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Abstract 

Analytic formulas for one-loop contributions to (g−2)e,µ anomalies and decays amplitudes 
b ae e→   are 

explicitly derived for the 3-3-1 model with inverse seesaw neutrinos (3-3-1ISS). Using these formulas 

to investigate e ,a   defined as the discrepancies of (g−2)e,µ anomalies between the standard and the 3-

3-1ISS models, our numerical investigations showed that e ,a   can reach the maximal values of around 

( )14 92 5 10 1 13 10. .− −   and ( )14 91 4 10 0 58 10. .− −   for normal and inverted order schemes of neutrino 

oscillation data, respectively. The analytic formulas derived in this work are very useful for estimating 

dominant contributions to e ,a   in new extended versions of the 3-3-1-1ISS model explain successfully 

the experimental data of (g−2)e,µ. 

 

Keywords: inverse seesaw mechanism, lepton flavor violating decays, beyond the standard model, 
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       Lepton sector is one of the most interesting subjects for experiments to search for new physics 

beyond the predictions of the standard model (SM). For example, the evidences of neutrino oscillation 

confirm that the SM must be extended. Recently, experimental data of anomalous magnetic moments 

of charged leptons ( )2 / 2
aa

ee
g a−   have been updated, where the deviation between SM prediction and 

experiments for muon is [1] 

 ( )N exp 11251 59 10 ,P SMa a a  

−  − =    (1) 

corresponding to 4.2  deviation from the SM prediction [2], where 1 corresponds to the 68% 

confidence interval in the normal distribution. For the electron anomaly, the deviation between the SM 

and experiment is 1.6 discrepancy, namely [3] 

 ( )N exp 134.8 3.0 10 .P SM

e e ea a a −  − =    (2) 

 On the other hand, ,ea   are strongly constrained by the experimental data of obtained from 

searching for the charged lepton flavor violating (cLFV) decays b ae e →  which are obtained as [4, 5]  

  

 ( ) ( ) ( )8 8 134.4 10 , 3.3 10 , 4.2 10 .Br Br e Br e     − − −→   →   →    (3) 

It is well-known that constructing models beyond the standard model that explain successfully the 

( )2g −  data, the allowed regions of the parameter space must be checked to satisfy the constraints in 

Eq. (3). Recently work an extension of the 3-3-1 with right handed neutrinos (RHN), named as the 3-

3-1 model with inverse seesaw neutrinos (3-3-1ISS), with the aim of giving an explanation the ( )2g −  

data along with explaining successfully the neutrino oscillation data through the inverse seesaw (ISS) 

mechanism [6]. But the numerical results that adding only three gauge singlets of neutral leptons RX , 

the model just predicts the largest values of a  is around 11108.5 10− , because of the strong cLFV 

constraint (3), especially ( ) 84.4 10Br   −→   . Adding a new charged Higgs singlet into this model 

is enough to show that there exist allowed regions of the parameter space satisfying all cLFV bounds 

(3) and explaining successfully 1  data of a  given in Eq. (1).  

In this work, we will derive analytic formulas determining the one-loop contributions to ,ea   

and ( ).b aBr e e →  These formulas were not derived explicitly in Ref. [6]. We also use these formulas 

to investigate numerically ,ea   in the 3-3-1ISS frame work under the cLFV constraints to look for the 

largest values of ,ea   in both normal (NO) and inverted (IO) order schemes of neutrino oscillation 

data.  

Our paper is organized as follows. In the section review of the 3-3-1ISS model we summary the 

3-3-1ISS model discussed on Ref. [6]. We will also introduce all couplings needed to determine the 

one-loop amplitudes of cLFV decays b ae e →  and the ( )2
ae

g −  in the next section. The section 

numerical discussion we show numerical results determining all largest values of ,ea  . Finally, the 

section the conclusion contains our will remark most important results. 

2. Review of the 3-3-1 iss model 

First, the particle content of the 3-3-1ISS model [7, 8] discussed in this work is summarized as 

follows. The electric charge operator corresponding to the gauge group ( ) ( )3 1SU UL X is 

https://sj.hpu2.edu.vn/
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1

3 83
Q T T X ,= − +  where 

3,8T  are diagonal ( )3
L

SU  generators and X is the generator of the group ( )1
X

U . 

