Ġ **TAP CHÍ KHOA HOC**

Article type: Research article

On the *p-***curvatures of** *t***-connections over a relative smooth projective scheme**

Thanh-Tam Pham*

Department of Mathematics, Hanoi Pedagogical University 2, 32 Nguyen Van Linh, Phuc Yen, Vinh Phuc, Vietnam

Abstract

-

Let t be a global function of an integral R -scheme S and X be a smooth projective scheme over R . We show that the characteristic polynomial of the p –curvature of an integrable t –connection over X_s is horizontal.

Keywords: t-bundles, p-curvature, Hitchin morphism.

1. Introduction

The theory of linear differential operators in positive characteristic was initiated in the 1970s by Katz [Kat70, Kat82], Dwork [Dwo82] and Honda [Hon81]. The aim of these works is to connect with the studying local-global principle for linear ordinary differential equations which is known as the pcurvature conjecture of A. Grothendieck in 1969.

Let k be an algebraically closed field of characteristic $char(k) = p > 0$ and let X be a smooth projective curve over k. Let S be a k –scheme equipped with a t –function. An integrable t-bundle over X_s is a pair (E, ∇_t) containing a vector bundle E over X_s equipped with an integrable t –connection ∇_t . The p –curvature of (E, ∇_t) , denoted by Ψ_{∇_t} , is p –linear which defines an element of $\mathcal{H}om_{\varphi}$ $(E, E \otimes Fr^{\ast}\Omega_{\varphi}^{1})$ $om_{\mathcal{O}_X}(E, E \otimes Fr^*\Omega^1_{\mathcal{O}_X/S})$. It is considered as an $n \times n$ -matrix Ψ with coefficients in \mathcal{O}_{X_S} satisfying the following conditions

^{*} Corresponding author, E-mail: phamthanhtam@hpu2.edu.vn

<https://doi.org/10.56764/hpu2.jos.2022.1.2.102-111>

Received date: 14-12-2022 ; Revised date: 15-12-2022 ; Accepted date: 27-12-2022

This is licensed under the CC BY-NC-ND 4.0

(1)
$$
\begin{cases} \partial \cdot det \left(Id - T \Psi_{\nabla_i} \right) = 0; \\ tr \left(\Psi^n . \partial \Psi \right) = 0 \end{cases} \qquad n \ge 0, n \in \mathbb{N},
$$

see [LP01, Proposition 3.2].

Let R be a domain of k –algebras and S be an integral R –scheme and X be a smooth projective scheme over R. A Higgs bundle on X_s (relatively over R) is a vector bundle E on X_s equipped with a $Higgs$ field $\theta: E \to E \otimes \Omega^1$ $\theta: E \to E \otimes \Omega^1_{X_s/S}$ satisfying $\theta \wedge \theta = 0$, see [S94]. The coefficients of $det(\lambda - \theta) = \lambda^n + a_1 \lambda^{n-1} + ... + a_{n-1} \lambda + a_n$ belong to $\mathcal{A}_{X_s/S} = \bigoplus H^0(X_s, S^i \Omega^1_{X_s/S})$. $X_{S/S} = \bigoplus H^0(X_S, S^i\Omega^1_{X_S/S})$. Let us write $\mathcal{L}_{R}=\bigoplus H^{0}\big(X, S^{i}\Omega^{1}_{X/R}\big)$ $X/R = \bigoplus H^0(X, S^i \Omega^1_{X/R})$. Denote by $\mathcal{M}_{Dol}(X/R)$ the moduli stack over (Sch/R) which associates to a scheme S the category of finite rank Higgs bundles on $X_s = X \times_R S$. The moduli stack $\int_{Dol}(X/R)$ is equipped with a morphism $h: \mathcal{M}_{Dol}(X/R) \to \mathcal{A}_{X/R}$ which is defined by sending each Higgs bundle (E, θ) to the coefficients of the characteristic polynomial of \theta. The morphism h is called the *Hitchin morphism* of X, see e.g. [Hit87, S94].

Denote by $C(n, X / k)$ for the moduli stack of integrable t-bundle over X_S . The characteristic polynomial of the p-curvature Ψ_{∇_i} of ∇_t defines a morphism $\underline{Char} : \mathcal{C}(n, X / k) \to \mathcal{A}_{X/k} : \mathbb{A}^1_k$ $\underline{Char}: \mathcal{C}(n, X/k) \to \mathcal{A}_{X/k} \times \mathbb{A}_k^1$. In the case where X is a smooth projective curve over k, by using (1), Laszlo and Pauly showed that there exists a morphism $\mathcal{H}: \mathcal{C}(r, X/k) \to \mathcal{A}_{X/k} \times \mathbb{A}^1$ $: \mathcal{C}(r, X/k) \to \mathcal{A}_{X/k} \times \mathbb{A}_k^1$ of stacks such that the restriction $\mathcal{H}|_{t=0}$ is the | Hitchin morphism of X. In this manuscript, we establish an analog version of formula (1), Theorems 3.1 and 3.5, for the case where X is a smooth projective scheme over R. These formulas then allow us to define the Hitchin morphism

1 : $C(r, X/R) \rightarrow A_{X/R} \times \mathbb{A}_R^1$.

2. Preliminaries

Let R be an algebra over k and let S be an R –scheme endowed with a global function t. Let $\mathfrak X$ be a smooth projective R –scheme and denote by $X_s = X \times_R S$. As in [LP01], we also denote by t for the pullback of t to the scheme X_s by $X_s \to X$.

2.1. *Frobenius morphisms*. Let us denote by $f_s : S \rightarrow S$ the absolute Frobenius, which is topologically the identity and the p-power on functions, and S' the inverse image of S by the Frobenius *f_S*. Let $\mathfrak{X}' = X_s \times_{f_s} S$ be the pullback of \mathfrak{X} by f_s . There is a unique S-morphism $F_{\mathfrak{X}'_s} : \mathfrak{X} \to \mathfrak{X}'$ $F_{\mathcal{X}_{\mathcal{S}}} : \mathfrak{X} \to \mathfrak{X}'$ such that the diagram

commutes. The S-morphism $F_{\hat{\chi}'}$ is called the *relative Frobenius morphism* of $\hat{\mathfrak{X}}$ over S.

