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Abstract 

Solving problems in practice often results in a system of nonlinear equations with a large number of 
equations and unknowns. Finding the exact solution to this class of equations is very difficult and 
almost impossible. Recently, with the development of technology, many methods and algorithms have 
been proposed to approximate the class of these systems of equations. Especially the third-order 
Newton–Krylov method has solved quite well this class of systems of equations with the third degree 
of convergence. In this paper, we present a new improvement of the third-order Newton-Krylov 
method with a quaternary convergence rate and prove the convergence of the iterative formula. In 
addition, the paper also presents an experimental result to demonstrate the convergence speed of the 

method. 

Keywords: Iterative formula, Convergence, Convergence speed, Nonlinear equations system, Third-

order Newton-Krylov method. 

 
 
1. Introduction 

Consider a system of  nonlinear equations 

  0F x  ,                                                                                      (1) 

where       1 2

t

nF f x , f x ; ...; f x with n
if :    are nonlinear functions. ( 1 2i , ,...,n ). 
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Many scientists have researched and proposed  methods to solve the system of equations (1) with 
quadratic convergence, such as Newton's method [1], Chebyshev's method, Halley's method [2] and 
other methods. The third-order convergent iterative method is presented in [4]-[9]. However, these 

methods have high computational complexity when the number of equations and unknowns of the 
system is large. 

In 2011, Frontini and Sormani proposed an improved Newton method with a third order 
convergence rate [8], [9] as follows: 

Newton – Krylov method 

Consider the system of equations 

    1n n n n n nF x s F x , s x x ,n 


       .                          (2) 

The Newton-Krylov method finds an approximate solution of (2) with condition  

     n n n n nF x s F x F x   , 

with 0 1n ,    is called constraint condition. 

 Newton-Krylov aglorithm: 

 1. Set 0x ;   0 1max ,   . 

 2. Give 0 1n , ,...,  and: 

  • Chose 0n max; ,       

  • Apply an iterative method to find ns of    n n nF x s F x .     

The process will stop if the following condition is satisfied      n n n n nF x s F x F x   . 

  • Correct 1n n nx x s   . 

Third-order Newton-Krylov method. 

We consider 

 
   

1
11

2

n
n n

n n n

F x
x x

F x F x F x



        

.                          (3) 

To obtain The Newton-Krylov algorithm, we rewrite fomula (3) as follows 

       1

1
1
2n n n n n nF x F x F x x x F x





         
                                   (4) 

Set 

     11
2n n nk x F x F x

  . 

Then we can write 

     1
2n n nF x k x F x                                                                (5) 

So we can apply the Krylov method to find the approximate solution  nk x of equation (5). 

Fomula (4) is rewritten as follows  
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    n n n nF x k x s F x ,                                               (6) 

with 

1n n nx s x .                                                                          (7) 

We continue applying the Newton-Krylov algorithm to find 1nx   of system (6), (7). 

 The convergence and convergence speed of the Third-order Newton-Krylov method are 

presented in [12], [13].  

In this paper, we present a new improvement of the third order Newton-Krylov method with 
quaternary convergence speed and prove the convergence of the iterative formula. The structure of the 
paper consists of four parts as follows: The first part of the paper is Introduction. In the next section, 

we present the algorithm to improve the third order Newton-Krylov algorithm with quaternary 
convergence speed and proves the convergence. of the iterative formula. The third section presents the 

experimental results and Section 4 is the Conclusion. 

2. Improved algorithm 

 We consider the iterative fomulation 

        
1

1
1 2 1

,
6 3 2 6

n n
n n n n n

x g x
x x F x F F g x F x





  
           

                     (8) 

where        1 *
1n n n n ng x x F x F x F x




   
 

  và    1* .n n n nx x F x F x
    

Then the fomulation (8) is rewritten by the following three iteration formulas 

   *
n n n nF x s F x    với * *

n n nx x s   , 

     * *
1n n n n nF x g F x F x 

    
 

 với   * ,n n ng x x g   

   ( )1 2 1
( ) ( )

6 3 2 6
n n

n n n n
x g x

F x F F g x s F x
         

  
  với 1 .n n nx x s    

We use the Newton-Krylov algorithm to solve the three above systems of equation finding the 

solutions * *,n ns g  và ns . 

 Next, we prove  the convergence of this algorithm.  

Theorem 2. 1 ( The convergency of improved iterative  fomula) Let : n nF    is continuous 

differentiable function on a convex open set nD   . Assume there exists * nx   and , 0    which 

satisfies    * * * 1, , 0, ( )S x r D F x F x    exists,   1* ,F x 


   and   * , .F Lip S x r  There exists 

0   so that with each 0 *,
2

x S x
   

 
 dãy 1 2, ,..., ,...nx x x  determined by formula (8) which converges to 

*x . 

