

HPU2 Journal of Sciences: Natural Sciences and Technology

journal homepage: https://sj.hpu2.edu.vn

Article type: Research article

Chemical constituents of the ethyl acetate extract of *Miliusa velutina* Dun Hook. f. et. Thoms.

Hoang-Khang Le^{a,b}, Thanh-Tung Phan^{a,b}, Thuy-Duong Ngo Thi^{a,b}, Tan-Tai Nguyen^{a,b}, Ngoc-Vinh Huynh^{a,b}, That- Quang Ton^{a,b,*}

^a Faculty of Chemistry, University of Science, Ho Chi Minh City, Vietnam ^b Vietnam National University, Ho Chi Minh City, Vietnam

Abstract

Miliusa velutina Dun Hook. f. et. Thoms is the rare and native plant, belongs to the Annonaceae family. The isolated compounds in *Miliusa* genus showed that many function groups and have diverse bioactivities. From the ethyl acetate extract of the trunk of *Miliusa velutina*, three compounds were isolated and determined based on 1D, 2D NMR spectra, MS and combined comparison with references. The structurally defined compounds are: 4-hydroxybenzoic acid (1), *p*-coumaric acid (2), 1-*O*-methyl- β -*D*-glucopyranoside (3). All the three compounds are first known to exist in the *Miliusa velutina*.

Keywords: Miliusa velutina, annonaceae, constituents, trunk, phenol.

^{*} Corresponding author: E-mail: ttquang@hcmus.edu.vn

https://doi.org/10.56764/hpu2.jos.2022.1.2.97-101

Received date: 26-12-2022 ; Revised date: 26-12-2022 ; Accepted date: 27-12-2022

This is licensed under the CC BY-NC-ND 4.0

Figure 1. Miliusa velutina Dun Hook. f. et. Thoms.

1. Introduction

Miliusa velutina Dun Hook. f. et. Thoms. (**Figure 1**) belongs to the Annonaceae family. Previous biological studies on *Miliusa velutina* reported that its different parts possessed many bioactivities such as nasal sinusitis, uterine inflammation, stomach pain, hemorrhage,... *Miliusa velutina* is also used to treat skin diseases, scabies, ringworms, boils.^[1] On the chemical constituent aspect, this species was known to the presence of alkaloids, sesquiterpenes, phenols, steroids, acetogenins,....Those compounds exhibited interesting biological activities.^[2-7] To contribute to the chemical constituent knowledge of species, this research reported the isolations and chemical structure elucidation of three compounds from the trunk of *Miliusa velutina* collected in An Giang.

From ethyl acetate extract, three compounds were isolated as follows: 4-hydroxybenzoic acid (1), *p*-coumaric acid (2), 1-*O*-methyl- β -*D*-glucopyranoside (3) (Figure 2). The chemical structure of these compounds is determined by modern methods of physicochemical analysis combined with reference comparison.

Figure 2. Chemical structures of three isolated compounds

2. Experimental

2.1. Chemicals and equipment

Organic solvents used in column chromatography and thin layer chromatography: *n*-hexane, chloroform, ethyl acetate, methanol, acetone are all chemicals of Chemsol–Vietnam. Thin layer chromatography (TLC) was performed on silica gel 60 F_{254} or silica gel 60 RP-18 $F_{254}S$ (Merck). Coloring reagents: H_2SO_4 10% solution; 5% vanillin/ethanol solution. Silica gel column

chromatography phase usually uses silica gel 230-400 mesh RM7484, RP-18 (25-40μm) (Merck). 1D and 2D NMR spectra are recorded on Bruker Avance 500 (500 MHz for ¹H NMR and 125 MHz for ¹³C NMR); HR-ESI-MS data were acquired on Bruker micrOTOF QII (Bruker Singapore Pte., Ltd.) mass spectrometer at Central Laboratory for Analysis, University of Science, Vietnam National University Ho Chi Minh City.

2.2. Plant material

Miliusa velutina sample was collected in An Phu commune, Tinh Bien district, An Giang province in September 2016 and was authenticated by Botanist Hoang Viet, Department of Ecology - Evolutionary Biology, Faculty of Biology – Biotechnology, VNUHCM–University of Science, Ho Chi Minh City. A voucher specimen (MVE 2016) has been deposited at the Department of Organic Chemistry, Faculty of Chemistry, VNUHCM - University of Science.