Moreover, if $S = spec(A)$ the spectrum of an R-algebra A and $\mathfrak{X} \subset \mathbb{A}_{A}^{N}$ is given by equations *I* $f_j = \sum a_i x^I$ together with coordinates (x_i) , where $1 \le i \le N$, $a_{I,j} \in A$, then $\mathcal{X}' \subset \mathbb{A}_A^N$ is defined by *I* $[p] = \sum q^p x^l$ $f_j^{[p]} = \sum a_i^p x^I$. *I*

2.2. *Local systems*. Let us write $Der(\mathfrak{X}/S)$ for the sheaf of germs of S-derivatives on $\mathcal{O}_{\mathfrak{X}}$. As $\mathcal{O}_{\mathfrak{X}}$ modules, this sheaf is isomorphic to \mathcal{H} *om*_{\mathcal{O}_{α}} $(\Omega_{\alpha}^{\beta})$ $om_{\mathcal{O}_{\mathfrak{X}}}(\Omega_{\mathfrak{X}/S}^{\mathfrak{l}},\mathcal{O}_{\mathfrak{X}})$.

Definition 2.1. A local system on \mathfrak{X} is a rank n vector bundle E on \mathfrak{X} equipped with an integrable connection $\nabla: E \to E \otimes \Omega$ $\nabla: E \to E \otimes \Omega^{1}_{\mathfrak{X}/S}$. A S-connection $\nabla: E \to E \otimes \Omega^{1}_{S}$ $\nabla: E \to E \otimes \Omega^1_{\mathfrak{X}/S}$ is called *integrable* if the composition of it with the induced map ∇ : $E \otimes \Omega_{\scriptscriptstyle{S}}^1 \to E \otimes \Omega_{\scriptscriptstyle{X/S}}^2$ is zero.

Let (E, ∇) be a local system on \mathfrak{X} . By using duality, ∇ gives rise to an $\mathcal{O}_{\mathfrak{X}}$ -linear map

$$
\nabla:Der(\mathfrak{X}/S)\to End_S(E)
$$

sending each $D \in Der(\mathfrak{X}/S)$ to $\nabla(D)$ in $\mathcal{E}nd(E)$, where $\nabla(D)$ is the composite

$$
E \longrightarrow^{\nabla} E \otimes \Omega^1_{\mathfrak{X}/S} \longrightarrow^{\cong D} E \otimes \mathcal{O}_{\mathfrak{X}}.
$$

We also note that, according to [Kat70], the p^{th} -iterate $D^p \in Der(\mathfrak{X}/S)$ for each $D \in Der(\mathfrak{X}/S)$. As in [Section 5.0, Kat70], the p-curvature of the connection ∇ is a mapping of sheaves Ψ_{∇} : $Der(\mathfrak{X}/S) \to End_{\mathfrak{X}}(E)$ by $\Psi_{\nabla}(D) = \nabla(D)^p - \nabla(D^p)$. It is p-linear, i.e., an additive map and $\Psi_{\nabla}(f e) = f^p \Psi_{\nabla}(e)$ for all f and e are local sections of $\mathcal{O}_{\mathfrak{X}}$ and E respectively over an open subset of $\mathfrak X$.

2.3. t-connections. Let us review t-connections on a vector bundle.

Definition 2.2. Let E be a vector bundle of rank n over \mathfrak{X} and $\nabla_i : E \to E \otimes \Omega$. $\nabla_t : E \to E \otimes \Omega^1_{\mathfrak{X}/S}$ be an \mathcal{O}_S . linear map.

a) The map ∇_t is called a *t-connection* on E if $\nabla_t(ae) = t da \otimes e + a \nabla_t(e)$, where a and e are local sections of $\mathcal{O}_\mathfrak{X}$ and E respectively over an open subset of \mathfrak{X} . We say that the pair (E,∇_{t}) is a tbundle over $\mathfrak X$.

b) The t-connection ∇_i is called *integrable* if $\nabla_i^{\circ} \nabla_i = 0$.

Proposition 2.3. Let (E, ∇_t) be a t-connection over \mathfrak{X} . Then:

1) The t-connection ∇_t gives rise to an \mathcal{O}_x -linear morphism $\nabla_t : Der(\mathfrak{X}/S) \to End_S(E)$ sending $D \in Der(\mathfrak{X}/S)$ to $\nabla f(D) \in End_S(E)$, where $\nabla f(D)$ is the composition 1 1 $E \xrightarrow{\nabla} E \otimes \Omega^1_{\mathfrak{X}/S} \xrightarrow{\mathfrak{1} \otimes D} E \otimes \mathcal{O}_{\mathfrak{X}}.$

2) The t-connection ∇_t is integrable precisely when $[\nabla_t(D), \nabla_t(D')] = \nabla_t([D, D'])$ for all $D, D' \in Der(\mathfrak{X}/S)$.

Proof. See [I.0.5, Kat70].

Proposition 2.4. Let (E, ∇) be a t-bundle on \mathfrak{X} and let s be a section of E respectively over an open subset of \mathfrak{X} . Then $\nabla_t(s) = 0$ iff $\nabla_t(D)(s) = 0$ for all $D \in Der(\mathfrak{X}/S)$.

Proof. The proof is clear.

t

2.4. The characteristic polynomial of p-curvatures. Let ∇ _t be a t-bundle over \mathfrak{X} . According to [Kat70], the map from $Der(\mathfrak{X}/S)$ to $End_S(E)$ which sends each D to $[\nabla_t(D)]^p - t^{p-1}\nabla_t(D^p)$ is additive since ∇_i is so.

Definition 2.5. The additive morphism

 $\Psi_{\nabla_i}: \mathcal{D}er(\mathfrak{X}/S) \to \mathcal{E}nd_S(E); \quad D \mapsto [\nabla_i(D)]^p - t^{p-1}\nabla_i(D^p)$

is called the *p*-curvature of (E, ∇_t) .

