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Abstract

Let t be a global function of an integral R-scheme S and X be a smooth projective scheme over R. We
show that the characteristic polynomial of the p —curvature of an integrable t —connection over X is
horizontal.
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1. Introduction

The theory of linear differential operators in positive characteristic was initiated in the 1970s by
Katz [Kat70, Kat82], Dwork [Dwo82] and Honda [Hon81]. The aim of these works is to connect with
the studying local-global principle for linear ordinary differential equations which is known as the p-
curvature conjecture of A. Grothendieck in 1969.

Let k be an algebraically closed field of characteristic char(k) = p > 0 and let X be a smooth
projective curve over k. Let S be a k —scheme equipped with a ¢ —function. An integrable t-bundle
over X is a pair (E,V,) containing a vector bundle E over Xs equipped with an integrable
t —connection V;. The p —curvature of (E, V), denoted by ¥y, is p —linear which defines an element

of Hom,, (E, E® Fr*Qéx ,S). It is considered as an n X n —matrix ¥ with coefficients in O,

satisfying the following conditions
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o.det(1d -Tw, ) =0;

n>0,neN,
tr(¥".ow) =0 )

(1)

see [LPO1, Proposition 3.2].

Let R be a domain of k —algebras and S be an integral R —scheme and X be a smooth projective
scheme over R. A Higgs bundle on X (relatively over R) is a vector bundle E on X equipped with a

Higgs field 9:E—>E®Q§<S,S satisfying &A0=0, see [S94]. The coefficients of
det(A-0)=A"+a A" +..+a _A+a, belong to Ay :(‘BHO(XS,S‘QXS,S). Let us write
A n=@H(X,S'02,.). Denote by M, (X/R) the moduli stack over (Sch/R) which

associates to a scheme S the category of finite rank Higgs bundles on Xy = X x, S. The moduli stack
Mo, (X /R) is equipped with a morphism h: M, (X /R) = A, ,; which is defined by sending

each Higgs bundle (E, &) to the coefficients of the characteristic polynomial of \theta. The morphism
h is called the Hitchin morphism of X, see e.g. [Hit87, S94].

Denote by C(n, X /Kk) for the moduli stack of integrable t-bundle over X . The characteristic
polynomial of the p-curvature ¥ of V, defines a morphism Char:C(n,X k) > A . x Al . In

the case where X is a smooth projective curve over k, by using (1), Laszlo and Pauly showed that there
exists a morphism H:C(r, X /k) — A, x A} of stacks such that the restriction H|_, is the

Hitchin morphism of X. In this manuscript, we establish an analog version of formula (1), Theorems
3.1 and 3.5, for the case where X is a smooth projective scheme over R. These formulas then allow us
to define the Hitchin morphism

H:C(r, X IR) = A, g x AL
2. Preliminaries

Let R be an algebra over k and let S be an R —scheme endowed with a global function t. Let X
be a smooth projective R —scheme and denote by X, = X %, S. As in [LP01], we also denote by t for

the pullback of t to the scheme X4 by X — X..

2.1. Frobenius morphisms. Let us denote by fi: S —S the absolute Frobenius, which is

topologically the identity and the p-power on functions, and S’ the inverse image of S by the Frobenius
fs. Let X'= X x, S be the pullback of X by f; . There is a unique S-morphism ij X —> X' such
S

that the diagram

Fyys TX/S
x2Sy

N,

S——S5

commutes. The S-morphism FjV is called the relative Frobenius morphism of X over S.
S
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Moreover, if S = Spec(A) the spectrum of an R-algebra A and X < A} is given by equations

f, = a x' together with coordinates (X ), wherel<i<N,a, ; € A, then X' A} is defined by

|
fIP=>"a’x".
|
2.2. Local systems. Let us write Der(X/S) for the sheaf of germs of S-derivatives on O,. As O, -

modules, this sheaf is isomorphic to Hom,, (Q5,0,).