Each lepton family consists of a ( )3
L

SU triplet ( ) ( )3 1 3
T

a a a a L
L ,e ,N , /=  −  and a right-handed charged 

lepton ( )1 1aRe ,−  with a=1, 2, 3. Each left-handed neutrino ( )
c

aL aRN N=  implies a new RHN beyond the 

SM. Difference from the usual 3-3-1RHN model [9], the 3-3-1ISS model contains three additional 

right-handed neutrinos RHNs ( )1 0aRX , ,=  a=1, 2, 3. The three Higgs triplets are introduced as 

 ( ) ( )0 0 0

1 2 1 2

2 1
3 3

3 3

T T

, , , , , , , ,+ + −   
 =     =    −   

   
and ( )0 0

1 2

1
3

3

T

, , ,−  
 =    − 

 
  

with the following vacuum expectation values (VEV) of the neutral Higgs components   

  

 
T T T

1 2v v
0, ,0 , ,0,0 , 0,0,

2 2 2

     
       

     
= = =  (4) 

in order to generate all tree-level quark and lepton masses. All masses of gauge bosons are 

determined from the covariant kinetic term of the Higgs bosons, 

( ) ( )
†H

H , ,
D H D H ,

=  
=  

with 9 1 2 8a a

X
D igW T ig T XX ,a , ,...,

   
  − − = , aT  are 3 LSU( ) generators, and the ( )1

X
U  generator 

9

3 6I /T  and 1 6/  for (anti)triplets and singlets. The relations between the two gauge couplings g  

and Xg  with the electric charge e  and sine of the Weinberg angle ( 2 0 231Ws . ) are We g / s=  and 

23 2 3 4X W Wg / g s / s= − .  

 The 3-3-1ISS model consists of two pairs of singly charged gauge bosons, which one of them 

has mass at 3 LSU( ) scale, namely ( )6 7 2Y W iW /

  =   with mass ( )2 2 2 2

1 4Ym g v /=  +  and the ones 

denoted as W   are identified with the SM ones, namely ( )1 2 2W W W / ,

 =  leading to the following 

relation 

 ( )
22 2 2

1 2 246 .v v v GeV+  =  (5) 

The two VEVs 1v  and 2v  are expressed in terms of v and tan  defined as follows 

 2

1 2

1

tan , , .
v

t v vc v vs
v

   = = =  (6) 

The Yukawa Lagrangian for generating lepton masses used in Ref. [6] is:  

 ( ) ( ) ( ) ( )ij * † 1
L e .c.,

2

c ce k

ab a bR ab a b k ba bR a R

Y

Rl a bji ab
h L L y L X Hh  

      + − += − −  (7) 

where , 1,2,3a b =  are the number of .R  The first term generates charged lepton masses, 

1 .
2

a

e

ab

e ab

h v
m    

In the basis ( )( )' , ,
T

c

L L L RN X = and ( ) ( ) ( )( )' , ,
Tc c c

L L L RN X = , the Lagrangian (7) leads to 

neutrino mass matrix M   with order 9 9 written in a block form as follows 

https://sj.hpu2.edu.vn/
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 ( )'

mas

1
' . .,

2

c

s L LL M H c  − = +  (8) 

where 
†

D

R

T

T

D

T

R X

m

M m M

M





 
 

=  
  
 

,   

 

with ( ) ( ) ( )1/ 2, 2
abR D ab Dab ab ab

M Y m h v m   = −  being antisymmetric with , 1,2,3a b = . The 

matrix X  defined in Eq. (7) is symmetric, hence can be diagonalized by a unitary transformation XU , 

namely ( )
1 2 3

diag , , .T

X X X X X XU U   =  The matrix XU  will be absorbed in the redefinitions the neutral 

fermion states aRX  through the following transformations: 
aR aR, ,T T

X X X XU U X U X → →  and 

.T

Xy U y →   

The mass matrix M   is diagonalized by a 9×9 unitary matrix U , 

 ( ) ( )
1 2 9

ˆ ˆˆ=diag , ,..., diag , ,T

n n n NU M U M m m m m M   

= =  (9) 

which are masses of the nine physical neutrino states .iLn  Namely, the masses of the three active 

neutrinos aLn  and six extra neutrinos ILn  are denoted as ( )
1 2 3

ˆ , ,n n nm diag m m m =  and 

( )
4 5 9

ˆ , ,..., ,N n n nM diag m m m=  respectively. The relations between the flavor and physical base are 