Example 2.6. Let E be a rank n vector bundle over \mathfrak{X} . An 0-connection $\nabla_0 : E \to E \otimes \Omega^1_{\mathfrak{X}/S}$ is a Higgs field on E. Then, its p-curvature $\Psi_{\nabla_0} = [\nabla_0]^p$.

The following is referred to Lemma 3.3 in [LP01].

Proposition 2.7. Let Ψ_{∇_i} be the p-curvature of (E, ∇_i) . Then

1) The p-curvature of a 0--connection on E has form p-power of a Higgs field.

2) The map Ψ_{∇_i} is p-linear. In particular, it defines an element in $\mathcal{H}om_{\mathcal{O}_x}(E, E \otimes Fr^*\Omega^1_x)$ $\delta om_{\mathcal{O}_{\mathfrak{X}}}\bigl(E, E \,\otimes Fr^*\Omega^1_{\mathfrak{X}'/S}\bigr),$ (we still denote it by Ψ_{∇_i}).

Proof. The assertion (1) is obvious. The proof of (2) in fact is given by adapting Proposition 5.2.0 of [Kat70].

According to Proposition 5.2.1-2 of [Kat70], we obtain that

Lemma 2.8. Let (E, ∇) be a t-bundle over \mathfrak{X} and assume that ∇ is integrable. Then $[\nabla_{\mu}(D), \Psi_{\nabla_{\mu}}(D')] = [\Psi_{\nabla_{\mu}}(D), \Psi_{\nabla_{\mu}}(D')] = 0$ for all $D, D' \in Der(\mathfrak{X} \setminus S)$.

Proof. We first note that ∇_t is integrable and Ψ_{∇_t} is p-linear. Hence, By adapting the proof of Proposition 5.2.1-2 of [Kat70], we obtain that $[\nabla_i(D), \Psi_{\nabla_i}(D')] = [\Psi_{\nabla_i}(D), \Psi_{\nabla_i}(D')] = 0$ for all $D, D' \in Der(\mathfrak{X}/S)$.

Let (E, ∇_t) be an integrable t-bundle over \mathfrak{X} . Then, Ψ_{∇_t} can be seen as a section of $^* \cap$ l $om_{\mathcal{O}_{\mathfrak{X}}}(E, E \otimes Fr^*\Omega^1_{\mathfrak{X}'/S})$. The polynomial $det(Id - T\Psi_{\nabla_{\tau}})$ of $\Psi_{\nabla_{\tau}}$ can be considered as an element in $\bigoplus_{i=1}^n H^0(\mathfrak{X},S^i(Fr^*\Omega^1))$ $\bigoplus_{i=1}^n H^0\bigl(\mathfrak X, S^i(Fr^*\Omega^1_{\mathfrak X'/S})\bigr).$ According to Cartier's Theorem [Kat70, Theorem 5.1], there is a canonical connection ∇^{can} on $Fr^*S^i(\Omega)$ $Fr^*S^i(\Omega^1_{\mathfrak{X}'/S})$ such that the diagram

commutes for each $i = 1, \dots, n$. Similar as in the proof of Proposition 2.4, we can assume that $\mathfrak{X} = spec(A[z])$ is affine and fix $(e) = \{e_1, \dots, e_n\}$ an A[z]-basis of E, where A is an algebra over R. We then write $\det(T\Psi_{\nabla_{\tau}} - Id) = (s_1, \dots, s_n)$, where $s_i \in H^0(\mathfrak{X}, S^i(Fr^*\Omega_{\beta}^1))$ $S_i \in H^0\bigl(\mathfrak{X},S^i(Fr^*\Omega^1_{\mathfrak{X}'/S})\bigr)$ for each $i = 1, \dots, n$. Hence, for each $D \in Der(\mathfrak{X}/S)$ we define $D.\text{det}(T\Psi_{\nabla_{\cdot}}-Id) := (\nabla^{can}(D)(s_1), \cdots, \nabla^{can}(D)(s_n))$ *t* . Note that $D.\det(T\Psi_{\nabla_i} - Id) := (\nabla^{can}(D)(s_1), \cdots, \nabla^{can}(D)(s_n)).$ Note that
 $(\nabla^{can}(D)(s_1), \cdots, \nabla^{can}(D)(s_n)) = 0$ precisely when $D.\det(T\Psi_{\nabla_i} - Id) = 0$ for all $D \in Der(\mathfrak{X}/S)$.

Let us write Ψ_{∇}^D for the matrix of $\Psi_{\nabla}^D(D)$ with respect to (e) for each $D \in Der(\mathfrak{X}/S)$ and write $\partial_{\scriptscriptstyle{D}}$ for the S-derivative corresponding to $D \in \mathcal{E}nd_{\mathcal{O}_{\mathcal{S}}}(\mathcal{O}_{\mathfrak{X}})$. Since

 f_x^* $Der(\mathfrak{X}/S) = Fr^*Der(\mathfrak{X}'/S)$, the operator $\partial_{D'}$. $det(T\Psi_{\nabla}^D - Id)$ $\partial_{D'}$ det($T\Psi_{\nabla}^D - Id$) is well defined for all $D' \in Der(\mathfrak{X}/S)$.

Proposition 2.9. Let $D \in Der(\mathfrak{X}/S)$. The following conditions are equivalent:

- 1) $\partial_D \det(T \Psi_{\nabla}^{D'} Id) = 0$ for all $D' \in Der(\mathfrak{X}/S)$. *t*
- 2) $D \cdot \det(T \Psi_{\nabla_t} Id) = 0$.

