

## HPU2 Journal of Sciences: Natural Sciences and Technology

journal homepage: https://sj.hpu2.edu.vn



Article type: Research article

# On the *p*-curvatures of *t*-connections over a relative smooth projective scheme

Thanh-Tam Pham<sup>\*</sup>

Department of Mathematics, Hanoi Pedagogical University 2, 32 Nguyen Van Linh, Phuc Yen, Vinh Phuc, Vietnam

#### Abstract

Let *t* be a global function of an integral *R*-scheme *S* and *X* be a smooth projective scheme over *R*. We show that the characteristic polynomial of the *p*-curvature of an integrable *t*-connection over  $X_S$  is horizontal.

Keywords: t-bundles, p-curvature, Hitchin morphism.

### 1. Introduction

The theory of linear differential operators in positive characteristic was initiated in the 1970s by Katz [Kat70, Kat82], Dwork [Dwo82] and Honda [Hon81]. The aim of these works is to connect with the studying local-global principle for linear ordinary differential equations which is known as the p-curvature conjecture of A. Grothendieck in 1969.

Let k be an algebraically closed field of characteristic char(k) = p > 0 and let X be a smooth projective curve over k. Let S be a k –scheme equipped with a t –function. An integrable t-bundle over  $X_S$  is a pair  $(E, \nabla_t)$  containing a vector bundle E over  $X_S$  equipped with an integrable t –connection  $\nabla_t$ . The p –curvature of  $(E, \nabla_t)$ , denoted by  $\Psi_{\nabla_t}$ , is p –linear which defines an element of  $\mathcal{H}om_{\mathcal{O}_x}\left(E, E \otimes Fr^*\Omega^1_{\mathcal{O}_x/S}\right)$ . It is considered as an  $n \times n$  –matrix  $\Psi$  with coefficients in  $\mathcal{O}_{X_S}$ satisfying the following conditions

<sup>\*</sup> Corresponding author, E-mail: phamthanhtam@hpu2.edu.vn

https://doi.org/10.56764/hpu2.jos.2022.1.2.102-111

Received date: 14-12-2022 ; Revised date: 15-12-2022 ; Accepted date: 27-12-2022

This is licensed under the CC BY-NC-ND 4.0

(1) 
$$\begin{cases} \partial \det (Id - T\Psi_{\nabla_{t}}) = 0; \\ tr(\Psi^{n} \cdot \partial \Psi) = 0 \end{cases} \quad n \ge 0, n \in \mathbb{N} \end{cases}$$

see [LP01, Proposition 3.2].

Let *R* be a domain of *k* –algebras and *S* be an integral *R* –scheme and *X* be a smooth projective scheme over *R*. A Higgs bundle on *X<sub>S</sub>* (relatively over *R*) is a vector bundle *E* on *X<sub>S</sub>* equipped with a *Higgs field*  $\theta: E \to E \otimes \Omega_{X_S/S}^1$  satisfying  $\theta \wedge \theta = 0$ , see [S94]. The coefficients of  $\det(\lambda - \theta) = \lambda^n + a_1 \lambda^{n-1} + ... + a_{n-1} \lambda + a_n$  belong to  $\mathcal{A}_{X_S/S} = \bigoplus H^0(X_S, S^i \Omega_{X_S/S}^1)$ . Let us write  $\mathcal{A}_{X/R} = \bigoplus H^0(X, S^i \Omega_{X/R}^1)$ . Denote by  $\mathcal{M}_{Dol}(X/R)$  the moduli stack over (Sch/R) which associates to a scheme S the category of finite rank Higgs bundles on  $X_S = X \times_R S$ . The moduli stack  $\mathcal{M}_{Dol}(X/R)$  is equipped with a morphism  $h: \mathcal{M}_{Dol}(X/R) \to \mathcal{A}_{X/R}$  which is defined by sending each Higgs bundle  $(E, \theta)$  to the coefficients of the characteristic polynomial of \theta. The morphism h is called the *Hitchin morphism* of X, see e.g. [Hit87, S94].

Denote by C(n, X / k) for the moduli stack of integrable t-bundle over  $X_s$ . The characteristic polynomial of the p-curvature  $\Psi_{\nabla_r}$  of  $\nabla_t$  defines a morphism <u>Char</u>:  $C(n, X / k) \rightarrow \mathcal{A}_{X/k'} \times \mathbb{A}_k^1$ . In the case where X is a smooth projective curve over k, by using (1), Laszlo and Pauly showed that there exists a morphism  $\mathcal{H}: C(r, X / k) \rightarrow \mathcal{A}_{X/k} \times \mathbb{A}_k^1$  of stacks such that the restriction  $\mathcal{H}|_{r=0}$  is the Hitchin morphism of X. In this manuscript, we establish an analog version of formula (1), Theorems 3.1 and 3.5, for the case where X is a smooth projective scheme over R. These formulas then allow us to define the Hitchin morphism

 $\mathcal{H}: \mathcal{C}(r, X / R) \to \mathcal{A}_{X/R} \times \mathbb{A}^1_R.$ 

#### 2. Preliminaries

Let *R* be an algebra over k and let S be an *R*-scheme endowed with a global function t. Let  $\mathfrak{X}$  be a smooth projective *R*-scheme and denote by  $X_s = X \times_R S$ . As in [LP01], we also denote by t for the pullback of t to the scheme  $X_s$  by  $X_s \to X$ .

