Phuong trinh kiéu k — Hessian, nghiém nhét.

1. Introduction

Let Q< RR" be a bounded open set, M" be the set of all nxn symmetric matrices with the norm
given by I Xll=max]|x;[; for X,Y eM" X <Y means that A <gu,i=12...,n, where
ASAL < <A and g <, <. < are eigenvalues of XY, respectively; | is the unit matrix of

order n. In this paper, we study the Dirichlet problem for the augmented k — Hessian equations (
ke{l,2,...,n}) of the form:

o, (1(D*V — w(x,v,DV))['* + f(x,v,Dv) =0, xeQ, (1)
v(X)=w(x), xedQ, (2)

where @:QxRxR"—>M" and f:QOxRxR"—>R are given continuous functions, f > 0;
Hu(X)=(gy, -+, u,) are n eigenvalues of XeM"; o (s, - u,)= Z A, -+ g, are  basic

1<iy < -+<i <n

symmetric polynomials of degree k ; y is a given continuous function defined on 6Q.The minus sign
in (1) was chosen to get the degenerate ellipticity of the equation.

If k=n and @ =0, Equation (1) becomes a Monge-Ampere equation

—detD*v+[f(x,v,DV)]"=0, xeQ.
If k=1 and =0, Equation (1) becomes a nonlinear Poisson equation
—-Av+ f(x,v,Dv)=0, xeQ.

Monge-Ampere equations, and Poisson equations in particular, k — Hessian equations in general have
many applications in various fields including Physics, Geometric Curvatures, etc. [2], [5]-[8].

If the data of the problem are sufficiently smooth, classical solutions of Dirichlet problems for
Monge-Ampere equations have been studied, even for a more general class of equations in [7], [8].
Meanwhile, classical solutions to (1)-(2) have been investigated in [5] and further extended for oblique
boundary value problems for the augmented Hessian equations in [6]. If the data of the problem are
nonsmooth, we need to study its generalized solutions. The viscosity solutions for (1)-(2) have been
studied by A. Colesanti [2] in the case that @ =0 and f depends on x only. In this paper, we extend

several results of A. Colesanti for the general case mentioned above.

We first recall the notions and some essential results on viscosity solutions of elliptic second
order partial differential equations in finite dimensional space. A complete theory can be found in [1].
To be more specific, consider the Dirichlet problem

F(x,v,Dv,D*) =0, inQ; v=yonoQ, (3)

where y is a continuous function on 0Q; F is a real-valued continuous function on
QOxRxR"xM", and satisfies the following two conditions

F(xt p, X)<F(xt,p,Y), vX>Y (4)
(this condition is also known as the degenerate ellipticity of F ) and
F(xt,p, X)=F(x,s,p,X), V(X,p,X)eQxR"xM", Vt>s. (5)

A sufficient condition for (5) is: for each 0 <R <o, there exists a constant C, >0:
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F(x.t, p, X)=F(x,s,p, X)+C,(t-5s), (6)

forallxe, R>t>s>—-R,p€eR", X e M.
Regarding the dependence on x, we need the following assumption: for each 0 <R <o, there is
a real-valued continuous and nondecreasing function y,(z) satisfying y;(z) >0 as z — 0" such that

|F(x.t, p. X)—F(y,t, p. X)[< 7o (| X =y [ @+] p]), ()
forany x,yeQ,|tKR,peR", X eM".

We say that the function ¢ touches the function v from above (resp. below) at x, € Q, if v—¢

attains its local maximum (resp. local minimum) at x,, and v(x,) = @(X,) .

The definition of viscosity solutions of (3) is given below.

Definition 1.1 ([1]). a) An upper semi-continuous function v on Q is said to be a viscosity
subsolution of the equation in (3) if for any ¢ e C*(Q) touching v from above at x, € Q2, we have

F (X, @(%), Dp(X,), D?p(x,)) <O.

b) A lower semi-continuous function on Q is said to be a viscosity supersolution of the equation
in (3) if for any ¢ € C*(Q2) touching v from below at x, € Q2 we have

F (%, 9(%,), Dp(%,), D*p(%,)) > 0.