 
( ) ( )

'

' * * ,

L L

c c

L L R

n U n

n U n U n



 

 =


= 

  (10) 

where ( )1 2 9, ,..., .
T

L L L Ln n n n  The majorana states are ( )( ), .
T

c

i iL iLn n n  

The ISS block form of the mass matrix corresponding to the general seesaw form through the 

following transformations  

 3

3

,M .
T

D R

D N

R X

m M
M

M 

  
= =   
   

 (11) 

Then using the well-known formula of vU to construct all ISS relations, 

 
3

3 6

6 3

6

1 †

2
, ,

1† †

2

v PMNS

I RR R
U

U
V

R I R R





 −
  

=     
   − −

 

 (12) 

where R, V are 3 x 6, 3 x 6 matrices, respectively. In particularly, inserting Eq. (12) into the Eq. 

(9) with ( )* † * †ˆˆM diag ,T v

PMNS v PMNS NU m U V M V  =  will lead to three following independent equations  

( ) ( )* † * † * * †1 1
ˆ11 1 1 ,

2 2

T T

PMNS PMNS D D NU m U R M RR R R M R M R

    
→ = − − + − − −    

    
 

( ) * † * * †1 1 1ˆ22 1 1 1 ,
2 2 2

T T T T

N D D NV M V R R M R R M R R M R R
      

→ = − + + − −      
      
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( ) * * * †

3 6

1 1
12 1 1 .

2 2

T T

D D NR M R R R M R M R R

    
→ = − + − − −    

    
 (13) 

Find the leading part of the entry (12) in Eq. (13), then inserting into two remaining entries (11) 

and (22), we obtain the following relations without any inverse matrix forms 

 * * † * †ˆR M , U R M R ,T

D N PMNS PMNS NM m U m =  =  (14) 

 * † † *1 1ˆ M R R M .
2 2

T

N N N NV M V M R R= + +  (15) 

Denote that ( )1 2 ,R R R=  where 1,2R are two submatrices of R  with the same order 3 x 3, the 

leading part of (12) gives 

 
*

* 2

* *

1 2 3

,
R M

.

T

T D R

D N T

R X

m R M
M

R M R 

 =
=  

+ =
 (16) 

Inserting Eq. (16) into the first line of Eq. (13) and keeping only the dominant contribution, we 

have * † * † * † ,...,D D N DR M M R R M R R M RR= =  and * † * † † * †

2 2
ˆ .T

PMNS PMNS N D XU m U R M R M R R R = − = − =  Now 

it is easily to derive the last entry (12) of Eq. (13) defining the heavy neutrino masses. We summarize 

here the most important ISS relations 

 
( )

( )

* 1 * 1

2 1 2 3

* † * † 1 1 1

2 2

M , ,

ˆm .

T
T

D R X R

T
T T

X PMNS v PMNS D R X R D D D

R m R R M

R R U m U m M M m m M m



 

− −

− − −

= = −

 = = =

 (17) 

where ( )1 1 1 .
T

R X RM M M− − −  

Based on Eq. (15), a further estimation of the heavy neutrinos mass can be calculated analytically, 

namely * †ˆ .N NV M V M  Using the well-known formulas that RM  is always diagonalized by two unitary 

transformations LV  and RV  [10] 

 ( )1 2 3
ˆ , , ,

L

T

R R RV M V M diag M M M= =  (18) 

where all 
1,2,3M̂  are always positive. Therefore, we accept that RM  is expresses in terms of 

,
ˆ ,R L RM V  as free parameters. We can prove that V  in Eq. (20) can be found as follows 