To prove Theorem 2.1, we first present the following propositions 

Lema 2.2 (Xem[14]) Let nE,I    , where I is the  unit matrix. If 1E   then   1I E   exists 



HPU2. Nat. Sci. Tech. 2023, 2(1), 16-24 

https://sj.hpu2.edu.vn                                                                                 19 

 

and   1 1
1

I E .
E


 


Morever,if A is a invertible matrix and  1 1A B A   then B is also a 

invertible matrix and  
 

1
1

11

A
B .

A B A







 
 

Lema 2.3 (See[14]) Let the function n mF :    be a continuously differentiable map on an 

open convex set D   and  F Lip D
  , then for every x p D   we have 

      2

2
F x p F x F x p p .      

 Then, we will provide proof for Theorm 2.1. Given 
1

min ,
2

r


 
  

 
.  

With 0 * ,
2

x x F
    Lípchitz at *x , according to Lema 2.3, we have 

           1 1* 0 * * 0 * 0 * 1
.

2 4
F x F x F x F x F x F x x x

 
             
 

 

Acoording to proposition 2.2 we have invertible  0F x  and  

 
 

     
 

1*

1 10 *

1* 0 *

4 4
.

3 3
1

F x
F x F x

F x F x F x




 




   

    
 

 

From the definition *
1nx  , we have  

            1 1* * 0 * 0 0 0 * 0 0 * 0
1 .x x x x F x F x F x F x F x F x x x

            
 

 

Therefore 

         
21 2* * 0 * 0 0 * 0 0 *

1
4 2

.
3 2 3 4 2

x x F x F x F x F x x x x x
   


           

Therefore we have * *
1 , .

2
x S x

   
 

  

From the definition  ng x , ta có        10 0 0 0 *
1g x x F x F x F x

     
,therefore  

           
               

1 10 * 0 * 0 0 * * * 0 *
1 1 1

10 * 0 0 * 0 * 0 0 * 0
1 .

g x x x x F x F x F x x x F x F x

F x F x F x F x x x F x F x F x x x

 



         
 

           
 

 

Applying Lema 2.3 we have  

                   1 10 * 0 * 0 0 * 0 0 * 0 0 * 0
1

2 2 2 2* 0 0 * * * * * 0 * 0 *
1 1 1

2

4 2
2

3 2 3

85
.

216 2

g x x F x F x F x F x x x F x F x F x F x x x

x x x x x x x x x x x x
 





 
           

                   

 
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Therefore we have  0 * , .
2

g x S x
   

 
 ‘ 

Then we have 
         

0 0
1* 0 * 0 0 * 0 *

1
1 1

2 2 2

x g x
x x x F x F x F x x x

            
, therefore  

       

 

0 0
1* 0 * 0 0 * 0 *

1

0 * 0 *

1 1

2 2 2

1 1
.

2 2 4 4 2

x g x
x x x F x F x F x x x

g x x x x
  


       
 

      

 

 

Thus we conclude that 
 0 0

* , .
2 2

x g x
S x

    
 

 

Given         1 2 1

6 3 2 6

x g x
H x F x F F g x

 
      

 
, then    1

1n n n nx x H x F x


   . 

From definition  H x  we have  

                
0 0

0 * 0 * * 0 *1 2 1

6 3 2 6

x g x
H x F x F x F x F F x F g x F x

                              

 

From 0 * ,
2

x x F
    Lípchitz at *x  , so according to Lema 2.3 we have 

     

              

1* 0 *

0 0
1* 0 * * 0 *1 2 1

.
6 3 2 6

F x H x F x

x g x
F x F x F x F F x F g x F x





   
 

                    

 

   
0 0

0 * * 0 *2 1

6 3 2 6 12 3 12 4

x g x
x x x g x x

      
                   

. 

 We have  
 

     
 

1*

1 10 *

1* 0 *

4 4
.

3 3
1

F x
H x F x

F x H x F x




 




  

   
 

  

 On the other hand, we then have    10 0
1 0x x H x F x


   

 It follows that             1 1* 0 * 0 0 0 * 0 0 * 0
1x x x x H x F x H x F x F x F x x x

          
 

. 