2.1. Frobenius morphisms. Let us denote by  $f_s: S \to S$  the absolute Frobenius, which is topologically the identity and the p-power on functions, and S' the inverse image of S by the Frobenius  $f_s$ . Let  $\mathfrak{X}' = X_s \times_{f_s} S$  be the pullback of  $\mathfrak{X}$  by  $f_s$ . There is a unique S-morphism  $F_{\mathfrak{X}/\mathfrak{s}}: \mathfrak{X} \to \mathfrak{X}'$  such that the diagram



commutes. The S-morphism  $F_{\mathfrak{X}_{s}}$  is called the *relative Frobenius morphism* of  $\mathfrak{X}$  over S.

Moreover, if S = spec(A) the spectrum of an R-algebra A and  $\mathfrak{X} \subset \mathbb{A}_A^N$  is given by equations  $f_j = \sum_{I} a_I x^I$  together with coordinates  $(x_i)$ , where  $1 \le i \le N, a_{I,j} \in A$ , then  $\mathfrak{X}' \subset \mathbb{A}_A^N$  is defined by  $f_j^{[p]} = \sum_{I} a_I^p x^I$ .

2.2. Local systems. Let us write  $\mathcal{D}er(\mathfrak{X}/S)$  for the sheaf of germs of S-derivatives on  $\mathcal{O}_{\mathfrak{X}}$ . As  $\mathcal{O}_{\mathfrak{X}}$ -modules, this sheaf is isomorphic to  $\mathcal{H}om_{\mathcal{O}_{\mathfrak{X}}}(\Omega^1_{\mathfrak{X}/S}, \mathcal{O}_{\mathfrak{X}})$ .

**Definition 2.1.** A local system on  $\mathfrak{X}$  is a rank n vector bundle E on  $\mathfrak{X}$  equipped with an integrable connection  $\nabla: E \to E \otimes \Omega^1_{\mathfrak{X}/S}$ . A S-connection  $\nabla: E \to E \otimes \Omega^1_{\mathfrak{X}/S}$  is called *integrable* if the composition of it with the induced map  $\nabla: E \otimes \Omega^1_{/S} \to E \otimes \Omega^2_{\mathfrak{X}/S}$  is zero.

Let  $(E, \nabla)$  be a local system on  $\mathfrak{X}$ . By using duality,  $\nabla$  gives rise to an  $\mathcal{O}_{\mathfrak{X}}$ -linear map

$$\nabla$$
:  $\mathcal{D}er(\mathfrak{X}/S) \rightarrow \mathcal{E}nd_{S}(E)$ 

sending each  $D \in \mathcal{D}er(\mathfrak{X}/S)$  to  $\nabla(D)$  in  $\mathcal{E}nd(E)$ , where  $\nabla(D)$  is the composite

$$E \xrightarrow{\nabla} E \otimes \Omega^1_{\mathfrak{r}/s} \xrightarrow{1 \otimes D} E \otimes \mathcal{O}_{\mathfrak{r}}$$

We also note that, according to [Kat70], the  $p^{th}$ -iterate  $D^{p} \in \mathcal{D}er(\mathfrak{X}/S)$  for each  $D \in \mathcal{D}er(\mathfrak{X}/S)$ . As in [Section 5.0, Kat70], the p-curvature of the connection  $\nabla$  is a mapping of sheaves  $\Psi_{\nabla}: \mathcal{D}er(\mathfrak{X}/S) \to \mathcal{E}nd_{\mathfrak{X}}(E)$  by  $\Psi_{\nabla}(D) = \nabla(D)^{p} - \nabla(D^{p})$ . It is p-linear, i.e., an additive map and  $\Psi_{\nabla}(fe) = f^{p}\Psi_{\nabla}(e)$  for all f and e are local sections of  $\mathcal{O}_{\mathfrak{X}}$  and E respectively over an open subset of  $\mathfrak{X}$ .

2.3. t-connections. Let us review t-connections on a vector bundle.

**Definition 2.2.** Let E be a vector bundle of rank n over  $\mathfrak{X}$  and  $\nabla_t : E \to E \otimes \Omega^1_{\mathfrak{X}/S}$  be an  $\mathcal{O}_S$ -linear map.

a) The map  $\nabla_t$  is called a *t*-connection on E if  $\nabla_t(ae) = tda \otimes e + a\nabla_t(e)$ , where a and e are local sections of  $\mathcal{O}_{\mathfrak{X}}$  and E respectively over an open subset of  $\mathfrak{X}$ . We say that the pair  $(E, \nabla_t)$  is a t-bundle over  $\mathfrak{X}$ .

b) The t-connection  $\nabla_t$  is called *integrable* if  $\nabla_t \circ \nabla_t = 0$ .