 3 3 3 3

3 3 3 3

1 1
,

2 2

R R R

L L L

V I iI V iV
V

V I iI V iV





    
= =    

− −   
 (19) 

leading to the equality that ( )ˆ ˆ, .T

N R RV M V diag M M=  As a consequence, for any qualitatively 

estimations, we will use the crude approximations that 
3 6

ˆ
a an n am m M
+ +
=  with a = 1, 2, 3; 1 3 ,R  and 

 

†

3 2 2 2 2

3

† † †

2 3 2 2 3 2 2

1 1

2 2 2

.
2 2

1 1

2 22 2

PMNS L L

R R

R R
PMNS

i
I R R U R V R V

V iV
U

V iV
R U I R R I R R



  
− −  

  
 
 
 
 −   

− − −    
    

 (20) 
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Using numerical values of m  obtained from the neutrino oscillation data, we can determine all 

independent parameters 12 13, xx  and three entries of 1M −  [7, 8], namely the Dirac mass matrix has an 

antisymmetric form as follows  

 
12 13

12

13

0

, 0 1 ,

1 0

D D D

x x

m z m m x

x

 
 

=  = − 
 − − 

 (21) 

where 
1 23z 2v h=  is assumed to be positive real, and  

 
( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2

13 11 33 12 13 11 23
13 12

13 23 12 33 13 23 12 33

m m m m m m m
x ,x ,

m m m m m m m m

      

       

− −
= =

− −
 (22) 

and Det  0 .m =  In addition, the non-diagonal entries of 1M −  and ( ), 1,2,3X a a =  are functions of 

the diagonal entries 11,22,33

1M − , which we will not show explicitly here. We emphasize that the structure of 

Dm  given in Eqs. (21) and (22) is enough to obtain the neutrino oscillation data from the ISS relations. 

On the other hand, 
2 1R  is necessary to guarantee that the ISS relations are consistent with the 

result derived directly using the total mass and mixing matrices. 

3. The analytic formulas for ( )
,

2
e

g


−  anomalies and decays b ae e →  in 3-3-1ISS model 

The one-loop form factors relating with W  and Y bosons are detailly calculated and obtained as 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 3
*† '

2 2 2 2 W,R 2 2
1W

2 9
* '

,R 2 2
1

5
W ,

1232

,
32

ab L L V eab ae beab
e

R R V Y eab ae be
iY

eg
c R R R V R V F x

m

eg
c Y V V F x

m






=

=

  = − − +   

=





 (23) 

where ' 2 2

v, 3 \ , W,Y,
ee n vx m m v+ =

( ) ( ) ( ) ( ) R R
, ,a

b

e

ba ab

e

m
c v c v a b b a

m
= → →    

 ( )
( )

( )

2 3 4 3

4

10 43 78 49 4 18 ln
,

24 1
V

x x x x x x
F x

x

− + − + +
= −

−
 (24) 

e 4 em=  being the electromagnetic coupling constant, and W/ .g e s=  Because 

( )0lim 5 /12,x VF x→ = −  and 2 2

W/ 0
inm m ( 1,2,3i = ) hence we have ( ) ( )W,i , 5 /12V V Y iF x F x= = −  with 

1,2,3.i =  In addition, ( ) 5 /12,VF x   hence 
( ) ( ) ( )( )2 2 2 2 2

W W5 /12 / 32 / .Yab R
c Y eg m m m    This implies 

that the one-loop contribution from Y  to ( )2g


− anomaly is ( ) ( )2 2 11

W( / ) W 10SM

Ya Y m m a 

−    with 

1Ym  TeV. Therefore, ( )
aea Y  will be ignored in the numerical calculations. 

