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Abstract 

In this note, we recall the study of the Euclidean distance degree of an algebraic set X which is the 

zero-point set of a polynomial (see [BSW]). Specifically, consider a hypersurface 𝑓 = 0 defined by a 

general polynomial  f  with its support and contains the origin i.e 0 ∈ support of f. In the paper [BSW], 

the authors study about the Euclidean distance degree (EDD) and found that the EDD of this 

hypersurface is approximately by the mixed volume (MV) of some Newton polytopes. 

The main purpose of this note is to study the case that the manifold is defined by two 

polynomials 𝑓1(𝑥) = 𝑓2(𝑥) = 0. We show that the Euclidean distance degree is equal to the solution 

of the Lagrange multiplier equation. Furthermore, we also find out that the EDD of this variety is not 

greater than the mixed volume of Newton polytopes of the associated Lagrange multiplier equations.  
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1. Introduction 

Given a point ( )1 2,  ,...,  nc c c c= in Euclidean space n , consider the function 

:  n

cf →  defined by ( ) ( ) ( )
2

1 2  ,  ,  ,...,  c i i nf x x c x x x x=  − = . Let X be an algebraic set 

in n . Then, with the general point c , the distance function :    |cf  → , of the function 

cf  on X has a finite critical point. The number of critical points does not depend on the 

general point c  and is called the Euclidean distance degree of the set X, denoted by EDD (X). 

The study of EDD stems from the fact that many models in data science or mechanical 
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engineering can be represented as a real algebraic set, leading to the need to solve the problem 

of finding the nearest point problem. ([DHOST, Section 3], [TJD, §3]): 

Nearest point problem:   In n given the algebraic set X and a point c , find the point *c

of X such that the function 
cf  (the distance function from c to X) has a minimum at *c . 

One approach to the above problem is to find and examine all critical points of 
cf . Then 

EDD gives us an algebraic quantity that evaluates the complexity of the above optimization 

problem. 

Algebraic sets and polynomial mapping are basic research objects of algebraic geometry, 

in particular and of mathematics, in general. For algebraic sets, the topic of Euclidean 

Distance Degree is widely studied and has many applications in areas such as computer 

vision, geometric modeling and statistics ([AST, DHOST, MRW2, HS, SSN, TJD, W1, W2]). 

In the field of computer vision, the problem of triangulation has an important role. 

Specifically, it is a problem of determining a point in space when its image is known through 

two cameras with the positions of the two cameras and a given shooting angle. In 

Mathematics, this is the problem of finding the third vertex of a triangle given two vertices 

and the angle at those two vertices. When the information is obtained with absolute precision 

this is a trivial problem, but in practice the pixels obtained by the cameras have noise (see 

[DHOST, MRW1, MRW2, HS, SSN]). Therefore, the problem is to find the point in space 

that is maximally compatible with the information obtained from the cameras. This is the 

optimization problem of the distance function mentioned above (nearest point problem) and 

the Euclidean distance degree is the computational complexity of this problem.  

We consider  1,..., mf x x be a polynomial with support A m , so that 

( )        ( )a

a a

a A

f x c x c


=  . 

The Newton polytope is defined to be the convex ball of the set { : 0}n

aa c  in 
n

. 

Theorem 1 If f is a polynomial whose support A contains 0, then 

1 2( ) ( , , ,..., )nEDD f MV P P P P , 

where P is the Newton polytope of f and iP  is the Newton polytope of ( )i i if u x − −  

for 1 ≤ i ≤ n. There is a dense open subset U of polynomials with support A such 

that when f ∈ U this inequality is an equality and for u ∈ 
n  general, all solutions 

to 
,f uL  occur without multiplicity. 

The purpose of this note in to study the Euclidean distance degree of the zero-set M of 

two polynomials 1 2,f f . We will estimate the EDD of M in terms of the mixed volume of the 

polytope defined from 1 2,f f .  
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2. Euclidean Distance Degree of the Zero-set of two polynomials 

Throughout this paper, let  1 2 1 2 3, , ,f f x x x  be two polynomials such that 

3

1 2{ : ( ) ( ) 0}x f x f x= =  =  is smooth. 