Proof. Without loss of generality, we consider $\mathfrak{X} = spec(A[z])$ being affine and fix (e) an A[z]-basis of E, where A is an algebra over R. By using Remark 2.7, the p-curvature Ψ_{∇_i} is presented by the following matrix algebra over K. By using R.
 $(\Psi_{\nabla_i}, \mathbf{e}) = \Big(\sum_{k=1}^d a_k^{ij} \otimes_{f_{\mathfrak{X}}} dz_k\Big)$ $\text{Mat}(\Psi_{\nabla_{t}}, \mathbf{e}) = \left(\sum_{k=1}^{d} a_{k}^{ij} \otimes_{f_{\mathfrak{X}}} dz_{k}\right)_{n \times n}$, where $a_{k}^{ij} \in A[z]$ for each triple (i,j,k) such that $1 \le i, j, k \le d$. Firstly, $(2) \Rightarrow (1)$ is obvious. We now prove that $(1) \Rightarrow (2)$. Assume that .det($T\Psi_{\nabla_{t}}^{D'} - Id$) = 0 D *D* \cdot *det*($T\Psi_{\nabla f}^{D'}$ - *Id* $\partial_D \cdot \det(T\Psi_{\nabla_i}^{D'} - Id) = 0$ for all $D' \in Der(\mathfrak{X}/S)$. We note that $\Psi_{\nabla_i}^{D'}$ $\Psi_{\nabla}^{D'}$ is given by the composition

$$
E \xrightarrow{\Psi_{\nabla_t}} E \otimes \Omega^1_{\mathfrak{X}/S} \xrightarrow{1 \otimes D'} E \otimes \mathcal{O}_{\mathfrak{X}}.
$$

Considering D' corresponds to $\partial_{z_i} + ... + \partial_{z_i}$, where $1 \le i_1 < i_2 < ... < i_s \le d$ and $1 \le s \le d$. Because $\partial_p \cdot det(T\Psi^p_{\nabla_t} - Id) = 0$ ∂_p det($T\Psi_{\nabla}^{p'} - Id$) = 0, we obtain that

HPU2. Nat. Sci. Tech. **2022**, 1(2), 102-111
\n
$$
\frac{\partial}{\partial p \cdot \det} \begin{bmatrix}\nT \sum_{k=1}^{s} a_{i_k}^{11} - 1 & T \sum_{k=1}^{s} a_{i_k}^{12} & \dots & T \sum_{k=1}^{s} a_{i_k}^{1n} \\
T \sum_{k=1}^{s} a_{i_k}^{21} & T \sum_{k=1}^{s} a_{i_k}^{22} - 1 & \dots & T \sum_{k=1}^{s} a_{i_k}^{2n} \\
\vdots & \vdots & \ddots & \vdots \\
T \sum_{k=1}^{s} a_{i_k}^{n1} & T \sum_{k=1}^{s} a_{i_k}^{n2} & \dots & T \sum_{k=1}^{s} a_{i_k}^{n2} - 1 \\
T \sum_{k=1}^{s} a_{i_k}^{n2} & \dots & T \sum_{k=1}^{s} a_{i_k}^{n2} - 1\n\end{bmatrix} = 0.
$$
\nHence, $D \cdot \det \left(\left(\sum_{k=1}^{d} a_k^{ij} \otimes_{f_x} dz_k \right)_{n \times n} T - Id \right) = 0$ which means that $D \cdot \det(T \Psi_{\nabla_i} - Id) = 0$.

As a direct consequence of Proposition 2.9, we arrive at

Corollary 2.10. Let $P_{\Psi_{\alpha}} = (-1)^n T^n + s_1 T^{n-1}$ $P_{\Psi_{\nabla_i}} = (-1)^n T^n + s_1 T^{n-1} + \cdots + s_n$ be the characteristic polynomial of Ψ_{∇_i} and $k \in \mathbb{N}$ such that $1 \leq k \leq d$. Then $\nabla^{can}(s_i) = 0$ for all $1 \leq i \leq n$ if and only if . det($T\Psi^{\nu}_{\nabla_{t}} - Id$) = 0 ∂_k det($T \Psi_{\nabla_k}^D - Id$) = 0 for all $D \in \mathcal{D}er(\mathfrak{X}/S)$.

3. Horizontality of characteristic polynomial of p-curvature

Let $\nabla_i : E \to E \otimes \Omega^1$ $\nabla_i : E \to E \otimes \Omega^i_{X_s/S}$ be an integrable t-connection on E over X_s . By localization, assume that $\mathfrak{X} = spec(A[z])$ is affine and fix $(e) = \{e_1, \dots, e_n\}$ an A[z]-basis of E, where A is an algebra over R. According to [Mo09], we obtain the following theorem.

Theorem 3.1. The following assertions ∂_{z_i} det($Id - T \cdot \Psi_{\nabla_i}^{\partial_j}$) = 0 hold for all $1 \le i, j \le d$.

Proof. Because we work in a completion of the local ring $\mathcal{O}_{X_s,0}$, the t-connection ∇_t has the coordinate representation $\nabla_{t}(v) = t\partial_{z_1}(v)dz_1 + ... + t\partial_{z_i}(v)dz_d + (A_1dz_1 + ... + A_d dz_d)v,$ where $A_1, \ldots, A_d \in Mat_n(A \mid z)$. Moreover, for each $1 \leq i \leq d$, we have

$$
\nabla_t(\partial_{z_i}) = t\partial_{z_i} + A_i.
$$

Hence, since $(\partial_{z_i})^p = 0$ $(\partial_{z_i})^p = 0$, we immediately obtain that $\Psi_{\nabla_i}^{\partial_{z_i}} = (\nabla_i (\partial_{z_i}))$ $\Psi_{\nabla_i}^{\partial_{z_i}} = (\nabla_i(\partial_{z_i}))^p$. On the other hand, the integrability of ∇_i allows us to show that $[\nabla_i(\partial_{z_i}), \nabla_i(\partial_{z_i})] = 0$ for all $1 \le i, j \le d$. Using Lemma 2.8, we have $[\nabla_i(\partial_{z_i}), \Psi_{\nabla_i}(\partial_{z_j})] = 0$ in $\mathcal{E}nd(E)$ for each $1 \le i, j \le d$. Hence,

(3)
$$
\left[\nabla_{t}(\partial_{z_i}), \Psi^{\partial_{z_j}}_{\nabla_{t}}\right] = 0; \qquad 1 \leq i, j \leq d.
$$