Regarding to the contributions from singly charged Higgs bosons, the relations between the 

original and mass eigenstates of the charged Higgs bosons are [11] 

  

 2

1 2

, ,W Y
cs s

s s

cG G

c cH H

   

   

 

 

 





 

− −         
= =         

        
 (25) 

where 1 / 1.t v =  Relevant Lagrangian of charged Higgs bosons is 

https://sj.hpu2.edu.vn/
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 ( )
2 3 9

, R

1 1W

,

1

e H.c,
2

nH L k k

k i ai L ai R a

k a i

g
H n P P

m
 +

= = =

= − + +  (26) 

Here  

( ) ( )

( )
( )

( )
( )

3 3
3,1

0 03
1 1

6

0 3

s z s z 3 6,
2

6 9
2

D R a iL

ai D c ica
c c

D R a i

i

m V
m U i

i m V
i



 
−

+
= =

−


 


=  




 


   

( )

( )

*

† *

3 2 2

*

,1 *

2

3

*

2

6

1
3

2

1
3 6,

2

6 9
2

a a

PMNS

ai

R

ai e ai e L

a i

L

a i

I R R U i

m U t m t R V i

i
R V i



 
−

−

  
−   

   

  

=   
 


−      

 

 

( )
( )

( )
( )

†

3 2 2

3
,2

0 2 3
1

2 6

1
3

2

1
3 6,

2

1
6 9

2

D PMNS

ai

L

ai D L a i
c

D L a i

m I R R U i

c z m R V i

im R V i


−

=

−

  
−    

  


= −  



−  


  

 
( )

( )
( )

( )
( )

**

3 3,2

*

6

0 3

3 6,
2

6 9
2

a a
Re a i a ieR

ai

R a i

i

Vm c U m c
i

c c

i V
i



 

 


+ −

−


 


=   


−
  


 (27) 

where v

0 23z 2 vh z/ c ,= =  and ( ) ( )ij ij
R RM z M= . We have ignored the small part proportional to 

2 2 2 2 2

W Yt m / m v / 1 =   in the last expression of ,2.L

ai  We also fix 1c  and 0t s = =  from now 

on. From Eq. (18), we see that  

 ( )1

1 2 3
ˆ, , ,T

L R R RV M V M z diag k k k k−= =   (28) 

with 1ak   for all 1, 2,3.a =  Now, it can be proved that † * 1

2
ˆ

L D RR V m V k −=  and 

† * * 2

2 2
ˆ  [6],T

D R R DR R m V k V m−= −  hence LV  does not affect all couplings given in Eq. (27). Therefore, 3LV I=  

will be fixed from now on.  

Similarly, the one-loop form factors relating with kH   are obtained as 
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 ( ) ( ) ( ) ( ) ( )
9

, * R, , * L, , * R,

, ,R
1

,
i b a

L k k L k k R k k

k k ai bi n H i k e ai bi e ai bi H i kab
i

c H r m F x m m F x     

=

= + +    

  

 
( ) ( ) ( ) ( ) R

, ,a

b

e

k kba ab R

e

m
c H c H a b b a

m

 = → →   (29) 

  

where ( )2 2 2 2 2 2

W ,, / 32 , / ,
b k i kk e H i k n Hb a r eg m m m x m m    and  

 ( )
( )

( )
( )

( )

( )

2 2 3 2

3 4

1 2 ln 1 6 3 2 6 ln
, .

4 1 24 1
H H

x x x x x x x x
F x F x

x x

− + − + − − +
= − = −

− −
 (30) 

The factor 21/ ,
kk Hr m  hence large  aaRe

aec a supporting experimental data prefers small .
kHm In 

contrast, ( )b aBr e e → requires both small 
( )ab R

c  and 
( )

,
ba R

c  hence there must exits the strongly 

cancellation among different parts in these terms. Because ( )1/2

0lim 0x Hx F x→
  =   and 

( )0lim 1/ 24,x HF x→ =  we will fix ( ), 0
in H i km F x =  and ( ), 1/ 24H i kF x =  for 1,2,3i =  in case active 

neutrinos which owning , 0.i kx  In addition, the total mixing matrix given in Eq. (20) results in that 

3 6 0 .
a an n a am m M z c k+ += =  Consequently, one-loop contributions to 

( )ab R
c and 

( )ba R
c  from singly 

charged Higgs bosons 
kH   are derived approximately as follows 

( ) ( ) ( ) ( ) ( )
9 3

,1* ,1 2 2 * * 1 '