¢) A function v is a viscosity solution of the equation in (3) if v is both a viscosity subsolution
and a viscosity supersolution of it.

The existence and uniqueness of the viscosity solution of (3) has been established by H. Ishii in
the following result.

Theorem 1.2 ([4], Theorem 11.1, Proposition 11.1). Let F satisfy the conditions (4), (6) and (7). If the
equation in (3) has a viscosity subsolution v, and a viscosity supersolution v, being locally Lipschitz

on Q, v, =V, =y on 0Q then, there exists a unique viscosity solution of the problem (3).

Based on the preceding theorem, we derive several sufficient conditions for the existence of a
unique viscosity solution of the problem (1)-(2).

2. Materials and methods or Experiments
Let Hi(ur, ++, pn) = [0 (pz, 1)1/ * and
F.(x,v,Dv,D?) =—H, (u(D*v — w(x,v, DV))) + f (x,v, Dv).
Then Equation (1) becomes F (x,v,Dv,D?v)=0, xeQ.
Let T\ ={ueR":0;(1) >0,Vj=12,--k}. Itis well-known that (see [2])
I,={ueR" i, >0,vj=12,--n}, T,cl,Vi>].

Moreover, the k —Hessian operator H, (u(D?v)) is degenerate elliptic on I}. Hence, in order to
get the degenerate ellipticity of the function F;,, we need to consider the test functions ¢ € C2(2) such
that u(D%@(x) — w(x, p(x),De(x))) € I. This leads to the definition of (w,k)- convexity as
below.

Definition 2.1. Given a pair (w, k). A function v € C(2) is said to be (w, k) —convex on Q if for any
@ € C?(2), ¢ touches v from below at x, € 2 we have
H(D* (%)) = (X, 9(X,), Dp(%,))) € T
It is clear that if v € C%(2) and v is (w, k) —convex on £2 then,
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1(DV(X) — w(x,v(x),Dv(x))) eT,, VxeQ,
and for €2 —functions, the (0, ) —convexity is exactly the usual convexity.

The following theorem establishes the (w, k) —convexity of the viscosity supersolutions and
viscosity subsolutions of (1).

Theorem 2.2. Suppose w, f are given continuous functions, f > 0.If is a viscosity subsolution or a
viscosity supersolution of (1) then, v is a (w,k)— convex function on Q.

Proof. We consider the case that v is a viscosity subsolution. The other case can be handled
analogously. Indeed, suppose that v is a viscosity subsolution of (1) but v is not (w,k)— convex.

Then, there exist x, € Q and a function ¢, € C*(Q2), ¢, touches v from below at x, € Q but
H(D?@, (%) = (%, 95 (%), Dy (%)) € T, -
Let ¢, (X) =(p0(X)+%| X=X [F,a>0. It can be seen that ¢, €C*(Q), @, (%)=, (%)

Do, (%) =Dg,(%,), D’p,(x,)=D’p,(x,)+al, ¢, touches v from below at x, for any « >0.
Thus, by the definition of viscosity subsolution, we have

&, (1D, (%) + a2l = (%, 2 (%) Dy (%)) = (X9, (%), Dy (%)) > 0. (8)
On the other hand, for a sufficiently large «,
H(D*@y (%) + el = (X, 0, (%), Doy (%)) €T, < Ty,
thus, we must have a, so that u(D?@,(X,) + ol — (X, @, (%), Dy (%,))) € L, . In other words, (by
the continuity of o, ), we have
o (1(D?@, (%) + 5| = (X5, 0 (%5), Dy (%)) =0,

which contradicts to (8). The conclusion follows.