We consider : 2

:

x x u

 →

−
where 

2
x u− is the Euclidean norm. 

Since   { } { }  nearest points critical points of  so the number of critical points ≈ EDD ≈ 

computational complexity of the nearest point problem, which implies that EDD(M) is equal 

to the number of solutions to the following system of equations: 

1 2 ( )
( ) ( ) 0 : T M T  is a tangent map

 where 
0  is the critical point

x x x

x

f x f x d

d x





= = → 
 

= 
 

    +) Since the set of all tangent vectors v  at x  such that ( ) ( ) 0
f x

d v =  is the tangent space 

of the manifold M at x  so first we need to determine the tangent space at point x : 

T M={ ' ( ) | t 0}x i iv t= = where ( ) M and (0)t x  = . 

We have 
1 1( ) ( ( )) 0f x f t= = and 

2 2( ) ( ( )) 0f x f t= = . Implying that ( ) ( ( ))fi fid x d t= . 

• 
1 1

1 1 1
1 2 3

1 2 3

( ) ( ( )) ( ( )). ' ( ) ( ( )). ' ( ) ( ( )). ' ( )f f

f f f
d x d t t t

x x
t t t t

x
      

  
= = + + . 

If 1
( ) 0

0

fd x

t

=

=

then 1 1 1
1

1

2 3

2 3

( ). ( ). ( ).
f f f

x v
x x x

x v x v
  

+ + . 

Thus, 1( ), 0f x v = . 

• Similarly, 
2 2 2( ) ( ( )) 0 ( ), 0f fd x d t f x v= =   = . 

Hence, 
3

1 2T M={ | ( ), ( ), 0}x v f x v f x v  =  = . 

   +) Secondly, we need to find the critical points x .  

Suppose that ( )1 2 3, ,x x x x= , x is a critical point if ( ), 0if x v =  (i=1,2) 

( ), 0x v  = . 

This implies that, 

1

2

( ) 0     (1)

( ) 0     (2)

( ) 0     (3)

f x

f x

x

 =

 =
 =

. 

Equations (1), (2) and (3) have the same set of solutions if and only if the dimension of 

equation (1),(2) = the dimension of equation (3). Therefore, (3) is a linear combination of (1) 

and (2). 

Thus, there exists 
1 2,    such that 

1 1 2 2( ) . ( ) . ( )x f x f x   =  +   
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Hence, the critical points x  are those that satisfy 
1 1 2 2. ( ) . ( )u x f x f x − =  +  .  

The Lagrange multiplier equations are the following system of 5 polynomial equations in 

5 variables ( )1 21 32, , , ,x x x  . 

1 23 2

,

1 1 2 2

( ) ( ) 0
( , ) : ( , ) :

. ( ) . ( )
f u x

f x f x
L x x

u x f x f x
 

 

 = =  
=    

− =  +   
 

where 
1 2,   are the auxiliary variables (the Lagrange multiplier). 

We consider the number of complex solutions of 
, ( , ) 0f uL x = . For general u, this 

number is called the Euclidean distance degree (EDD) of the zero-set 
3

1 2{ : ( ) ( ) 0}x f x f x= =  =  :                     EDD(M) := number of solutions to 

, ( , ) 0f uL x = in 5  for general u. 

Here, "general" means for all u outside some algebraic set, i.e. outside a set with measure 

zero. 

Example: Let 2 2 2 2 2

1 2 1 2 1 2{( , ) : 3 3 5 0}X x x x x x x= − − + =  is in blue and 𝑢 =

 (0.025, 0.2) is in green. The 12 red points are the critical points of the distance function 
Xd  ; 

that is, they are the x-values of the solutions to 
, ( , ) 0f uL x = . In this example, the Euclidean 

distance degree of X is 12, so all complex solutions are in fact real. (Color figure online) 

 

3. Bernstein’s Theorem 

Bernstein's theorem expresses the relationship between the number of solutions to a 

polynomial system and the mixed volume. 