,1 0 ,1

1 1

ˆ ,
i b

L R

ai bi n H i e D R D R e H eae be
i e

m F x s z m m V m V k k F x  −

= =

 −
     

 

( ) ( ) ( ) ( )
9 3

*
,1* L,1 2 2 '

,1 0 ,1

1 1

,
i

L

ai bi n H i D R D R H ebeae
i e

m F x s z m V m V F x 
= =

 
     

( ) ( ) ( )

( ) ( ) ( )

9
R,1* ,1 2 †

,1 2 2

1

3
* * 1 1 '

,1

1

1

24

ˆ ˆ ,

a b

R

ai bi H i e e ab ab
i

D R D R H e
ae be

e

F x m m t R R

m V k m V k F x


  

=

− −

=

  −  

 +   





 

( ) ( ) ( ) ( )
9 3

,2* ,2 ' 2 * 1 * '

,2 0 ,2

1 1

ˆ ˆ ,
i b

L R

ai bi n H e e D D R R e H ebeae
i e

m F x m z m m V k V k F x  −

= =

 
     

( ) ( ) ( ) ( ) ( ) ( ) 
( ) ( ) ( ) ( )

9 3
,2* L,2 2 * * * * 1 * * 1 '

,2 0 2 2 ,2

1 1

9 3
*R,2* R,2 '

,2 ,22

1 1

1 ˆ ˆ ,
24

,

i R

a b

L T

ai bi n H i D D D D D D R D D H eab ab ae be
i e

e e

ai bi H i R R H eae be

i e

m F x z m m m R R m m m V k m m V k F x

m m
F x V V F x

c


 

 

− −

= =

= =

− − +   
    

 

(31) 

where '

, 3, .e k e kx x +
 We can see that the structure of Dm  affects strongly on dominant terms 

appearing in Eq. (31). A first crude estimation is that ( ) ( )
4

b a D ab
Br e e m→  while 

( )
2

Re ,
ae D aa

a m 
  

 hence the structure (21) will lead to a strict relation between ( )b aBr e e →  and 
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aea , unless strongly cancellation among many parts appearing in 
( )ab R

c  to result in ( )b aBr e e →  

satisfying all cLFV constraints. Therefore, scanning the parameter space in the numerical investigation 

to find out these points is challenging.  

For convenience, the total one-loop contribution 
( )ab R

c  is separated into two parts relating with 

charged Higgs and gauge bosons,  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2

1

, ,kab R ab R ab R ab R ab R
k

c V c W c Y c H c H 

=

= + =  

 
( ) ( ) ( ) ( ) ( ) ( ) ( )   , .a

b

e

ba R ab R ab R ba R ab R

e

m
c c V c H c c a b

m
= + =    (32) 

  

Knowing ( ) 0
aea Y  as commented previously, the one-loop contributions from charged gauge 

bosons to 
aea are estimated approximately as follows [12],  

 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2
2

aa aa
1

2 2 3 2
* * 2 * * 1 '

W,2 2
1W

4
W W Re W W

5 ˆ ˆ .
128

ea

e a aa

a

SM SM

e e R R
k

e T

D R R D D R V e
aa ae

e

m
a V a a c c

e

g m
m V k V m m V k F x

m

=

− −

=

 
   = − − −    

 

 
= − 

 





 (33) 

 The Eq. (33) results in a clearly consequence that ( ) ( )2 210 ,
ae ea V k − −  because the condition 

1ek  for all 1, 2,3e =  must be valid to guarantee the ISS relations. Other parameters are estimated as 

max ( ) ( )1 5D ab
m  

 
 for the NO (IO) scheme (in the numerical section), 1

ab

RV   and ( ) 1/ 4.VF x   For 

muon, 
2 2

9

2 2
9.2 10 ,

8 W

g m

m





−  hence ( ) ( ) ( )9 2 119.2 10 5 /12 1/ 4 10ea V k

− − −     +   for the NO scheme. 