2.3. Extraction and isolation

Dried trunk of plant powder (10.5 kg) was extracted under reflux successively with n-hexane (HE), ethyl acetate (EA), and methanol (ME) to obtain three corresponding extracts: n-hexane (45.3 g), ethyl acetate (121.0 g) and methanol (593.7 g). The ethyl acetate extract (121.0 g) was subjected to a silica gel column chromatography and eluted with solvents system of EA:ME (stepwise, 99:1, 98:2, 95:5, 90:10, 80:20, 70:30, 50:50, 0:1) to give 17 fractions (B1-B17). Fraction B5 (619.7 mg) was subjected to a silica gel column chromatography, eluted with solvents system of EA:ME (stepwise, same in the above fraction) to give eight sub-fraction (B5.1-B5.8). Fraction B5.5 (363.1 mg) subjected to a silica gel column chromatography, eluted with solvents system chloroform (CL):ME (stepwise, 99:1, 98:2, 95:5, 90:10, 0:100) to give five sub-fraction (B5.5.1-B5.5.5). Fraction B5.5.4 (50.9 mg) was chromatographed on C18 reversed-phase silica gel column and eluted with ME:water (20:80) to yield compound 1 (9.0 mg) and compound 2 (6.8 mg). Fraction B10 (10.8 g) was subjected to a silica gel column chromatography, eluted with solvents system of EA:ME (stepwise, 80:20, 70:30, 50:50, 0:1) to give night sub-fractions (B10.1-B10.9). Fraction B10.6 (1.6 g) was subjected to a silica gel column chromatography, eluted with solvents system of EA:ME (stepwise, 80:20, 70:30, 50:50, 0:100) to give four sub-fractions (B10.6.1-B10.6.4). Fractions B10.6.3 300 mg was subjected to a silica gel column chromatography, eluted with solvents system of CL:ME (stepwise, 80:20, 70:30, 0:100) to yield compound **3** (49.0 mg).

4-hydroxybenzoic acid (1): white powder. HR-ESI-MS m/z 137.0245 [M-H]⁻ (calcd. for $[C_7H_6O_3-H]^-$, 137.0239). ¹H NMR (500 MHz, DMSO- d_6): δ_H 7.77 (2H, d, J = 8.2 Hz, H-3, H-5), 6.81 (1H, d, J = 7.4 Hz, H-2, H-6). ¹³C NMR (125 MHz, DMSO- d_6): δ_C 167.6 (C-7), 161.5 (C-4), 131.5 (C-3, C-5), 122.0 (C-1), 115.1 (C-1, C-6).

p-Coumaric acid (2): yellow oil. HR-ESI-MS *m*/z 163.0397 [M-H]- (calcd. for $[C_9H_8O_3-H]^-$, 163.0395) ¹H NMR (500 MHz, DMSO-*d*₆): $\delta_{\rm H}$ 7.48 (2H, *d*, *J*= 8.4 Hz, H-2, H-6), 6.78 (2H, *d*, *J*= 8.3 Hz, H-3, H-5), 7.45 (1H, *d*, *J*= 16.1 Hz, H-7), 6.27 (1H, *d*, *J*= 16.0 Hz, H-8).¹³C NMR (125 MHz, DMSO-*d*₆): $\delta_{\rm C}$ 168.3 (C-9), 159.5 (C-4), 143.5 (C-7), 131.8 (C-2, C-6), 129.9 (C-5), 125.9 (C-1), 115.8 (C-3, C-5), 114.8 (C-8).

1-O-methyl-β-D-glucopyranoside (3): colorless crystal. ¹H NMR (500 MHz, DMSO-*d*₆): $\delta_{\rm H}$ 4.16 (1H, *d*, *J*= 7.8 Hz, H-1), 3.87 (1H, *dd*, *J*= 11.8, 1.8 Hz, H-6a), 3.68 (1H, *m*, H-6b), 3.53 (3H, *s*, O-Me). ¹³C NMR (125 MHz, DMSO-*d*₆): $\delta_{\rm C}$ 105.4 (C-1), 78.1 (C-3), 78.0 (C-5), 75.1 (C-2), 71.7 (C-4), 62.8 (C-6), 57.3 (O-Me).

https://sj.hpu2.edu.vn

3. Results and discussion

From the ethyl acetate extract of the trunk of *Miliusa velutina* Dun Hook. f. et. Thoms., three compounds were isolated and determined structures as follows:

Compound 1: The ¹H NMR spectrum showed the presence of two proton signals at $\delta_{\rm H}$ 7.77 (2H, d, J= 8.2 Hz, H-3, H-5), 6.81 (1H, d, J = 7.4 Hz, H-2, H-6). The ¹³C NMR spectrum showed the presence of five carbon signals at $\delta_{\rm C}$ 167.6 (C-7), 161.5 (C-4), 131.5 (C-3, C-5), 122.0 (C-1), 115.1 (C-1, C-6). From the analytical NMR data and comparison with reference^[8], compound **1** be concluded as **4-hydroxybenzoic acid**.

Compound **2**: The ¹H NMR spectrum showed the presence of four proton signals incluced two proton signals of aromatic protons at $\delta_{\rm H}$ 7.48 (2H, *d*, *J*= 8.4 Hz, H-2, H-6), 6.78 (2H, *d*, *J*= 8.3 Hz, H-3, H-5) and two proton signals of two *trans* olefin protons at 7.45 (1H, *d*, *J*= 16.1 Hz, H-7), 6.27 (1H, *d*, *J*= 16.0 Hz, H-8). The ¹³C NMR spectrum showed the presence of four carbon signals of aromatic carbons at $\delta_{\rm C}$ 159.5 (C-4), 131.8 (C-2, C-6), 129.9 (C-5), 125.9 (C-1), 115.8 (C-3, C-5), two carbons signals of olefin carbons 143.5 (C-7), 114.8 (C-8), and one carbon signal of carbonyl carbon at 168.3 (C-9).From the analytical NMR data and comparison with reference^[9], compound **2** be concluded as *p*-coumaric acid.