In view of the preceding theorem, we can assume that the test functions in the definition 1.1 are
C? —functions and they are (w,k)—convex on Q and in the rest of this paper, we consider only the

elements (x,t, p, X) satisfying u#(X —a(x,t,p)) T, .

We proceed to provide additional conditions for » and f to ensure the existence and uniqueness
of the viscosity solution to the problem under consideration.

Matrix-valued function w(x,t, p) satisfies the following conditions: For all R >0, there exists a
continuous function, nondecreasing y,, . on [0,c) satisfies

o(x,t,p) —a(y.t, p) <y, (IX=y[ @+ p )1, 9
forany x,yeQ, |[tKR,peR";
det(—o(x,t, p)) =[f(x,t, P, (Xt p)eR"xRxR"; (10)
w(X,t, p) is increasing with respect to the variable t ; that is
o(x,t, p) = w(X,s, p), V(X,t, p),(X,s, p) e R"x RxR", t >s. (12)

For the function f, we assume that there exists a positive constant C, . and there exists a real-
valued single variable nondecreasing function y, o, which is right continuous at 0 such that

f(x,t,p)=f(x,8,p)+C;x(t—s), VxeQR2t>s>-R,peR"; (12)
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| (.t p)—f(y.t. )<y o X=y|@+] PD), (13)
forany x,yeQ,|t|<R,peR".
It can be seen that (9)-(13) are satisfied if w=—-a(X)I,f =f(x), a(x), f(x) are real-valued,
Lipschitz continuous, and positive on Q, a(x) > f (x) +1.

We now establish a result on the existence and uniqueness of the viscosity solution of Dirichlet
problem (1)-(2).

Theorem 2.3. Let f >0 be a continuous function. Suppose the conditions (9), (11), (12), (13) are
satisfied. If the equation (1) has a viscosity subsolution v, and a viscosity supersolution v, and they

are locally Lipschitz on Q, v, =v, on 0, then there exists a unique (@,k)—convex viscosity
solution of the problem (1), (2).

Proof. Note that the degenerate ellipticity of F,_ has been established above. To complete the proof, it

is sufficient to check that (6), (7) are satisfied, then the conclusion follows from Theorem 1.2. Indeed,
it follows from (11), the degenerate ellipticity of H, and (12) that

F (%t P, X) = F (x5, P, X) = H (u(X — (%5, p))) = H, (ue(X — (.1, )))
+f(xtp)-f(xs0p)
> f(xtp)-f(xs0p)
2C; q(t-s).
Moreover, forany 0<R <o, X,y e Q,|t|<R,peR",X e M", it follows from (13) that
F (Xt p, X) = F(y.t, p, X) =—H, (u(X —o(x,t, p)) + f (X1, p)
+H, (u(X —a(y,t,p) - f(y.t,p)
<Crr,m(IX= Y@+ P +7¢ c(X=y[(@+] PD)
=(CoZur +7eR)IX=y [+ pD).
In the above estimates, we used the convexity, the homogeneity of H,, (9), and
X —o(xt,p)< X -a(y,t,p)+7,:(x=y|[@+| p)I
that
H (u(X —a(x,t, p)) < H (u(X —a(y.t, p) + 7, ( X=y | @+ p)I)
<H (u(X —a(y,t,p) +H (7, (x=y [+ p))T)
=H, (u(X —a(y,t,p)) +C,7, (I X=y |+ p]),

where C¥ is the number of k combinations of n elements.

Interchange the role of x and vy, let y, =Cly, -+, ; We obtain

|F (Xt P, X) =R (y,t, p, X) K 7 (| X =Y [ @+] p)).
The conclusion follows.