**Proposition 2.3.** Let  $(E, \nabla_t)$  be a t-connection over  $\mathfrak{X}$ . Then:

1) The t-connection  $\nabla_t$  gives rise to an  $\mathcal{O}_{\mathfrak{X}}$ -linear morphism  $\nabla_t : \mathcal{D}er(\mathfrak{X}/S) \to End_S(E)$ sending  $D \in \mathcal{D}er(\mathfrak{X}/S)$  to  $\nabla_t(D) \in \mathcal{E}nd_S(E)$ , where  $\nabla_t(D)$  is the composition  $E \xrightarrow{\nabla} E \otimes \Omega^1_{\mathfrak{X}/S} \xrightarrow{1 \otimes D} E \otimes \mathcal{O}_{\mathfrak{X}}.$ 

2) The t-connection  $\nabla_t$  is integrable precisely when  $[\nabla_t(D), \nabla_t(D')] = \nabla_t([D, D'])$  for all  $D, D' \in \mathcal{D}er(\mathfrak{X}/S)$ .

Proof. See [I.0.5, Kat70].

**Proposition 2.4.** Let  $(E, \nabla_t)$  be a t-bundle on  $\mathfrak{X}$  and let s be a section of E respectively over an open subset of  $\mathfrak{X}$ . Then  $\nabla_t(s) = 0$  iff  $\nabla_t(D)(s) = 0$  for all  $D \in \mathcal{D}er(\mathfrak{X}/S)$ .

**Proof.** The proof is clear.

2.4. The characteristic polynomial of p-curvatures. Let  $\nabla_t$  be a t-bundle over  $\mathfrak{X}$ . According to [Kat70], the map from  $\mathcal{D}er(\mathfrak{X}/S)$  to  $\mathcal{E}nd_s(E)$  which sends each D to  $[\nabla_t(D)]^p - t^{p-1}\nabla_t(D^p)$  is additive since  $\nabla_t$  is so.

Definition 2.5. The additive morphism

 $\Psi_{\nabla_{t}}: \mathcal{D}er(\mathfrak{X}/S) \to \mathcal{E}nd_{S}(E); \quad D \mapsto [\nabla_{t}(D)]^{p} - t^{p-1}\nabla_{t}(D^{p})$ 

is called the *p*-curvature of  $(E, \nabla_t)$ .

**Example 2.6.** Let E be a rank n vector bundle over  $\mathfrak{X}$ . An 0-connection  $\nabla_0 : E \to E \otimes \Omega^1_{\mathfrak{X}/S}$  is a Higgs field on E. Then, its p-curvature  $\Psi_{\nabla_0} = [\nabla_0]^p$ .

The following is referred to Lemma 3.3 in [LP01].

**Proposition 2.7.** Let  $\Psi_{\nabla_t}$  be the p-curvature of  $(E, \nabla_t)$ . Then

1) The p-curvature of a 0--connection on E has form p-power of a Higgs field.

2) The map  $\Psi_{\nabla_{t}}$  is p-linear. In particular, it defines an element in  $\mathcal{H}om_{\mathcal{O}_{\mathfrak{X}}}(E, E \otimes Fr^*\Omega^1_{\mathfrak{X}'/S})$ , (we still denote it by  $\Psi_{\nabla_{t}}$ ).

**Proof.** The assertion (1) is obvious. The proof of (2) in fact is given by adapting Proposition 5.2.0 of [Kat70].

According to Proposition 5.2.1-2 of [Kat70], we obtain that

**Lemma 2.8.** Let  $(E, \nabla_t)$  be a t-bundle over  $\mathfrak{X}$  and assume that  $\nabla_t$  is integrable. Then  $\left[\nabla_t(D), \Psi_{\nabla_t}(D')\right] = \left[\Psi_{\nabla_t}(D), \Psi_{\nabla_t}(D')\right] = 0$  for all  $D, D' \in \mathcal{D}er(\mathfrak{X}/S)$ .

**Proof.** We first note that  $\nabla_t$  is integrable and  $\Psi_{\nabla_t}$  is p-linear. Hence, By adapting the proof of Proposition 5.2.1-2 of [Kat70], we obtain that  $[\nabla_t(D), \Psi_{\nabla_t}(D')] = [\Psi_{\nabla_t}(D), \Psi_{\nabla_t}(D')] = 0$  for all  $D, D' \in \mathcal{D}er(\mathfrak{X}/S)$ .

Let  $(E, \nabla_t)$  be an integrable t-bundle over  $\mathfrak{X}$ . Then,  $\Psi_{\nabla_t}$  can be seen as a section of  $\mathcal{H}om_{\mathcal{O}_{\mathfrak{X}}}\left(E, E \otimes Fr^*\Omega^1_{\mathfrak{X}'/S}\right)$ . The polynomial det $\left(Id - T\Psi_{\nabla_t}\right)$  of  $\Psi_{\nabla_t}$  can be considered as an element in  $\bigoplus_{i=1}^n H^0\left(\mathfrak{X}, S^i(Fr^*\Omega^1_{\mathfrak{X}'/S})\right)$ . According to Cartier's Theorem [Kat70, Theorem 5.1], there is a canonical connection  $\nabla^{can}$  on  $Fr^*S^i(\Omega^1_{\mathfrak{X}'/S})$  such that the diagram