By putting (2) and (3) together, we obtain that $\left[t\partial_{z_i} + A_i, \Psi^{\partial_j}_{\nabla_i}\right] = 0; 1 \le i, j \le d$. Therefore,

(4)
$$
t[\partial_{z_i}, \Psi^{\partial_j}_{\nabla_i}] = [\Psi^{\partial_j}_{\nabla_i}, A_i]; \qquad 1 \leq i, j \leq d.
$$

For each $i = 1, ..., d$, let us write $\partial_{z_i} \Psi_{\nabla}^{(i)}$ z_i v_i ĉ ∂_z , Ψ_{∇}^{0} for the matrix of partial derivatives of the entries of *j* $\Psi_{\nabla_i}^{\partial_j}$ with respect to z_i . By adapting the proof of Proposition 3.2 in [LP01], we obtain that

(5) *HPU2. Nat. Sci. Tech.* **2022**, 1(2), 102-1
\n
$$
\partial_{z_i} \Psi^{\partial_j}_{\nabla_i} = [\partial_{z_i}, \Psi^{\partial_j}_{\nabla_i}]; \qquad 1 \leq i, j \leq d.
$$

Now we combine \eqref{VanishDerDeter3} and \eqref{VanishDerDeter5} together, we then $\left[(\Psi_{\nabla_i}^{\sigma_{z_j}})^n \partial_{z_i} \Psi_{\nabla_i}^{\sigma_{z_j}} \right] = tr \left[(\Psi_{\nabla_i}^{\sigma_{z_j}})^n [\Psi_{\nabla_i}^{\sigma_j}, A_i] \right] = 0,$ $f \cdot tr\left[(\Psi^{\partial_{z_j}}_{\nabla_i})^n \partial_{z_i} \cdot \Psi^{\partial_{z_j}}_{\nabla_i} \right] = tr\left[(\Psi^{\partial_{z_j}}_{\nabla_i})^n [\Psi^{\partial_j}_{\nabla_i}, A_i] \right] = 0$, for all $n \ge 0$ and $1 \le i, j \le d$. In order to prove $tr[(\Psi_{\nabla_t}^{\partial_{z_k}})^n \partial_{z_i} \Psi_{\nabla_t}^{\partial_{z_k}}] = 0$ *n* $tr[(\Psi_{\nabla_r}^{\partial_{\mathcal{H}}})^n \partial_{z_i} \Psi_{\nabla_r}^{\partial_{\mathcal{H}}}]=0$, let us consider $t \in A$ as follows:

• Case 1: t=0. By the definition of Ψ_{∇_i} , we have $\Psi_0(\nabla_0)^{\partial_{\alpha_i}} = A_i^p; ...; \Psi_0(\nabla_0)^{\partial_{\alpha_d}} = A_d^p$. This implies that $(\Psi_0(\nabla_0)^{c_{z_j}})^n \partial_{z_i} \Psi_0(\nabla_0)^{c_{z_j}} = A_j^{pn} \partial_{z_i}$. $\Psi_0(\nabla_0)^{\partial_{z_j}}$ $\int^n \partial_{z_i} \Psi_0(\nabla_0)^{\partial_{z_j}} = A_j^{pn} \partial_{z_i} A_j^p$, and hence,

$$
tr[(\Psi_0(\nabla_0)^{\partial_{z_j}})^n \partial_{z_i}.?_{0}(\nabla_0)^{\partial_{z_j}}] = tr[A_j^{pn} \partial_{z_i}.A_j^p] = 0
$$

for all $n \ge 0$ and $1 \le i, j \le d$. Therefore, $tr[(\Psi_0(\nabla_0)^{\partial_{\xi_i}})^n \partial_{z_i} \Psi_0(\nabla_0)^{\partial_{z_k}}] = 0$ *n* $tr[(\Psi_0(\nabla_0)^{\partial_{\tau_k}})^n \partial_{z_i} \Psi_0(\nabla_0)^{\partial_{\tau_k}}] = 0$ for all $n \ge 0$ and $1 \leq i, j \leq d$.

• Case 2: $t \neq 0$. Since A is an integral domain, we get $tr[(\Psi_{\nabla_i}^{\partial_{z_j}})^n \partial_{z_i} \Psi_{\nabla_i}^{\partial_{z_j}}] = 0$, *n* $tr[(\Psi_{\nabla_i}^{\partial_{z_j}})^n \partial_{z_i} \Psi_{\nabla_i}^{\partial_{z_j}}] = 0$, for all $n \ge 0$ and $1 \leq i, j \leq d$.

Since the matrix $\Psi_{\nabla}^{\nu_{z_j}}$ *t* $\Psi_{\nabla_t}^{\partial_{z_j}}$ belongs to $Mat_n(R \ z)$, we obtain the Jacobi identity formula as follows (by using induction on d) ϵ \sum_{i} . det $\left(Id - T \cdot \Psi_{\nabla_{t}}^{\partial_{k}} \right) = -T \det \left(Id - T \cdot \Psi_{\nabla_{t}}^{\partial_{k}} \right) \sum T^{n} tr \left[(\Psi_{\nabla_{t}}^{\partial_{k}})^{n} \partial_{z_{i}} \cdot \Psi_{\nabla_{t}}^{\partial_{k}} \right]$ *n <i>n n n n n n n n n n* \sum_{z_i} $\det(\text{Id}-T.\Psi^{\partial_k}_{\nabla_{\cdot}}) = -T \det(\text{Id}-T.\Psi^{\partial_k}_{\nabla_{\cdot}}) \sum T^n tr[(\Psi^{\partial_k}_{\nabla_{\cdot}})^n \partial_{z_i} \cdot \Psi^{\partial_k}_{\nabla_{\cdot}}]$ *n* ∂_{z_i} .det $\left(\text{Id}-T.\Psi^{\partial_k}_{\nabla_i}\right) = -T \det\left(\text{Id}-T.\Psi^{\partial_k}_{\nabla_i}\right) \sum_{n\geq 0} T^n tr \left[(\Psi^{\partial_k}_{\nabla_i})^n \partial_{z_i} \Psi^{\partial_k}_{\nabla_i} \right]$ for all $1 \le i, j \le d$. Therefore, ∂_{z_i} det $\left(id - T \cdot \Psi^{\partial_j}_{\nabla_i}\right) = 0$.