By Theorem 2.3, the existence and uniqueness of the viscosity solution of the problem (1)-(2) is
reduced to the existence of a viscosity subsolution and a viscosity supersolution in the class of local
Lipschitz continuous functions of the given problem. The following theorem provides a sufficient
condition for the existence of such viscosity sub- and supersolutions.
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Theorem 2.4. Let Q be a strictly convex domain with Qe C** for 0<a <1; f >0 be a continuous
function; trX be the trace of X e M";0=w(x,t, p) =[@; (x,t, p)] be a matrix-valued function which
is continuously differentiable, and satisfies the following conditions:

i) w;(x,2,p)=0( p);

ii)zn_: p;Dy,@; (x,2,p) <O( p*);

i) (0,+1pI* Y. p,D, oy (x.2, ) <0( pF);

as | p|— o« uniformly for x € Q and bounded z, for each i=12,...,n;
iv) there exist C,C, >0 such that —tra(X, z, p)signz <C, | p|+C,, V(X z,p).
Moreover, suppose that (9)-(13) are satisfied and y € C*>“(6Q). Then there exists a unique

viscosity solution of the problem (1)-(2).

Proof. By Theorem 2.3, it is sufficient to show that the problem (1)-(2) has a viscosity subsolution and
a viscosity supersolution.

We first show the existence of a viscosity supersolution. If Q is convex, the Dirichlet problem of
Poisson equation

Av—tro(x,v,Dv) =0, xeQ,
v=w(X), XeoQ

has a classical solution Vv (see [3], Theorem 15.10). We proceed to show that V is a viscosity
supersolution of the problem (1)-(2) by contradiction. Suppose V is not a viscosity supersolution of
(1) in Q. Then, there exists a function ¢ € C%(£2), touching ¥ from below at x, € Q such that
[0y (1(D*p(%,) — (X5, (%), De(x NI > f (%5, (%,), Dp(%,)) > 0.
It follows that
,U(DZ(P(XO) — (X, (%), Dp(%)) e, < T,
Hence

Ap(%,) —tr(a(%y, (%), Dp(X,))) > 0. (14)

On the other hand, since ¢ touches V from below at x,, we obtain

P(%) =V (%), De(x)=DV(X), DV(X)>D’p(x).
It follows that Ag(x,) <AV(X,) and

Ag(%,) —tr(e(X,, (%), Dp(X,))) < AV(Xy) — tr(a(Xy, V(X,), DV(%,))) =0,
which contradicts (14).

We proceed to show the existence of a viscosity subsolution. A function a:R" — R is said to be

an affine function if a can be written as
a(x, -, X,)=C, +CX +---+C X, withc, e R;i=1,2,---,n.

Let S={a:ais an affine function and a<y on 0Q}. In view of (10), each element aeS is a
viscosity subsolution of the (1)-(2). Let v(x)=sup{a(x):aeS}. It is clear that v is a viscosity
subsolution of (1). We need to show that v =y on 0Q . Indeed, we have v <y on 6Q. We show that
V(x) >y (x) with x € 0Q. Without loss of generality, suppose x=0. Then x, =0 is a supporting
hyperplane to Q at 0 and x, >0 for any x=(x,:-,X,) € Q2. By the continuity of y, forany ¢>0
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there exists ¢ >0 such that |y (X)—w(0)|<e for any |x|<d, xe0Q. Since 0Q is strictly convex,
there exists >0 so that

Q{x=(X,"%): % <Fc{x:|x|< s}

Let K:=min{w(x):xeoQ,x >9%}. Then the affine function a(x)=w(0)—s—-Lx with
L>max{(y(0)—&—-K)/ 4,0} satisfies a(0)>w(0)—e and a(x)<w(x) with xedQ. Since
aeS,v>a. Inparticular, v(0)>a(0) >y (0)—&, letting ¢ > 0 we obtain v(0) >w(0). Thus, v=y
on 0Q .

3. Conclusions

In this paper we have established several sufficient conditions for the existence and uniqueness of
continuous viscosity solutions for Dirichlet problem of the augmented k — Hessian equations with
nonsmooth data. We have also proved the (w,k)— convexity of the viscosity solutions. Our results are

extensions of results in Colesanti [2].
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