commutes for each  $i = 1, \dots, n$ . Similar as in the proof of Proposition 2.4, we can assume that  $\mathfrak{X} = spec(A[z])$  is affine and fix  $(\mathbf{e}) = \{e_1, \dots, e_n\}$  an A[z]-basis of E, where A is an algebra over R. We then write det $(T\Psi_{\nabla_t} - Id) = (s_1, \dots, s_n)$ , where  $s_i \in H^0(\mathfrak{X}, S^i(Fr^*\Omega^1_{\mathfrak{X}'/S}))$  for each  $i = 1, \dots, n$ . Hence, for each  $D \in \mathcal{D}er(\mathfrak{X}/S)$ , we define  $D.det(T\Psi_{\nabla_t} - Id) \coloneqq (\nabla^{can}(D)(s_1), \dots, \nabla^{can}(D)(s_n))$ . Note that  $(\nabla^{can}(D)(s_1), \dots, \nabla^{can}(D)(s_n)) = 0$  precisely when  $D.det(T\Psi_{\nabla_t} - Id) = 0$  for all  $D \in \mathcal{D}er(\mathfrak{X}/S)$ .

Let us write  $\Psi_{\nabla_{t}}^{D}$  for the matrix of  $\Psi_{\nabla_{t}}(D)$  with respect to (**e**) for each  $D \in \mathcal{D}er(\mathfrak{X}/S)$  and write  $\partial_{D}$  for the S-derivative corresponding to  $D \in \mathcal{E}nd_{\mathcal{O}_{S}}(\mathcal{O}_{\mathfrak{X}})$ . Since  $f_{\mathfrak{X}}^{*}\mathcal{D}er(\mathfrak{X}/S) = Fr^{*}\mathcal{D}er(\mathfrak{X}'/S)$ , the operator  $\partial_{D'} \cdot \det(T\Psi_{\nabla_{t}}^{D} - Id)$  is well defined for all  $D' \in \mathcal{D}er(\mathfrak{X}/S)$ .

**Proposition 2.9.** Let  $D \in \mathcal{D}er(\mathfrak{X}/S)$ . The following conditions are equivalent:

- 1)  $\partial_D \det(T\Psi_{\nabla_t}^{D'} Id) = 0$  for all  $D' \in \mathcal{D}er(\mathfrak{X}/S)$ .
- 2)  $D.\det(T\Psi_{\nabla_{t}} Id) = 0.$

**Proof.** Without loss of generality, we consider  $\mathfrak{X} = spec(A[z])$  being affine and fix (**e**) an A[z]-basis of E, where A is an algebra over R. By using Remark 2.7, the p-curvature  $\Psi_{\nabla_t}$  is presented by the following matrix  $Mat(\Psi_{\nabla_t}, \mathbf{e}) = \left(\sum_{k=1}^d a_k^{ij} \otimes_{f_{\mathfrak{X}}} dz_k\right)_{n \times n}$ , where  $a_k^{ij} \in A[z]$  for each triple (i,j,k) such that  $1 \le i, j, k \le d$ . Firstly, (2)  $\Rightarrow$  (1) is obvious. We now prove that (1)  $\Rightarrow$  (2). Assume that  $\partial_D \det(T\Psi_{\nabla_t}^{D'} - Id) = 0$  for all  $D' \in Der(\mathfrak{X}/S)$ . We note that  $\Psi_{\nabla_t}^{D'}$  is given by the composition

$$E \xrightarrow{\Psi_{\nabla_t}} E \otimes \Omega^1_{\mathfrak{X}/S} \xrightarrow{1 \otimes D'} E \otimes \mathcal{O}_{\mathfrak{X}}.$$

Considering D' corresponds to  $\partial_{z_{i_1}} + ... + \partial_{z_{i_s}}$ , where  $1 \le i_1 < i_2 < ... < i_s \le d$  and  $1 \le s \le d$ . Because  $\partial_D$ . det $(T\Psi_{\nabla_t}^{D'} - Id) = 0$ , we obtain that

$$\partial_{D} \det \begin{pmatrix} T \sum_{k=1}^{s} a_{i_{k}}^{11} - 1 & T \sum_{k=1}^{s} a_{i_{k}}^{12} & \dots & T \sum_{k=1}^{s} a_{i_{k}}^{1n} \\ T \sum_{k=1}^{s} a_{i_{k}}^{21} & T \sum_{k=1}^{s} a_{i_{k}}^{22} - 1 & \dots & T \sum_{k=1}^{s} a_{i_{k}}^{2n} \\ \dots & \dots & \dots \\ T \sum_{k=1}^{s} a_{i_{k}}^{n1} & T \sum_{k=1}^{s} a_{i_{k}}^{n2} & \dots & T \sum_{k=1}^{s} a_{i_{k}}^{nn} - 1 \end{pmatrix} = 0.$$
  
Hence,  $D \det \left( \left( \sum_{k=1}^{d} a_{k}^{ij} \otimes_{f_{x}} dz_{k} \right)_{n \times n} T - Id \right) = 0$  which means that  $D \det \left( T \Psi_{\nabla_{r}} - Id \right) = 0$ 

As a direct consequence of Proposition 2.9, we arrive at

**Corollary 2.10.** Let  $P_{\Psi_{\nabla_i}} = (-1)^n T^n + s_1 T^{n-1} + \dots + s_n$  be the characteristic polynomial of  $\Psi_{\nabla_i}$ and  $k \in \mathbb{N}$  such that  $1 \le k \le d$ . Then  $\nabla^{can}(s_i) = 0$  for all  $1 \le i \le n$  if and only if  $\partial_k . \det(T\Psi_{\nabla_i}^D - Id) = 0$  for all  $D \in \mathcal{D}er(\mathfrak{X}/S)$ .