This conclusion is enough to explain the numerical results reported in Ref. [6]. Then, we can use the 

following formulas:  

 
( ) ( ) ( ) ( )

2 2

331
4 4

Re Re ,a a

a a

e eISS

e eaa R aa R

m m
a a c a H c H

e e


      = − = −−
   

 (34) 

where a  is considered as new physics predicted by the 3-3-1ISS in this work. It will be used to 

compare with the experimental data in the following numerical investigation. The more general 

formulas 
( ) ( ) ( ) ( ) ( )ab R ab R ab R

c c W c H= +  will be used in the numerical investigation for both IO and NO 

scheme. 

The branching ratios of the cLFV decays considered in this work are [8, 12, 13] 

 
( ) ( ) ( )( ) ( )

2 2 2

,2

48
b a b a a bab R ba Re e e e

F

Br c c Br
G

  


→ →

+  (35) 

where ( )2 2

W/ 4 2 .FG g m= In the following numerical discussion, we will collect only points 

satisfying all cLFV upper constraints (3). Using the approximate formulas of charged Higgs couplings 

given in Eq. (27), we can confirm the results of a  are consistent with those reported in Ref. [6]. We 
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will also investigate the numerical values of a e  and compare with the latest experimental results in 

both NO and IO schemes of neutrino oscillation data.  

4. Results and discussion 

In this section, we will firstly consider the NO scheme of the neutrino data given in [14], and 

check the numerical results for a  given in Ref. [6] before investigating a e . The standard form of 

the lepton mixing matrix PMNSU  is the function of three angles ij , one Dirac phase δ and two 

Majorana phases 1  and 2 . We will use the same best-fit point chosen in Ref. [6] for the NO scheme, 

1 2 3
,n n nm m m   as 2 2 2

12 23 130.32, 0.547  ,  0.0216  180,s s s  == = = [Deg], 2 5

21 7.55 10m − =  [eV2] and 

2 3

32 2.424 10m − =   [eV2] where 2 2 2 , sin ,
j iij n n ij ijm m m s   −   and 2cos 1ij ij ijc s = − . For the IO scheme, 

3 2 1
,n n nm m m   we choose a benchmark with best-fit points 

52 2 2

12 23 1

2

3 21 7.550.32, 0.547, 0.0216, 10s s ms −=  == =  [eV2], and 2 3

32 2.509 10m − = −   [eV2]. For 

simplicity, in the IO case, the Dirac phase is chosen close to 354 360 = [Deg.], so that Dm  is real. 

Now Dm  in the NO and IO schemes are fixed as follows: 

 ( ) ( )

0 0.613 0.357 0 4.346 4.933

0.613 0 1 , 4.346 0 1 .

0.357 1 4.933 1

D Dm NO m IO

−   
   

= − =   
   − − − −   

  (36) 

The IO scheme has the upper perturbative bound as 0 1223 / 4.933 247.9z  GeV, which is much 

smaller than the one that 0 1223z  GeV for the NO scheme. In contrast, all ( ) 1Dm NO   while 

( ) 1,Dm IO   which lead to different predictions of large a
ae in the two cases. 

In both IO and NO neutrino mass spectrum, RV  can be parameterized in the following form: 

 

13 13 12 12

23 23 12 12

23 23 13 13

1 0 0 0 0

0 0 1 0 0 ,

0 0 0 0 1

rr r i r r

r r r r

R

r r r i r

c s e c s

V c s s c

s c s e c





−   
   

= −   
    − −    

 (37) 

where ( )
2

sin , cos 1 ,r r r r r

ij ij ij ij ijs c s   = −  and r =  or 2  corresponding to the NO and IO 

schemes. Other free parameters are chosen in the following ranges:  

 
1,2,3 5,  0.6 TeV,  0.5 80.

kH
k m t     (38) 

The numerical results for the NO scheme of neutrino data are shown in Fig. 1, where all collected 

pointed satisfy simultaneously all upper cLFV constraints given in Eq. (3) and the lower bound 
108.8 10 .a

−    While values of ea  are consequences of these constraints. We can see that ea  

depends strongly on a . The maximal values of a  is max 11113.44 10a

−    which is slightly 

larger than the value 108.5 × 10-11 reported in Ref. [6]. We can also see that max   142.52 10 ,ea −   

which is much smaller than the 1  values of experimental data of the order ( )1310−  given in Eq. (2). 