In general case, we first need the following lemma.

Lemma 3.2. Let $M_1, ..., M_d, B \in Mat_n(R \ z)$ such that $\left[M_i, M_j\right] = 0$ for all $1 \le i, j \le d$. Then

$$
\frac{1}{tr(M_1^{n_1}...M_d^{n_d}[M_k,B])}=0
$$

for all $1 \leq k \leq d$ and $(n_1, ..., n_d) \in \mathbb{N}^d$.

Proof of Lemma. Since $tr\bigl[M_{k},B\bigr]=0$, so $tr\bigl(M_{1}^{{n_{1}}}...M_{d}^{{n_{d}}}[M_{k},B]\bigr)=0$.

Now, we apply the idea in the proof of Proposition 3.2 in [LP01] to obtain the following.

Proposition 3.3. Let $D \in Der(X_S / S)$ and assume that $\Psi_{\nabla_i}^D$ and $\partial_{z_i} \Psi_{\nabla_i}^D$ *D* ∂_{z_i} $\mathsf{H}^{\mathcal{D}}_{\nabla_i}$ as above. Then, we have

$$
tr[(\Psi^D_{\nabla_{\tau}})^m \partial_{z_i}.\Psi^D_{\nabla_{\tau}}] = 0.
$$

Since Ψ_{∇_i} is p-linear, so $\Psi_{\nabla_i}^D = a_1^P \Psi_{\nabla_i}^{v_{\mathcal{Z}_1}} + ... + a_d^P \Psi_{\nabla_i}^{v_{\mathcal{Z}_d}}$ *t t t* $\Psi_{\nabla_i}^D = a_1^p \Psi_{\nabla_i}^{\partial_{\tau_1}} + ... + a_d^p \Psi_{\nabla_i}^{\partial_{\tau_d}}$. Hence, the integrability of ∇_i implies that the matrix ∂_{z_i} . $\Psi^D_{\nabla_i}$ *D* ∂_{z_i} . $\Psi^D_{\nabla_i}$ is

$$
\partial_{z_i}.\Psi^D_{\nabla_i} = \partial_{z_i}.(a_1^p \Psi^{\partial_{z_1}}_{\nabla_i} + ... + a_d^p \Psi^{\partial_{z_d}}_{\nabla_i}) = a_1^p \partial_{z_i}. \Psi^{\partial_{z_1}}_{\nabla_i} + ... + a_d^p \partial_{z_i}. \Psi^{\partial_{z_d}}_{\nabla_i}.
$$

Because $[\Psi_{\nabla_t}^{c_{z_i}}, \Psi_{\nabla_t}^{c_{z_j}}] = 0$ $\Psi_{\nabla}^{\partial_{z_i}}$, $\Psi_{\nabla}^{\partial_{z_j}}$] = 0 for all 1\le i,j\le d, we obtain the following decomposition

$$
\left[\Psi_{\nabla_{t}}^{D}\right]^{m}=\left[a_{1}^{P}\Psi_{\nabla_{t}}^{\partial_{z_{1}}}+...+a_{d}^{P}\Psi_{\nabla_{t}}^{\partial_{z_{d}}}\right]^{m}=\sum_{k_{1}+...+k_{d}=m}\binom{m}{k_{1},k_{2},...,k_{d}}\prod_{i=1}^{d}\left[a_{i}^{pk_{i}}(\Psi_{\nabla_{t}}^{\partial_{z_{i}}})^{k_{i}}\right].
$$

where $(k_1,...,k_d) \in \mathbb{N}^d$ such that $k_1 + ... + k_d = m$ and $1, \cdots 2, \cdots, \cdots d$ / \cdots 1 \cdots 2 ! $, k_2,..., k_d$ *j* $k_1!k_2! \cdots k_d!$ *m m* $\binom{m}{k_1, k_2, \dots, k_d} = \frac{m!}{k_1! k_2! \cdots k_d!}$ $(k_1, k_2, ..., k_d)$. Hence,

we have

$$
tr[(\Psi_{\nabla_{i}}^{D})^{m} \partial_{z_{i}} \cdot \Psi_{\nabla_{i}}^{D}] = \sum_{k=1}^{d} \sum_{k_{1}+...+k_{d}=m} {m \choose k_{1},...,k_{d}} a_{k}^{P} tr \left(\prod_{j=1}^{d} a_{j}^{pk_{j}} (\Psi_{\nabla_{i}}^{\partial_{z_{j}}})^{k_{j}} \right) \partial_{z_{i}} \cdot \Psi_{\nabla_{i}}^{\partial_{z_{k}}}.
$$

We now need the following lemma.