Compound 3: The ¹H NMR spectrum showed the presence of one proton signals of anomer protons at $\delta_{\rm H}$ 4.16 (1H, *d*, *J*= 7.8 Hz, H-1), one proton signal of *O*-methyl group at 3.53 (3H, *s*, O-Me).. The ¹³C NMR spectrum showed the presence of six carbon signals incluced one anomer carbone at $\delta_{\rm C}$ 105.4 (C-1), five oxygen carbons signal at 78.1 (C-3), 78.0 (C-5), 75.1 (C-2), 71.7 (C-4), 62.8 (C-6), and one carbon signal of methyl group at 57.3 (O-Me). From the analytical NMR data and comparison with reference^[10], compound **3** be concluded as **1-***O***-methyl-***β***-***D***-glucopyranoside.**

4. Conclusions

Studying the chemical composition ethyl acetate extract of the trunks of *Miliusa velutina* using column chromatography techniques combined with thin layer chromatography, the preparation of three pure compounds was established. Based on NMR spectroscopy combined with reference literature comparison, the isolated compounds were: 4-hydroxybenzoic acid (1), *p*-coumaric acid (2), 1-*O*-methyl- β -*D*-glucopyranoside (3). Three compounds are first known to be present in the *Miliusa velutina* Dun Hook. f. et. Thoms.

Declaration of Competing Interest

The authors declare no competing interests.

Author contributions

Hoang-Khang Le, Thanh-Tung Phan interpreted NMR and MS data and searched the bibliography.

https://sj.hpu2.edu.vn

Thuy-Duong Ngo-Thi, Tan-Tai Nguyen, Ngoc-Vinh Huynh, Quang Ton-That contributed to conducting experiments and acquiring MS and NMR data and gave the final correction for the manuscript.

Corresponding author: Quang Ton-That, Faculty of Chemistry, University of Science, Vietnam National University, Ho Chi Minh City, Vietnam, 227 Nguyen Van Cu Street, ward 4, district 5, Ho Chi Minh City, e-mail: ttquang@hcmus.edu.vn.

All authors have read and agreed to the published version of the manuscript.

Acknowledgment

This research is funded by Vietnam National University Ho Chi Minh City (VNU-HCM) under grant number 562-2022-18-05.

References

- [1]. Phạm Hoàng Hộ, Cây cỏ Việt Nam, Nhà xuất bản Trẻ, Quyển I, 1999, 271-273.
- [2] Hasan C. M., Jumana S., Rashid M. A., (+)-Isocorydine α-N-oxide: A new aporphine alkaloid from Miliusa velutina, Nat. Prod. Lett., 2000, 14, 393–397.
- [3] Jumana S., Hasan C. M., Rashid M. A., Alkaloids from the stem bark of *Miliusa velutina*, *Biochem. Syst. Ecol.*, **2000**, 28, 483–485.
- [4] Nguyen D. M. T., Vo T. N., Ton T. Q., Nguyen K. P. P., Alkaloids from *Miliusa velutina*, Vietnam J. Chem., 2015, 53, 85–88.
- [5] Ton T. Q., Vo T. N., Nguyen D. M. T., Nguyen T. T. V., Nguyen K. P. P., Phenolic compounds from Miliusa velutina, Vietnam J. Chem., 2017, 55, 216–220.
- [6] Nguyen T. T. V., Vo, T. K. L., Dang, P. H., Ngoc, V. H., Ngo, T. T. D., Nguyen, T. M-N., Hansen, P. E., That, Q. T., Two new sesquiterpenes from the stems of *Miliusa velutina*, *Natural Product Research*, 2020, 36, 553-559.
- [7] Wongsa N., Kanokmedhakul S., Kanokmedhakul K., Cananginones A–I, linear acetogenins from the stem bark of *Miliusa velutina*, *Phytochemistry*, **2011**, 72, 1859–1864.
- [8] C. N. He, W. W. Gao, and J. X. Yang, Identification of autotoxic compounds from fibrous roots of *Panax quinquefolium L.*, 2009, 63–72.
- [9] Wittmann A. G., Robert N. S., Wendelin J. R., Oliver, A recyclable nanoparticle- supported palladium catalyst for the hydroxycarbonylation of aryl halides in water, *Angewandte Chemie - International Edition*, 2010, 49(10), 1867-1870,.
- [10] B. Klaus, C. Pedersen., A study of 13 CH coupling constants in hexopyranoses. *Journal of the Chemical Society, Perkin Transactions*, 1974, 293-297.