Definition 2.1. A local system on X is a rank n vector bundle E on X equipped with an

integrable connectionV: E — E®Q . A S-connection V:E — E®Q, ¢ is called integrable if

the composition of it with the induced map V:E®Q;, — E®Q3 , is zero.

Let (E,V) be alocal system on X . By using duality, V gives rise to an O, -linear map

V:Der(X/S)— é&ndg (E)

sending each D € Der(X/S) to V(D) in &nd (E), where V(D) is the composite

E— —>E®Q, —">E®O0,.

We also note that, according to [Kat70], the p"-iterate DP e Der(X/S)for each
D eDer(X/S). As in [Section 5.0, Kat70], the p-curvature of the connection V is a mapping of
sheaves ¥, : Der(X/S) — &nd, (E) by ¥, (D)=V(D)? —V(DP). Itis p-linear, i.e., an additive
map and W (fe) = f "W (e) for all f and e are local sections of O, and E respectively over an open

subset of X .
2.3. t-connections. Let us review t-connections on a vector bundle.

Definition 2.2. Let E be a vector bundle of rank n over X and V,:E —>E®Q, bean O;-
linear map.

a) The map V, is called a t-connection on E ifV,(ae) =tda®e+aV,(e), where a and e are
local sections of O, and E respectively over an open subset of X . We say that the pair (E,V,) isat-
bundle over X .

b) The t-connection V, is called integrable if V,°V, =0.

Proposition 2.3. Let (E,V,) be a t-connection over X . Then:

1) The t-connection V, gives rise to an O, -linear morphism V, :Der(X/S) — End, (E)
sending DeDer(X/S) to V,(D)eénd(E), where V(D) is the composition
E—>E®Q,, —">ERO,.

2) The t-connection V, is integrable precisely when [Vt(D),Vt(D')]:Vt ([D, D’]) for all
D,D' eDer(X/5S).

Proof. See [1.0.5, Kat70].
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Proposition 2.4. Let (E,V,) be a t-bundle on X and let s be a section of E respectively over an
open subset of X . Then V,(s) =0 iff V,(D)(s)=0 forall DeDer(X/S).

Proof. The proof is clear.
2.4. The characteristic polynomial of p-curvatures. Let V, be a t-bundle over X . According to
[Kat70], the map from Der(X/S) to &nd(E) which sends each D to [V, (D)]° —t**'V,(DP) is
additive since V, is so.

Definition 2.5. The additive morphism

¥, :Der(X/S)—é&nd (E); D[V, (D) -t"*v,(D")

is called the p-curvature of (E, V,).

Example 2.6. Let E be a rank n vector bundle over X . An 0-connection V,:E - E®Q., isa
Higgs field on E. Then, its p-curvature ‘PVO =[V,]".

The following is referred to Lemma 3.3 in [LPO1].

Proposition 2.7. Let V', be the p-curvature of (E, V). Then
1) The p-curvature of a 0--connection on E has form p-power of a Higgs field.
2) The map W, is p-linear. In particular, it defines an element in {om,, (E, E® Fr*Q;,S),

(we still denote it by Yy ).

Proof. The assertion (1) is obvious. The proof of (2) in fact is given by adapting Proposition 5.2.0
of [Kat70].

According to Proposition 5.2.1-2 of [Kat70], we obtain that
Lemma 2.8. Let (E,V,) be a t-bundle over X and assume that V, is integrable. Then

[V.(D), ¥, (D)]=[¥,, (D). ¥, (D)]=0 forall D,D"eDer(%/S).

Proof. We first note that V, is integrable and Yy is p-linear. Hence, By adapting the proof of
Proposition 5.2.1-2 of [Kat70], we obtain that [Vt(D),‘Ifvt (D’)] =[‘PVI(D),‘PV1(D’)] =0 for all
D,D'eDer(X/9S).