Or 
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        

       

        
         

1* 0 * 0 0 * 0
1

0 0
10 * * 0

10 0 * * 0

10 0 * * * 0

1

6

2

3 2

1

6
5

.
6

x x H x F x F x F x x x

x g x
H x F F x x x

H x F g x F x x x

H x F x F x F x x x









      

             

      

     

 

 Therefore, we have  

        

     

      

       

1* 0 * 0 0 * 0
1

0 0
10 * * 0

10 0 * * 0

10 0 * * * 0

1

6

2

3 2

1

6

5

6

x x H x F x F x F x x x

x g x
H x F F x x x

H x F g x F x x x

H x F x F x F x x x









    

 
      
 

   

   

 

 It follows that  

* * 0 * 0 * 0 * 0
1

* 0 * 0

4 5

18 9 18 18
4 1

.
9 2 2

x x x x x x x x x x

x x x x

   



        

    
 

 Thus we can conclude that *
1 ,

2
x S x

   
 

. 

With similar argument, we have *
2 ,

2
x S x

   
 

 and by induction we can prove that 

*
1 ,

2kx S x



   
 

, therefore 
1

* * 0
1

1

2

k

kx x x x



    
 

, it follows that nx  converges to *x . 

3. Experimential results 

 In this section, we give an example and by using Matlab to find the approximate solution of the 

system through iterative formula (8). In this example, the iterations will stop when   1310nF x   and 

we also give the running time of the algorithm. 

Example : approximately solve the following system of equations  

       

1

2

3

4

2 2
3 4
2 2
4 1
2 2
1 2
2 2
2 3

0
0
0
0

x

x

x

x

e x x
e x x
e x x
e x x

            

                                            (9) 

 By choosing an initial approximate solution  0 1 1 1 1x , , , , after two interations with a runtime 
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of 0 187. (s) we have the following approximate solution of the system of equations (9)  

 1 48796206549818 1 48796206549818 1 48796206549818 1 48796206549818. , . , . , . . 

Code : 

clear all 

syms x1 x2 x3 x4 

format long; 

f = [exp(x1)-x3*x3-x4*x4; exp(x2)-x4*x4-x1*x1; exp(x3)-x1*x1-x2*x2; exp(x4)-x2*x2-x3*x3]; 

y = [x1; x2; x3; x4]; xn = [1; 1;1; 1]; 

R = jacobian(f; y); 

m = 0; tic; 

while (m < 100) 

a = subs(R,{x1; x2; x3; x4}; {xn(1); xn(2), xn(3), xn(4)}); 

b = -subs(f, {x1, x2, x3, x4}, {xn(1); xn(2) ), xn(3), xn(4)}); 

A = a’ ∗ a; B = a’ ∗ b; 

tol = 1e - 13; z0 = zeros(2; 1); 

sn∗ = fom(A; B; z0; tol); 

% (Approximate solution s* for the system    *
n nF x s F x    ) 

xn1 = n + *
ns ;  % ( Calculate *

1nx  ) 

b = -(subs(f, x1, x2, x3, x4, n(1); n(2), n(3), n(4)) + subs(f, x1, x2, x3, x4, xn1(2); xn1(3), xn1(4)); 

A = a’ ∗ a; B = a’ ∗ b; 

tol = 1e - 13; z0 = zeros(2; 1); 

gn∗ = fom(A; B; z0; tol);  % (Compute the solution *
ng  for the syste   * *

1( ) ( )n n n nF x g F x F x 
      ) 

gn = xn + gn∗; 

yn = 1/2 ∗ (n + gn); 

C = 1/6 ∗ subs(R; {x1; x2; x3;x4}, {n(1); n(2); n(3); n(4)}); 

D = 2/3 ∗ subs(R; {x1; x2; x3;x4}; {yn(1); yn(2); yn(3); yn(4)}); 

E = 1/6 ∗ subs(R; {x1; x2; x3;x4}; {gn(1); gn(2); gn(3); gn(4)}); 

a = C + D + E; 

A = a’ ∗ a; B = a’ ∗ b; 

tol = 1e - 13; z0 = zeros(2; 1); 

sn = fom(A; B; z0; tol); 

% (Approximate solution ns  for the system Asn B ) 

xn = xn + sn; 

if norm(B) < 10-13 break; 

else 
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m = m + 1; 

end 
end; toc; 

fprintf(‘Execution time::’); disp(toc) 

if (m == 100) 

fprintf(’ No convergence after 100 iterations’); 

else 

fprintf(‘The number of iterations is:’); m 

fprintf (‘solution:’);xn 

end 

4. Conclusions 

The paper presents a new improvement of the third-order Newton-Krylov method with quaternary 
convergence speed. This is an important result so that we can solve real problems related to finding 
approximate solutions of complex nonlinear equations. 
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