#### 3. Horizontality of characteristic polynomial of p-curvature

Let  $\nabla_t : E \to E \otimes \Omega^1_{X_s/S}$  be an integrable t-connection on E over  $X_s$ . By localization, assume that  $\mathfrak{X} = spec(A[z])$  is affine and fix  $(\mathbf{e}) = \{e_1, \dots, e_n\}$  an A[z]-basis of E, where A is an algebra over R. According to [Mo09], we obtain the following theorem.

**Theorem 3.1.** The following assertions  $\partial_{z_i} \det(Id - T.\Psi_{\nabla_t}^{\partial_j}) = 0$  hold for all  $1 \le i, j \le d$ .

**Proof.** Because we work in a completion of the local ring  $\mathcal{O}_{X_{s},0}$ , the t-connection  $\nabla_t$  has the coordinate representation  $\nabla_t(v) = t\partial_{z_1}(v)dz_1 + \ldots + t\partial_{z_i}(v)dz_d + (A_1dz_1 + \ldots + A_ddz_d)v$ , where  $A_1, \ldots, A_d \in Mat_n(A \ z \ )$ . Moreover, for each  $1 \le i \le d$ , we have

(2) 
$$\nabla_t(\partial_{z_i}) = t\partial_{z_i} + A_i.$$

Hence, since  $(\partial_{z_i})^p = 0$ , we immediately obtain that  $\Psi_{\nabla_t}^{\partial_{z_i}} = (\nabla_t (\partial_{z_i}))^p$ . On the other hand, the integrability of  $\nabla_t$  allows us to show that  $[\nabla_t (\partial_{z_i}), \nabla_t (\partial_{z_i})] = 0$  for all  $1 \le i, j \le d$ . Using Lemma 2.8, we have  $[\nabla_t (\partial_{z_i}), \Psi_{\nabla_t} (\partial_{z_i})] = 0$  in  $\mathcal{E}nd(E)$  for each  $1 \le i, j \le d$ . Hence,

(3) 
$$\left[\nabla_{t}(\partial_{z_{i}}),\Psi_{\nabla_{t}}^{\partial_{z_{j}}}\right]=0; \quad 1\leq i,j\leq d.$$

By putting (2) and (3) together, we obtain that  $\left[t\partial_{z_i} + A_i, \Psi_{\nabla_i}^{\partial_j}\right] = 0; 1 \le i, j \le d$ . Therefore,

(4) 
$$t\left[\partial_{z_i}, \Psi_{\nabla_t}^{\partial_j}\right] = \left[\Psi_{\nabla_t}^{\partial_j}, A_i\right]; \quad 1 \le i, j \le d.$$

For each i = 1, ..., d, let us write  $\partial_{z_i} . \Psi_{\nabla_t}^{\partial_j}$  for the matrix of partial derivatives of the entries of  $\Psi_{\nabla_t}^{\partial_j}$  with respect to  $z_i$ . By adapting the proof of Proposition 3.2 in [LP01], we obtain that

(5) 
$$\partial_{z_i} \Psi_{\nabla_t}^{\partial_j} = [\partial_{z_i}, \Psi_{\nabla_t}^{\partial_j}]; \quad 1 \le i, j \le d$$

Now we combine \eqref{VanishDerDeter3} and \eqref{VanishDerDeter5} together, we then obtain that  $t.tr\left[(\Psi_{\nabla_t}^{\partial_{z_j}})^n \partial_{z_i} \cdot \Psi_{\nabla_t}^{\partial_{z_j}}\right] = tr\left[(\Psi_{\nabla_t}^{\partial_{z_j}})^n [\Psi_{\nabla_t}^{\partial_j}, A_i]\right] = 0$ , for all  $n \ge 0$  and  $1 \le i, j \le d$ . In order to prove  $tr\left[(\Psi_{\nabla_t}^{\partial_{z_k}})^n \partial_{z_i} \cdot \Psi_{\nabla_t}^{\partial_{z_k}}\right] = 0$ , let us consider  $t \in A$  as follows:

• Case 1: t=0. By the definition of  $\Psi_{\nabla_t}$ , we have  $\Psi_0(\nabla_0)^{\partial_{z_1}} = A_1^p; ...; \Psi_0(\nabla_0)^{\partial_{z_d}} = A_d^p$ . This implies that  $(\Psi_0(\nabla_0)^{\partial_{z_j}})^n \partial_{z_i} . \Psi_0(\nabla_0)^{\partial_{z_j}} = A_j^{pn} \partial_{z_i} . A_j^p$ , and hence,

$$tr\left[\left(\Psi_{0}(\nabla_{0})^{\partial_{z_{j}}}\right)^{n}\partial_{z_{i}}?_{0}(\nabla_{0})^{\partial_{z_{j}}}\right] = tr\left[A_{j}^{pn}\partial_{z_{i}}A_{j}^{p}\right] = 0$$

for all  $n \ge 0$  and  $1 \le i, j \le d$ . Therefore,  $tr[(\Psi_0(\nabla_0)^{\partial_{z_k}})^n \partial_{z_i} . \Psi_0(\nabla_0)^{\partial_{z_k}}] = 0$  for all  $n \ge 0$  and  $1 \le i, j \le d$ .

• Case 2:  $t \neq 0$ . Since A is an integral domain, we get  $tr\left[(\Psi_{\nabla_t}^{\partial_{z_j}})^n \partial_{z_i} \cdot \Psi_{\nabla_t}^{\partial_{z_j}}\right] = 0$ , for all  $n \ge 0$ and  $1 \le i, j \le d$ .

Since the matrix  $\Psi_{\nabla_t}^{\partial_{z_j}}$  belongs to  $Mat_n(R \ z)$ , we obtain the Jacobi identity formula as follows (by using induction on d)  $\partial_{z_i} \det(Id - T.\Psi_{\nabla_t}^{\partial_k}) = -T \det(Id - T.\Psi_{\nabla_t}^{\partial_k}) \sum_{n \ge 0} T^n tr[(\Psi_{\nabla_t}^{\partial_k})^n \partial_{z_i}.\Psi_{\nabla_t}^{\partial_k}]$  for all  $1 \le i, j \le d$ . Therefore,  $\partial_{z_i} \det(Id - T.\Psi_{\nabla_t}^{\partial_j}) = 0$ .

In general case, we first need the following lemma.

**Lemma 3.2.** Let  $M_1, ..., M_d, B \in Mat_n(R \ z)$  such that  $[M_i, M_j] = 0$  for all  $1 \le i, j \le d$ . Then

$$tr(M_1^{n_1}...M_d^{n_d}[M_k,B]) = 0$$

for all  $1 \le k \le d$  and  $(n_1, \dots, n_d) \in \mathbb{N}^d$ .

Proof of Lemma. Since  $tr[M_k, B] = 0$ , so  $tr(M_1^{n_1}...M_d^{n_d}[M_k, B]) = 0$ .

Now, we apply the idea in the proof of Proposition 3.2 in [LP01] to obtain the following.

**Proposition 3.3.** Let  $D \in \mathcal{D}er(X_S / S)$  and assume that  $\Psi^D_{\nabla_t}$  and  $\partial_{z_i} \cdot \Psi^D_{\nabla_t}$  as above. Then, we have

$$tr\left[(\Psi^{D}_{\nabla_{t}})^{m}\partial_{z_{i}}.\Psi^{D}_{\nabla_{t}}\right]=0.$$

Since  $\Psi_{\nabla_t}$  is p-linear, so  $\Psi_{\nabla_t}^D = a_1^p \Psi_{\nabla_t}^{\partial_{z_1}} + \ldots + a_d^p \Psi_{\nabla_t}^{\partial_{z_d}}$ . Hence, the integrability of  $\nabla_t$  implies that the matrix  $\partial_{z_i} \cdot \Psi_{\nabla_t}^D$  is

$$\partial_{z_i} \cdot \Psi^{D}_{\nabla_t} = \partial_{z_i} \cdot \left( a_1^p \Psi^{\partial_{z_1}}_{\nabla_t} + \dots + a_d^p \Psi^{\partial_{z_d}}_{\nabla_t} \right) = a_1^p \partial_{z_i} \cdot \Psi^{\partial_{z_1}}_{\nabla_t} + \dots + a_d^p \partial_{z_i} \cdot \Psi^{\partial_{z_d}}_{\nabla_t}.$$

Because  $[\Psi_{\nabla_t}^{\partial_{z_i}}, \Psi_{\nabla_t}^{\partial_{z_j}}] = 0$  for all 1/le i,j/le d, we obtain the following decomposition

$$\left[ \Psi^{D}_{\nabla_{t}} \right]^{m} = \left[ a_{1}^{p} \Psi^{\partial_{z_{1}}}_{\nabla_{t}} + \dots + a_{d}^{p} \Psi^{\partial_{z_{d}}}_{\nabla_{t}} \right]^{m} = \sum_{k_{1} + \dots + k_{d} = m} \binom{m}{k_{1}, k_{2}, \dots, k_{d}} \prod_{i=1}^{d} \left[ a_{i}^{pk_{i}} (\Psi^{\partial_{z_{i}}}_{\nabla_{t}})^{k_{i}} \right].$$

where  $(k_1, \dots, k_d) \in \mathbb{N}^d$  such that  $k_1 + \dots + k_d = m$  and  $\binom{m}{k_1, k_2, \dots, k_d} = \frac{m!}{k_1! k_2! \cdots k_d!}$ . Hence,

we have

$$tr\left[(\Psi_{\nabla_{t}}^{D})^{m}\partial_{z_{i}}.\Psi_{\nabla_{t}}^{D}\right] = \sum_{k=1}^{d}\sum_{k_{1}+\ldots+k_{d}=m} \binom{m}{k_{1},\ldots,k_{d}} a_{k}^{p}tr\left(\left[\prod_{j=1}^{d}a_{j}^{pk_{j}}(\Psi_{\nabla_{t}}^{\partial_{z_{j}}})^{k_{j}}\right]\partial_{z_{i}}.\Psi_{\nabla_{t}}^{\partial_{z_{k}}}\right).$$