Let (E,V,) be an integrable t-bundle overX. Then, W can be seen as a section of
Hom,, (E,E®Fra,.). The polynomial det(ld —T‘I’V!) of W, can be considered as an
element in @{‘:IHO(%,Si(Fr*Q;,,S )). According to Cartier's Theorem [Kat70, Theorem 5.1], there

is a canonical connection V" on Fr'S'(Q%.,4) such that the diagram
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Fri§'0y, o ® Ok g

P 1450

Fresiol, Fresiak, ¢

vean (D)

commutes for eachi=1,---,n. Similar as in the proof of Proposition 2.4, we can assume that
X= spec(A[z]) is affine and fix (e) ={e,---,€,} an A[z]-basis of E, where A is an algebra over R.
We then write det(T\PVI —1d)=(s.-+-,s,), where s eH°(X,S'(Fr'ak,)) for each
i=1---,n. Hence, for eachDeDer(X/S), we define
D.det(T¥, —1d):= (V="(D)(s,),-- V"(D)(s,)) Note that
(V="(D)(s,),-+-, V" (D)(s,)) = O precisely when D.det(T¥,, —1d) =0 for all D e Der(X/S).

Let us write \Pgt for the matrix of ¥, (D) with respect to (e) for each D eDer(X/S) and
writt 0,  for the  S-derivative  corresponding to  Deénd, (O,).  Since
f.Der(X/S)=Fr'Der(X'/S),the operator 0,.det(T¥y —1d) is well defined for all
D' eDer(X/9).

Proposition 2.9. Let D € Der(X/S) . The following conditions are equivalent:

1) 0,.det(T¥S —~1d) =0forall D' e Der(X/S).

2) D.det(Tw, —1d)=0.

Proof. Without loss of generality, we consider X = spec(A[z]) being affine and fix (€) an

A[z]-basis of E, where A is an algebra over R. By using Remark 2.7, the p-curvature ‘I’Vl is presented

where @ e A[z] for each triple (ij,k)

nxn !

by the following matrix Mat(\¥', ,e) = (i a ® dz,)
k=1
such that 1<i, j,k <d. Firstly, (2) = (1) is obvious. We now prove that (1) = (2) . Assume that
0p.det(TW{ —1d) =0 forall D' e Der(X/S). We note that Py is given by the composition
E—“SE®Q,, —2SE®O,.
Considering D' corresponds t0d, +...+0, , where 1<I, <i,<..<I;<d andl<s<d.

Because 0,,.det(TWy —1d) =0, we obtain that
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Tiaﬁl—l TZa}j TZS:ailk”
k=1 k=1

k=1
T8 TYa?-1 .. TYa”
oyt &% TEA 24" o

S S S

T>a"  TYa? .. TYa"-1
k=1

d

Hence, D.det((z a ® dzkj T- Id} =0 which means that D.det(T‘PVl ~1d) =0.
k=1 nxn

As a direct consequence of Proposition 2.9, we arrive at

Corollary 2.10. Let R, = (-D)"T"+sT" " +---+s _be the characteristic polynomial of Yy,
and keNsuch that 1<k<d. Then V*'(s)=0 for all 1<i<n if and only if
0,.det(TWy —1d) =0 forall D e Der(X/S).

3. Horizontality of characteristic polynomial of p-curvature

Let V,:E—>E ®le5,5 be an integrable t-connection on E over X . By localization, assume

that X = spec(A[z]) is affine and fix (e) ={e,,---,e.} an A[z]-basis of E, where A is an algebra
over R. According to [M0o09], we obtain the following theorem.

Theorem 3.1. The following assertions 0, .det(Id —T.‘P@i) =0 hold forall 1<i,j<d.

Proof. Because we work in a completion of the local ringO,_,, the t-connection V, has the
coordinate  representation  V,(v) =t0, (v)dz, +...+1t0, (vV)dz, + (Adz, +...+ A,dz,)v,  where
A,....,A, e Mat (A z ). Moreover, for each1<i<d, we have

(2) v,(0,)=t0, + A.