Lemma 3.4. Let $(n_1,...,n_d) \in \mathbb{N}^d$, assume that $\Psi^{\sigma_{z_1}}_{\nabla_r}, \cdots, \Psi^{\sigma_{z_d}}_{\nabla_r}$ $\Psi^{\partial_{z_1}}_{\nabla_{\tau}}, \cdots, \Psi^{\partial_{z_d}}_{\nabla_{\tau}}$ and $\partial_{z_i} \Psi^{\partial_{j}}_{\nabla_{\tau}}$ z_i \mathbf{v}_i ĉ $\partial_z \Psi_{\nabla}^{\sigma_j}$ as above. Then $\left[(\Psi^{\partial_{z_i}}_{\nabla_{t}})^{n_{\!i}}...(\Psi^{\partial_{z_d}}_{\nabla_{t}})^{n_{d}} (\partial_{z_i}.\Psi^{\partial_{j}}_{\nabla_{t}}) \right]\! =\! 0$ n_1 $\Delta T f^{\vee} z_d \Delta n$ $tr\bigl[(\Psi_{\nabla_{\!\tau}}^{\partial_{z_1}})^{n_1} ... (\Psi_{\nabla_{\!\tau}}^{\partial_{z_d}})^{n_d} \, (\partial_{z_i} . \Psi_{\nabla_{\!\tau}}^{\partial_j}) \bigr] \! = \!$ for all $1 \le i, j \le d$. *Proof of Lemma 3.4.* According to Theorem 3.1, the followings $\mathit{tr}\big[(\Psi^{\partial_{z_1}}_{\nabla_{\tau}})^{n_1} ... (\Psi^{\partial_{z_d}}_{\nabla_{\tau}})^{n_d} \, (\partial_{z_i}. \Psi^{\partial_{j}}_{\nabla_{\tau}}) \big]\! =\! \mathit{tr}\big[(\Psi^{\partial_{z_1}}_{\nabla_{\tau}})^{n_1} ... (\Psi^{\partial_{z_d}}_{\nabla_{\tau}})^{n_d} \, [\Psi^{\partial_{j}}_{\nabla_{\tau}} , A_i] \big)\! \big]$ \mathcal{I}_{i} $tr\bigl[(\Psi^{\partial_{z_{1}}}_{\nabla_{r}})^{n_{1}}...(\Psi^{\partial_{z_{d}}}_{\nabla_{r}})^{n_{d}}\,(\partial_{z_{i}}.\Psi^{\partial_{j}}_{\nabla_{r}})\bigr] = tr\bigl((\Psi^{\partial_{z_{1}}}_{\nabla_{r}})^{n_{1}}...(\Psi^{\partial_{z_{d}}}_{\nabla_{r}})^{n_{d}}\,[\Psi^{\partial_{j}}_{\nabla_{r}},A_{\partial_{r}}]$ for all $(n_1, ..., n_d) \in \mathbb{N}^d$ and $1 \le i, j \le d$. Using Lemma 3.2, we get $tr\bigl[(\Psi^{\partial_{z_i}}_{\nabla})^{n_i} ... (\Psi^{\partial_{z_d}}_{\nabla})^{n_d} \, (\partial_{z_i} . \Psi^{\partial_{j}}_{\nabla}) \bigr] \! = \! 0.$ *t t i t* $\mathit{t}.\mathit{tr}\big[(\Psi_{\nabla_\iota}^{\partial_{z_1}})^{n_1} ... (\Psi_{\nabla_\iota}^{\partial_{z_d}})^{n_d} \, (\partial_{z_i}.\Psi_{\nabla_\iota}^{\partial_j})\big] \! = \!$ We now again use the method in the proof of Theorem $\ref{\text{mainThrm01}}$ to obtain $tr[(\Psi_{\nabla_i}^{\partial_{z_d}})^{n_d} \cdot \cdot \cdot (\Psi_{\nabla_i}^{\partial_{z_d}})^{n_d} \cdot \cdot \cdot (\partial_{z_i} \cdot \Psi_{\nabla_i}^{\partial_j})] = 0.$

$$
tr[(\Psi_{\nabla_{t}}^{\partial_{z_{1}}})^{n_{1}}...(\Psi_{\nabla_{t}}^{\partial_{z_{d}}})^{n_{d}} (\partial_{z_{i}}.\Psi_{\nabla_{t}}^{\partial_{j}}) = 0.
$$

Let us obverse from Theorem 3.1 that 1 $\biggl(\biggl(\prod a_j^{pk_j}(\Psi_{\nabla_t}^{\partial_{z_j}})^{k_j}\bigl)\partial_{z_i}^{}\Psi_{\nabla_t}^{\partial_{z_k}}\biggr)\!=\!0$ $\frac{d}{dx}$ *p***k** \overline{O} *xf* $\frac{\partial}{\partial x}$ *j* λ *k j ^z j* $tr((\prod a^{\frac{pk_j}{r}}(\Psi^{\partial_{z_j}}_{{\scriptscriptstyle\overline{Y}}})^k)\partial_{-\cdot}\Psi^{\hat{c}}_{{\scriptscriptstyle\overline{Y}}}$ $\prod a_j^{p k_j} (\Psi_{\nabla_i}^{o_{z_j}})^{k_j} \partial_{z_i} \Psi_{\nabla_i}^{o_{z_k}} = 0$ for each

 $k_1,...,k_d \in \mathbb{N}$. Therefore, we can conclude that $tr[(\Psi^D_{\nabla_i})^m \partial_{z_i} \Psi^D_{\nabla_i}] = 0$ $D \setminus m \cap \mathcal{D}$ $tr[(\Psi^{\nu}_{\nabla})^m \partial_{z_i} \Psi^{\nu}_{\nabla}]=0$ for all $m \in \mathbb{N}$. We now arrive at

Theorem 3.5. For each $D, D' \in Der(X_{S}/S)$, we have D .det $(T \cdot \Psi_{\nabla_{t}}^{D'} - Id) = 0$

Proof. Let us write 1 *j d j ^z j D* = \sum *a* $=\sum a_j \partial_{z_j}$ with $a_1, ..., a_d \in A[z]$. Then, for each $1 \le i \le d$, we have the

following identity

$$
\partial_{z_i} \cdot \det\left(\frac{Id - T \cdot \Psi_{\nabla_i}^{D'}}{\partial z_i}\right) = -T \det\left(\frac{Id - T \cdot \Psi_{\nabla_i}^{D'}}{\partial z_i}\right) \sum_{m \geq 0} T^m tr\left[\left(\Psi_{\nabla_i}^{D'}\right)^m \partial_{z_i} \cdot \Psi_{\nabla_i}^{D'}\right].
$$

Hence, by using Theorem 3.3 we can see that ∂_{z_i} det $\left(id - T \Psi_{\nabla}^{D'}\right) = 0$ *D* $\partial_z \det \left(Id - T \Psi^{\{D'\}}_{\nabla} \right) = 0$ for all $1 \le i \le d$ and $D' \in Der(X_{S} / S)$.