We now need the following lemma.

Lemma 3.4. Let  $(n_1, ..., n_d) \in \mathbb{N}^d$ , assume that  $\Psi_{\nabla_t}^{\partial_{z_1}}, ..., \Psi_{\nabla_t}^{\partial_{z_d}}$  and  $\partial_{z_i} \cdot \Psi_{\nabla_t}^{\partial_j}$  as above. Then  $tr[(\Psi_{\nabla_t}^{\partial_{z_1}})^{n_1} ... (\Psi_{\nabla_t}^{\partial_{z_d}})^{n_d} (\partial_{z_i} \cdot \Psi_{\nabla_t}^{\partial_j})] = 0$ for all  $1 \le i, j \le d$ . *Proof of Lemma 3.4.* According to Theorem 3.1, the followings  $t.tr[(\Psi_{\nabla_t}^{\partial_{z_1}})^{n_1} ... (\Psi_{\nabla_t}^{\partial_{z_d}})^{n_d} (\partial_{z_i} \cdot \Psi_{\nabla_t}^{\partial_j})] = tr((\Psi_{\nabla_t}^{\partial_{z_1}})^{n_1} ... (\Psi_{\nabla_t}^{\partial_{z_d}})^{n_d} [\Psi_{\nabla_t}^{\partial_j}, A_i])$ for all  $(n_1, ..., n_d) \in \mathbb{N}^d$  and  $1 \le i, j \le d$ . Using Lemma 3.2, we get  $t.tr[(\Psi_{\nabla_t}^{\partial_{z_1}})^{n_1} ... (\Psi_{\nabla_t}^{\partial_{z_d}})^{n_d} (\partial_{z_i} \cdot \Psi_{\nabla_t}^{\partial_j})] = 0.$ We now again use the method in the proof of Theorem \ref{mainThrm01} to obtain

$$tr \Big[ (\Psi_{\nabla_t}^{\partial_{z_1}})^{n_1} ... (\Psi_{\nabla_t}^{\partial_{z_d}})^{n_d} (\partial_{z_i} . \Psi_{\nabla_t}^{\partial_j}) \Big] = 0.$$

Let us obverse from Theorem 3.1 that  $tr\left(\left(\prod_{j=1}^{d} a_{j}^{pk_{j}} (\Psi_{\nabla_{t}}^{\partial_{z_{j}}})^{k_{j}}\right) \partial_{z_{i}} \Psi_{\nabla_{t}}^{\partial_{z_{k}}}\right) = 0$  for each

 $k_1, ..., k_d \in \mathbb{N}$ . Therefore, we can conclude that  $tr[(\Psi^D_{\nabla_t})^m \partial_{z_i} \cdot \Psi^D_{\nabla_t}] = 0$  for all  $m \in \mathbb{N}$ . We now arrive at

**Theorem 3.5.** For each  $D, D' \in \mathcal{D}er(X_S / S)$ , we have  $D.\det(T.\Psi_{\nabla_t}^{D'} - Id) = 0$ 

**Proof.** Let us write  $D = \sum_{j=1}^{d} a_j \partial_{z_j}$  with  $a_1, ..., a_d \in A[z]$ . Then, for each  $1 \le i \le d$ , we have the following identity

following identity

$$\partial_{z_i} \det \left( Id - T \cdot \Psi_{\nabla_t}^{D'} \right) = -T \det \left( Id - T \cdot \Psi_{\nabla_t}^{D'} \right) \sum_{m \ge 0} T^m tr \left[ (\Psi_{\nabla_t}^{D'})^m \partial_{z_i} \cdot \Psi_{\nabla_t}^{D'} \right].$$

Hence, by using Theorem 3.3 we can see that  $\partial_{z_i} \det \left( Id - T \cdot \Psi_{\nabla_t}^{D'} \right) = 0$  for all  $1 \le i \le d$  and  $D' \in Der(X_S / S)$ .

Let now us give an application of Theorem 3.5. Denote by  $\mathcal{C}(r, X / R)$  the fibered category over  $(\mathbf{Aff} / \mathbb{A}^1_R)$  which associates each  $t: S \to \mathbb{A}^1_R$  to the category whose objects are pairs  $(E, \nabla_t)$ 

containing a degree zero vector bundle E of rank n on  $X_s$  equipped with an integrable t-connection  $\nabla_t$ , and morphisms are isomorphisms which commute with the t-connections (see Section 3.3 in [LP01]). The affine schemes  $\mathcal{A}_{X/R}$  and  $\mathcal{A}'_{X/R}$  are defined by

$$\mathcal{A}_{X/R}(S) = \mathcal{A}_{X/R} \times_R S; \qquad \mathcal{A}_{X/R'}(S) = \mathcal{A}_{X/R'} \times_R S$$

for any R-scheme S.