Hence, since (0, )" =0, we immediately obtain that‘PZﬁ‘ = (Vt ©, ))p. On the other hand, the
integrability of V, allows us to show that [Vt 0,). V.0, )] =0 forall 1<i, j<d. Using Lemma
2.8, we have [V (0, ),V (821)] =0 in &nd(E) for eachl<1i, j <d. Hence,

(3) [v.@,). ¥ ]=0; 1<i,j<d.

By putting (2) and (3) together, we obtain that [té‘Zi + A‘Péi ] =0;1<i, j<d . Therefore,

(4) ffo, wo]=[¥2. Al 1<ij<d.

For eachi=1,...,d, let us write 0, ‘P@’t for the matrix of partial derivatives of the entries of

\Pé‘t with respect to z;. By adapting the proof of Proposition 3.2 in [LPO1], we obtain that
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(5) o, vy =[o,, w0 ], 1<ij=d.

Now we combine \egref{VanishDerDeter3} and \egref{VanishDerDeter5} together, we then
obtain that ttr[ (o0 )"0, o' |=tr[ (P ) W, ATl =0, forall n>0and 1<i,j<d. In
order to prove tr[(‘Piztk )”62i ‘P@tk ] =0, let us consider t € A as follows:

e Case 1: t=0. By the definition of ¥, , we have W (V,)™ = AP;..; W, (V)™ = AP, This
implies that (‘PO(VO)azj )“8Zi .‘PO(VO)GZJ = A0, A7, and hence,

621— n azj _ n —

tr[(#,(V,) )"0, .2 (Vo) ™ ] =tr[ A8, .AP] =0

forall n>0 and 1<i, j <d. Therefore, tr[ (¥,(V,)™)"a, .¥,(V,)™ ] =0 forall n>0 and
1<i,j<d.

e Case 2: t=0. Since A is an integral domain, we get tr[(‘Piﬁj )"0, .‘{’?‘" ] =0,forall n>0
and 1<i,j<d.

Since the matrix ‘P;t' belongs to Mat,, (R z ) we obtain the Jacobi identity formula as follows

(by using induction on d) 8, .det(1d —T.¥% ) =T det(1d ~T.#% ) > T tr[(¥%) 0, ¥ ] for

n=0

all 1<i, j <d. Therefore, 0, .det(ld —T.‘P@i) =0.
In general case, we first need the following lemma.

Lemma 3.2. Let M,,..,M,,BeMat,(R z) such that [M,,M,]=0 for all1<i, j<d.
Then

tr(M..M¥[M,,B]) =0
forall 1<k <dand(n,,...,n,) e N°.
Proof of Lemma. Sincetr[M,,B]=0, sotr(er‘l...M(;‘d M,, B]) =0.

Now, we apply the idea in the proof of Proposition 3.2 in [LP01] to obtain the following.
Proposition 3.3. Let D € Der(X /S) and assume that ‘P@t and 0, .\P; as above. Then, we

have

tr[(e2)mo, wo ]=0.

Since Yy, is p-linear, so‘P?{ = af‘P@? +...+adp‘{’izl“ . Hence, the integrability of V, implies

that the matrix 9, ¥y is
0, ¥° =0, (aPWy +..+ 0¥y ) =afo, W +..+ a0, P,

Because [‘I’iﬁ‘ ,‘Piﬁ" 1=0 for all 1\le i,j\le d, we obtain the following decomposition
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d
e aad i P 1 ST

Ky +..+kg=m i=1

m m!
here (K,,...,ky) € N* such that ..+ky; =m and =————— Hence,
where (k; 4) € N® such that k; +...+K, an [kl,kz,...,kd] TR ence

we have

wleeye, vl ¥ (k mkJakptr([ﬁafk"(‘Pii")kj]é‘zi-‘l’iik)-
d i=t

k=1 ky+..4+kg=m \ ™Mooy

We now need the following lemma.