Let now us give an application of Theorem 3.5. Denote by $C(r, X/R)$ the fibered category over (Aff / A_R^1) which associates each $t : S \to A_R^1$ to the category whose objects are pairs (E, ∇_t)

containing a degree zero vector bundle E of rank n on X_s equipped with an integrable t-connection ∇_t , and morphisms are isomorphisms which commute with the t-connections (see Section 3.3 in

[LP01]). The affine schemes
$$
A_{X/R}
$$
 and $A'_{X/R}$ are defined by
 $A_{X/R}(S) = A_{X/R} \times_R S$; $A_{X/R}(S) = A_{X/R} \times_R S$

for any R-scheme S.

Definition 3.6. Let (E, ∇) be a t-bundle over X_S. We denote by $Char(\nabla)$ the point of $\chi'_{X/R}(S)$ which is defined by the coefficients of the characteristic polynomial of the morphism $*$ αp Ω $\Psi_{\nabla_i} : E \to E \otimes q^r S^p \Omega^1_{X/R}$, where $q: X_s \to X$ is the first projection.

According to [LP01], the functor $\nabla_t \mapsto (Char(\nabla_t), t)$ defines a morphism of \mathbb{A}^1_t R^1 -stacks:

$$
\underline{Char}: \mathcal{C}(r, X/R) \to \mathcal{A}_{X/R} \times \mathbb{A}^1_R
$$

over the category (Aff / A_R^1) . The absolute Frobenius morphism f_X induces an injective plinear morphism f_x^* $f_{X_s}^* : \mathcal{A}_{X/R}(S) \to \mathcal{A}_{X/R}(S)$ for each affine R-scheme S. Therefore, there is a canonical inclusion of \mathbb{A}^1 $\frac{1}{T}$ -stacks (still denoted by f_X^*): $f_X^*: \mathcal{A}_{X/R} \times \mathbb{A}_R^1 \to \mathcal{A}_{X/R^{'}} \times \mathbb{A}_R^1$ $f_X^{\scriptscriptstyle \cdot\cdot} : \mathcal{A}_{X/R} \times \mathbb{A}_R^{\scriptscriptstyle \cdot\cdot} \rightarrow \mathcal{A}_{X/R^{\scriptscriptstyle \cdot}} \times \mathbb{A}_R^{\scriptscriptstyle \cdot\cdot}.$

Let now $(E, \nabla_t) \in C(r, X/R)(S)$ be a t-bundle of rank r over X_S . The locality allows us to assume that $X_s = spec(A[z])$ is affine and fix $(e) = \{e_1, \dots, e_n\}$ an A[z]-basis of E, where A is an assume that $X_s = spec(A[\xi])$ is affine and $\text{fix}(\mathbf{e}) = \{e_1, \dots, e_n\}$ and $A[\xi]$ -basis of E, where A is and algebra over R, and the characteristic polynomial $\det(T\Psi_{\nabla_i} - Id)$ is $\det(T\Psi_{\nabla_i} - Id) = (s_1, \dots, s_n)$, where $s_i \in H^0(X_s, S^i(Fr^*\Omega)$ $\left(X_{_S},S^i(Fr^*\Omega^1_{X_{S'}/S})\right)$ $s_i \in H^0(X_s, S^i(Fr^*\Omega^1_{X_{S'}/S}))$ for each $i = 1, \dots, n$. By putting Corollary 2.10 and Theorem 3.5 together, we conclude that $\nabla_{X_s}^{can}(s_i) = 0$ $\nabla_{X_s}^{can}(s_i) = 0$, where $\nabla_{X_s}^{can}$ is the canonical connection on * ϵ * αi Ω $Fr^*(q^*S^i\Omega^1_{X'/R})$. This implies that $Char(\nabla_t)$ belongs to the image of the embedding

 $f_{X_s}^* : \mathcal{A}_{X/R}(S) \times \mathbb{A}_R^1 \to \mathcal{A}_{X/R}(S) \times \mathbb{A}_R^1$

By using Cartier's theorem, there is another way to obtain the following result (see Section 2 in [EG18]) in the version of t-connections.

Proposition 3.7. There exists a unique morphism $\mathcal{H}: \mathcal{C}(r, X/R) \to \mathcal{A}_{X/R} \times \mathbb{A}^1$ $: \mathcal{C}(r, X/R) \to \mathcal{A}_{X/R} \times \mathbb{A}_R^1$ over \mathbb{A}_R^1 *R* satisfying the followings:

a) the diagram

is commutative;

b) the restriction $\mathcal{H}_{\lfloor t=0 \rfloor}$ gives the Hitchin morphism of X.

Acknowledgements. This research was supported by Hanoi Pedagogical University 2 under Grant number C.2019-18-07.

References

- [1] B. Dwork, *Lectures on p-adic differential equations*, volume 253 of Grundlehren der mathematischen Wissenschaften. Springer, New York, 1982.
- [2] H. Esnault, M. Groechenig, *Rigid connections and F-isocrytals*, Acta Mathematica, Volume 225 (2020), Number 1, p. 103 – 158.
- [3] N. Hitchin, *Stable bundles and intergrable systems*, Duke Mathematical Journal 54 (1987), pp. 91-114.
- [4] T. Honda, *Algebraic differential equations*, In Symposia Mathematica, Vol. XXIV, pages 169–204. Academic Press, London, 1981.
- [5] N.M. Katz, *Nilpotent connections and the monodromy theorem: applications of a result of Turrittin*, Publications math\'ematiques de I.H.\'E.S. 39 (1970), pp. 175-232.
- [6] Y. Laszlo and C. Pauly, *On the Hitchin morphism in positive characteristic*, Internat. Math. Res. Notices (2001), no. 3, pp. 129-143.
- [7] T. Mochizuki, *Good formal structure for meromorphic flat connections on smooth projective surfaces*, Advanced Studies Pure Mathematics 54 (2009), Algebraic Analysis and Around, pp.223–253.
- [8] Carlos T.Simpson, *Moduli of representations of the fundamental group of a smooth projective variety II*, Publications math\'ematiques de I.H.\'E.S. 80 (1994), pp.5-79.