Theorem 2  (see [BSW]) Let  1 1 2,..., , ,...,m mf f x x x  denote m  polynomials with 
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Newton polytopes 
1 2, ,..., mQ Q Q . Let ( )m  denote the complex torus of m -tuples of nonzero 

complex numbers and 
1# ( ,..., )mf f  denote the number of isolated solutions to 

1 2 ... 0mf f f= = = =  in ( )m , counted by their algebraic multiplicities. Bernstein's theorem 

states that 

1 1# ( ,..., ) ( ,..., ),m mf f MV Q Q     (1) 

and the inequality becomes an equality when each 
if  is general.  

The domain is limited to ( )m  because Bernstein's theorem concerns Laurent 

polynomials, in which the exponents of a monomial can be negative. 

Assume that all polynomials 
1,..., mf f  have the same Newton polytope. This implies that 

1,..., mQ Q . For this single polytope, we write Q. The mixed volume in (1) then becomes  

1( ,..., ) m!Vol( )mMV Q Q Q= , 

where Vol(Q) is the m-dimensional Euclidean volume of Q.  

According to Kushnirenko's theorem (see [KO]) , if 
1,..., mf f  are general polynomials 

with Newton polytope Q, then 
1# ( ,..., ) m!Vol( )mf f Q =  (Q). 

4. Main Result 

This is the main theorem of this paper. 

Theorem 3 Let  1 2 1 2 3, , ,f f x x x  be two polynomials.  If the support ℋ of the 

polynomials 
1 2,f f contains 0, then  

1 2 1 2 1' 2' 3'( , ) ( , , , , ),EDD f f MV P P P P P  

where 
1 2,P P  are the Newton polytopes of 

1 2,f f  and 
'iP  is the Newton polytopes of  

1 1 2 2i i iu x f f − −  −   for 1,2,3i = .  

To prove Theorem 3, we need the following result: 

Theorem 4  Let ( ) 1 1: ( ,..., , ,..., )
N

n
N

na a x x 

=   . Let   be the set of critical 

values of : Np → . If 
1

( ,..., )
N

f a a    then ( 1) (0)p − has no singularity in ( )
n

 .  

Suppose that 1 2

1,..,

( , ,..., ) i

in

i N

p x x x a x



=

=  is a polynomial. If { }
i

a is general, then the 

solution of the polynomial p(x) lies in ( )
n

 : 

( ) 1{ : ( ) .... ( ) ( ) 0}
n

nx p x p x p x  = =  = = . 

Considering the equation 
1,..,

0i

i

i N

a x



=

= , the equation has a solution because:  
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+) It is obvious that 
1,..,

i

i

i N

a x



=

  is exponential, ( )
n

ix   and 
1,..,

i

i

i N

a x



=

  has partial 

derivatives therefore, 
1,..,

i

i

i N

a x



=

  is smooth.  

+) Let   be a projection :  

1 11

:

( ,..., , ,..., ) ( ,..., )
N N

N

na a x x a a   

  ⎯⎯→
 

                      
then             :

                             '( ) | 0            ( '( ))=0

xd T

v t t t



  

 ⎯⎯→

= =
. 

Write ( ) 1 1: ( ,..., , ,..., )
N

n
N

na a x x 

=   .   

We have : ( ) ( ( )) ( ) ( ( )) 0x t d x d t  =   =  =  

1

1

1 1' '

1

1 1' '

1

( ). '( ) ... ( ). '( ) ( ). '( ) ... ( ). '( ) 0    ( )

( ). ... ( ). ( ). ... ( ). 0

( ), 0.

N

N

N n

n

N n

n

t t t t t t t t t
a a x x

x v x v x v x v
a a x x

x v

 

 

       
   

 + + + + + = 

   
 + + + + + =

  =

 

If ( ) 0d v =  then ( ), 0x v = . For x to be the critical point, then ( ), 0x v =  and 

( ), 0x v = . 