Lemma 3.4. Let(n,,...,n,) € N , assume that ‘P@: \Pij and 0, LPav't as above. Then

0 [CHO M CZEDRTGHR 260 B
forall 1<i,j<d.
Proof of Lemma 3.4. According to Theorem 3.1, the followings
ttr[ (o). (P o) @, W) ] = tr () (PO [P, A
forall (n,,...,n,) eN® and 1<i, j<d.Using Lemma 3.2, we get
ter[ (P ). (o) (0, P Y)] = 0.
We now again use the method in the proof of Theorem \ref{mainThrmO01} to obtain
trl (P g (P )™ (0, ¥ ] =o0.
Let us obverse from Theorem 3.1 that tr((ﬁ ajpkj (‘Pi? ) )azi ‘Pi{k) =0 for each
j=1
K,,...,ky € N. Therefore, we can conclude that tr[(‘PS{ )"0, ‘P@"] =0 forall meN.
We now arrive at
Theorem 3.5. For each D, D" € Der (X /S), we have D.det(T.‘Pg’: - Id) =0

d
Proof. Let us writt D=2)"2,0, witha,,...,, € A[z]. Then, for eachl<i<d, we have the
-1

following identity
0, .det(1d -T.w2) =T det(1d -T.w2) > Tt (w20, w2'].

m=0
Hence, by using Theorem 3.3 we can see that ﬁzi.det(ld —T.‘Pa) =0 forall 1<i<d and
D' eDer(X;/S).
Let now us give an application of Theorem 3.5. Denote by C(r, X / R) the fibered category over
(Aff / A}) which associates each t:S — A} to the category whose objects are pairs (E,V,)
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containing a degree zero vector bundle E of rank non X equipped with an integrable t-connection
V., and morphisms are isomorphisms which commute with the t-connections (see Section 3.3 in
[LPO1]). The affine schemes A, ,, and A, are defined by

Axr(S) = Ay r % S; A (8)=A % S

for any R-scheme S.

Definition 3.6. Let (E,V,) be a t-bundle over X_S. We denote by Char(V,) the point of
A5z (S) which is defined by the coefficients of the characteristic polynomial of the morphism
¥, 1E—>E®QSPQY . where q: Xg — Xis the first projection.

According to [LP01], the functor V, — (Char(V,),t) defines a morphism of A}, -stacks:

Char:C(r,X /IR) > A, x Ay

over the category (Aff / AL). The absolute Frobenius morphism f, induces an injective p-

linear morphism f;s t Az (S)—> A, (S) for each affine R-scheme S. Therefore, there is a

X/R

canonical inclusion of A7 -stacks (still denoted by fy): fy i Ay e xAL > A x AL,

Let now (E,V,)eC(r, X /R)(S) be a t-bundle of rank r over X, . The locality allows us to

assume that X ¢ = spec(A[z]) is affine and fix () ={e,,--,€,} an A[z]-basis of E, where A is an
algebra over R, and the characteristic polynomial det(T‘PVI - Id) is det(T‘PVI - Id) = (s ,--~,sn)

, Where s, € HO(XS,S‘(Fr*QlXS,,S )) for eachi=1,---,n. By putting Corollary 2.10 and Theorem
3.5 together, we conclude that V"' (s;) =0, where VT is the canonical connection on

Fri(q°S'Q%.,) - This implies that Char(V,) belongs to the image of the embedding

f;s Ay g (S)xAL > A (S)x AL

X /R
By using Cartier's theorem, there is another way to obtain the following result (see Section 2 in
[EG18]) in the version of t-connections.
Proposition 3.7. There exists a unique morphism H:C(r,X /R) — A, . x AL over Aj
satisfying the followings:

a) the diagram
'AX/R X A}?
ELN fx

C(r,X/R) Al /g * Ag

Char
is commutative;
b) the restriction \mathcal{H}|_{t=0} gives the Hitchin morphism of X.
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