**Definition 3.6.** Let  $(E, \nabla_t)$  be a t-bundle over X\_S. We denote by  $Char(\nabla_t)$  the point of  $\mathcal{A}'_{X/R}(S)$  which is defined by the coefficients of the characteristic polynomial of the morphism  $\Psi_{\nabla_t}: E \to E \otimes q^* S^p \Omega^1_{X/R}$ , where  $q: X_S \to X$  is the first projection.

According to [LP01], the functor  $\nabla_t \mapsto (Char(\nabla_t), t)$  defines a morphism of  $\mathbb{A}^1_R$ -stacks:

$$\underline{Char}: \mathcal{C}(r, X / R) \to \mathcal{A}_{X/R'} \times \mathbb{A}^1_R$$

over the category  $(\operatorname{Aff} / \mathbb{A}_R^1)$ . The absolute Frobenius morphism  $f_X$  induces an injective plinear morphism  $f_{X_S}^* : \mathcal{A}_{X/R}(S) \to \mathcal{A}_{X/R'}(S)$  for each affine R-scheme S. Therefore, there is a canonical inclusion of  $\mathbb{A}_T^1$ -stacks (still denoted by  $f_X^*$ ):  $f_X^* : \mathcal{A}_{X/R} \times \mathbb{A}_R^1 \to \mathcal{A}_{X/R'} \times \mathbb{A}_R^1$ .

Let now  $(E, \nabla_t) \in \mathcal{C}(r, X / R)(S)$  be a t-bundle of rank r over  $X_s$ . The locality allows us to assume that  $X_s = spec(A[z])$  is affine and fix  $(\mathbf{e}) = \{e_1, \dots, e_n\}$  an A[z]-basis of E, where A is an algebra over R, and the characteristic polynomial det $(T\Psi_{\nabla_t} - Id)$  is det $(T\Psi_{\nabla_t} - Id) = (s_1, \dots, s_n)$ , where  $s_i \in H^0(X_s, S^i(Fr^*\Omega^1_{X_{s'}/S}))$  for each  $i = 1, \dots, n$ . By putting Corollary 2.10 and Theorem 3.5 together, we conclude that  $\nabla_{X_s}^{can}(s_i) = 0$ , where  $\nabla_{X_s}^{can}$  is the canonical connection on  $Fr^*(q^*S^i\Omega^1_{X'/R})$ . This implies that  $Char(\nabla_t)$  belongs to the image of the embedding

 $f_{X_{S}}^{*}:\mathcal{A}_{X/R}(S)\times\mathbb{A}_{R}^{1}\to\mathcal{A}_{X/R'}(S)\times\mathbb{A}_{R}^{1}$ 

By using Cartier's theorem, there is another way to obtain the following result (see Section 2 in [EG18]) in the version of t-connections.

**Proposition 3.7.** There exists a unique morphism  $\mathcal{H}: \mathcal{C}(r, X / R) \to \mathcal{A}_{X/R} \times \mathbb{A}^1_R$  over  $\mathbb{A}^1_R$  satisfying the followings:

a) the diagram



is commutative;

b) the restriction  $\frac{H}{\frac{1}{t=0}}$  gives the Hitchin morphism of X.

Acknowledgements. This research was supported by Hanoi Pedagogical University 2 under Grant number C.2019-18-07.

#### References

- [1] B. Dwork, *Lectures on p-adic differential equations*, volume 253 of Grundlehren der mathematischen Wissenschaften. Springer, New York, 1982.
- [2] H. Esnault, M. Groechenig, *Rigid connections and F-isocrytals*, Acta Mathematica, Volume 225 (2020), Number 1, p. 103 158.
- [3] N. Hitchin, Stable bundles and intergrable systems, Duke Mathematical Journal 54 (1987), pp. 91-114.
- [4] T. Honda, *Algebraic differential equations*, In Symposia Mathematica, Vol. XXIV, pages 169–204. Academic Press, London, 1981.
- [5] N.M. Katz, *Nilpotent connections and the monodromy theorem: applications of a result of Turrittin*, Publications math/ematiques de I.H./E.S. 39 (1970), pp. 175-232.
- [6] Y. Laszlo and C. Pauly, *On the Hitchin morphism in positive characteristic*, Internat. Math. Res. Notices (2001), no. 3, pp. 129-143.
- [7] T. Mochizuki, *Good formal structure for meromorphic flat connections on smooth projective surfaces*, Advanced Studies Pure Mathematics 54 (2009), Algebraic Analysis and Around, pp.223–253.
- [8] Carlos T.Simpson, *Moduli of representations of the fundamental group of a smooth projective variety II*, Publications math/ematiques de I.H./E.S. 80 (1994), pp.5-79.