Therefore,  ( )

1

1

... ...

1 ... 0 0 ... 0( , )  : rank 1}

0 1... 0 0 ... 0

0 ... 1 0 ... 0

N

n
n

N

p p
x x

x x

a x





  
  
 
 =   =
 
 
 
 

  

( ){( , ) : 0}
n

N

i

p
a x

x

 
=   =


.  

Thus, 
1

( ,..., )
N

a a  is a critical value if and only if ( 1) (0)p − has no singularity in ( )
n

 .               

□ 

Proof (proof of Theorem 3) 

According  to Theorem 4,  the polynomials  1 2 1 2 3, , ,f f x x x are general given its 

support ℋ  and contains 0. We suppose that 
1 2 \ N( , )nu f f is genaral, where 

3

21 2 { | 0}N( , ) : if f x f f = == . 

By Bernstein's theorem, the Lagrange multiplier equations , ( , ) 0f uL x = has 
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1 2 1' 2' 3'( , , , , )MV P P P P P  solutions in ( )
5

 .We need to prove that the Lagrange multiplier 

equation has no solutions outside ( )
5

 , which means all the solutions of 
, ( , ) 0f uL x =  must 

lie in ( )
5

 . 

+) We consider 
3 2 3

,: {( , , ) | 0}u x f uS u x L=    = , which is an affine manifold. 

Since 
2 0if f= = are the equations in

, ( , ) 0f uL x = ,those are sub-manifolds of 3 2

u X  , 

where 
1 2N( , )fX f= is the complex hypersurface. 

Let x X  and denote h for the projection of S  to X . Then the fiber 1( )h x− over x is 

3 2

1 1 2 2{( , ) | . ( ) . ( )}uu u x f x f x    − =  +  . 

It is easy to see that the fiber 1( )h x−  is homologous to 2

 , proving that 3h

uS ⎯⎯→  is a

2 bundle−  and dim S = 3.  

+) Considering the projection of S to 3

u
is dominant. By Sard’s theorem, the general 

fiber has dimension 3 − 3 = 0 and smooth. It means that when 3

uu  is general, the 

, ( , ) 0f uL x = has finite solutions, i.e. 
, ( , ) 0f uL x =  has a finite number of critical points, and 

the number of critical points is independent of u. 

+) Let Y X be the set of points of X that lie on some coordinate plane i.e do not lie in 

( )
3

 . Since dim 3 2 1X n m= − = − = , Y has dimension 1-1=0 and its inverse image 1( )h Y−

in S has dimension 0+1 =1.  

+) The points 3

uu  that have a solution ( , )x   to 
, ( , ) 0f uL x = with ( )

3

x   make up 

the image Im of  Y  under the projection to 3

u
. Therefore, Im has dimension at most 1, this 

says that all solution to 
, ( , ) 0f uL x = lie in ( )

5
  when u is general.  

Since 
, ( , ) 0f uL x =  has finite critical points and lies in ( )

5
 , on the other hand 

according to Bernstein's theorem when 𝑚 = 5, the number of solutions of 
2 0if f= = in 

( )
5

 is less than or equal to 
1 2 3 4 5( , , , , )MV Q Q Q Q Q  so the number of critical points of 

, 1 2 1' 2' 3'( , ) 0 ( , , , , )f uL x MV P P P P P =   

or 
1 2 1 2 1' 2' 3'( , ) ( , , , , )EDD f f MV P P P P P , 

where 
1 2,P P  are the Newton polytopes of 

1 2,f f  and 
'iP  is the Newton polytopes of  

1 1 2 2i i iu x f f − −  −   for 1,2,3i = .                                 

□ 
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5. Conclusion 

Bernstein's Theorem is the foundation of our proof strategy. This result provides an 

efficient method for demonstrating that the number of solutions to a polynomial equation 

system can be expressed as a mixed volume. We hope that our research inspires new lines of 

research that use this approach in applications other than EDD. 
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