The max a  corresponds to large ( ) ( )810 ,Br   −→  which is very close to the experimental 

upper bound given in Eq. (3). In contrast, two other decays e →  and e →  values rather smaller 
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that the experimental upper bounds. This conclusion is consistent with the one obtained from the 

previous numerical investigation in Ref. [6]. 

 

Figure 1. The correlations of a  vs ea  (left panel) and Br( b ae e→  ) (right panel) in the region satisfying 

all cLFV constraints and 108 8 10a . −

    in the NO scheme. 

We have also scanned the parameter space of the 3-3-1ISS model to answer the question that did 

not consider previously: are there any regions of the parameter space that allow large ea close to the 

1σ experimental data given in Eq. (2). The numerical results to look for large ea  in the NO scheme 

are shown in Fig. 2, where the collected points satisfy simultaneously all upper cLFV constraints 

given in Eq. (3) and 141.9 10 .ea −     

  
Figure 2. The correlations of a  vs ea  (left panel) and Br( b ae e→  ) (right panel) in the region satisfying 

all cLFV constraints and 141 9 10ea . −    in the NO scheme 

The values of a  result from these constraints. We again obtain the results consistent with those 

illustrated in Fig. 2. Namely, max   142.5 10ea −   results in max 11110 10a

−     and both of them 

are strictly constrained by the experiments of ( ) 84.2 10 .Br   −→     

We also scanned the parameter space to find the regions giving largest ∆aµ in the IO scheme, see 

illustrations shown in Fig. 3, where all collected points satisfying cLFV constraints and 
105.5 10 .a

−    It turns out that max
aea    is much smaller than those obtained in the NO scheme. 

Namely, the left panel of Fig. 3 gives max 1159 10a

−      and max   141.4 10 .ea −    These two 

maximal values are also originated from the experimental constraint ( ) 84.2 10 ,Br   −→    as seen in 
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the right panel of Fig. 3. The numerical results show a very special property that ,ea  are constrained 

strongly by ( ) ,a bBr e e →  which can be explained qualitatively using the analytic formulas given in 

Eq. (31). One-loop contributions from the two singly charged Higgs bosons consists of many 

dominant parts depending on * ,D Dm m  which is nearly unchanged as given in Eq. (36).  

Because 
( )e aa R

a c  relating with * ,D D aa
m m    while ( ) ( ) ( )( )

2 2

a b ab R ba R
Br e e c c→ +  relating with 

*

D D ab
m m   and *

.
D D ba

m m   therefore, large 
( )ae aa R

a c  and small ( )a bBr e e →  require the strong 

destructive correlations between different terms appearing in 
( )ab R

c  and 
( )

.
ba R

c  This cancellations are 

not enough to allow large ,ea  to reach the experimental data. 

  
Figure 3. The correlations of a  vs ea  (left panel) and Br( b ae e→  ) (right panel) in the region satisfying 

all cLFV constraints and 105 5 10a . −

   in the IO scheme. 

 

5. Conclusions 

We have derived the analytic formulas up to one-loop contributions for calculating ( )
,

2
e

g


−

anomalies and ( )a bBr e e →  predicted by the 3-3-1ISS model. Using these formulas, we reproduce all 

of the numerical results reported previously for a . We can also explain clearly these numerical 

results. Investigating both ea  and a in the wide ranges of the parameter space we have derived the 

largest values of ea ( a ) are around 2.5 × 10−14 (1.13 × 10−9) and 1.4 × 10−14 (0.58 × 10−9) for the 

NO and IO schemes, respectively. Therefore, the 3-3-1ISS model adding only neutral lepton gauge 

singlets cannot explain the recent ( )
,

2
e

g


− data. We would like emphasize that the analytic formulas 

and the way to derive them which presented in this work will be very useful for further studies on 

other extensions of the 3-3-1 models constructed to accommodate all experimental data on the lepton 

sector. 
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