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Abstract 

This paper concerns a problem of finite-time stability for a class of linear  singular large-scale systems 

with delays. Based on matrix transformations, Lyapunov function method combined with new 
estimation techniques, we derive sufficient conditions for solving the finite-time stability of the 

system. A numerical example is given to illustrate the validity and effectiveness of the theoretical 
results.  
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1. Introduction 

Currently, the research on the stability of dynamical systems has received attention and 
development as an independent mathematical theory with numerous applications in scientific, 

engineering, and economic fields ([2],[5],[18]). The concept of finite-time stability (FTS) is 
independent to Lyapunov stability and was first introduced by Russian mathematicians ([9]), 

appearing in Western journals in the 1960s ([3]). In comparison to Lyapunov stability- addresses the 
behavior of a system over an infinite time interval, finite-time stability focuses on the boundedness of 
a system within a fixed, generally short, time interval. Therefore, finite-time stability (FTS) is often 
used to indicate when the state variables of a system do not exceed a given threshold within a short 
time period, for example, preventing the system from reaching saturation or excitatory states in 
nonlinear dynamical systems...  
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Although the theory of Lyapunov stability for linear systems with delays has been extensively 
developed over several decades, there are only a few results concerning the finite-time stability of 
linear systems with delays ([1],[6],[10]),… Most of the research results have focused on linear systems 

without delays or linear systems with delays but without singularity. In practice, studying the stability 
problem and control stability (stabilization) of singular systems with delay is often more complex than 

the nonsingular case due to algebraic constraints. Establishing the existence and uniqueness of 
solutions for these problems is much more challenging compared to the nonsingular class of problems. 
Moreover, delays themselves pose obstacles in the study of system stability. Therefore, the problem of 
investigating the finite-time stability of the class of singular, time-delay control systems has attracted 
considerable attention from mathematicians such as Myskist, Amato, Kharitonov, etc. In Vietnam, 
professors Nguyen Khoa Son, Vu Hoang Linh, Pham Huu Anh Ngoc, Vu Ngoc Phat,.. and their 
colleagues have also conducted research and obtained significant results ([4],[11],[15]). 

Recently, there have been several published results on the stability analysis of large-scale systems 
that have attracted the attention of mathematicians. Many real-world systems are modeled as large-
scale systems, such as power systems, communication systems, social systems, transportation systems, 
and economic systems. Large-scale systems are systems that consist of numerous interconnected 

subsystems in a tightly coupled and complex manner ([16]). The analysis of stability of large-scale 
systems, especially singular large-scale systems with delays becomes more challenging not only due to 
the high dimensionality of the systems but also because of the singularity and time-delay 
characteristics of the systems under investigation. Some stability results for this class of systems have 
been published, primarily focusing on Lyapunov stability (LS) ([12],[14],[17]). However, there are 
very few studies on finite-time stability (FTS) for this class of systems, mainly limited to nonsingular 
systems with constant delays or nonsingular systems with bounded time-varying delays ([13]). There 
are few publications on the finite-time stability (FTS) of singular large-scale systems with delays. 

Most recently, V. N. Phat and colleagues have published some results on the finite-time stability and 
finite-time stabilization of singular, time-delayed large-scale systems in both continuous-time ([7]) and 

discrete-time ([8]) cases. 

With the development of digital computers, the theory of discrete systems plays a crucial role in 
control theory. In practical systems, discrete-time systems often arise as a result of sampling 
continuous-time systems, using available discrete data, or when computers are involved in the control 

loop. Discrete-time systems are prevalent in social systems, time series analysis, and many other real-
world applications. Therefore, the study of finite-time stability and control problems for discrete 

systems is highly relevant, especially for complex systems that model various real-world systems such 
as large-scale systems. It is recognized that this is a topic of interest for many mathematicians 
worldwide, including those in Vietnam. At the same time, there are still many open issues for us to 
investigate. Building upon the results in [18] by Wu et al. for general discrete systems, we conducted a 
study to establish conditions for the finite-time stability of complex singular, time-delayed large-scale 
discrete systems.  

The remainder of this paper is organized as follows: In Section 2, some preliminaries are given. 
Criteria for finite-time stability of singular large-scale discrete-time delay systems are constructed in 
Section 3. An illustrative example is contributed in Section 4 and finally, Section 5 is presented a 
conclusion. 
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2. Preliminaries  

Consider a singular linear large-scale discrete system with delays of the form  

 1,
( 1) ( ) ( ), ,

( ) ( ), , 1,...0,

N

i i i i ij j ij
j j i

i i

E x k Ax k A x k k

x k k k



 

          

 

 


 (1) 

where 0; max{ }; ( ) in
ij ij ix k       is the state; iE  is singular, rank , 1, ;i iE r i N   

, i ji i n nn n
i ijA A     are given constant matrices; ( ) in

i k    are the initial functions.  

Definition 1 ([8]) 

(i) Large-scale system (1) is said to be regular if det( )i isE A is not identical zero, for 

1,i N , for some s   .  

(ii) Large-scale system (1) is said to be causal if deg(det( )) rank ; 1,i i i isE A r E i N    , 

for some s   . 

As shown in [8], the regularity and causality of ( , ), 1,i iE A i N , guarantee the existence and 

uniqueness of solutions of system (1) under admit initial condition (.) in
i   . 

Let us set 

1 1 1diag{ ,..., }, ( ) col{ ( ),..., ( )}, ( ) col{ ( ),..., ( )}.N N NR R R x k x k x k t k k      

Definition 2 (Finite-time stability-FTS) The system (1) is finite-time stable with respect to 

1 2 1 1 2( , , , ,..., )(0 , 0, 0, 1, )N ic c T R R c c T R i N     , if it is causal, regular and 

1 2,...,0
max { ( ) ( )} ( ) ( ) , 0,..., .

k
k R k c x k Rx k c k T 


    



   

The aims of this paper are to find some sufficient conditions which guarantee the system (1) is 

regular, causal and state bounded over the finite interval [0, ]T . We present the following propositions 

which will be used in the proof of the further results. 

Proposition 1 (Cauchy matrix inequality [18])  For given , na b   , we have 

12a b a Ra b R b    , 

where R  is a positive symmetric defined matrix. 

Proposition 2 (Schur complement lemma [18]) For U, V, Q, where  0,V V U U   are 

given matrices, we have 





1 0 0 0.

V QU Q
U Q V Q or

Q V Q U


                   
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3. Main result 

In this section, some sufficient conditions for FTS will be established based on the LMI approach 
for system (1). We define the following matrix notations: 

,

,

, 1

,

, 1

( 1) ( ) ( ) ;
( ) ; 1,..., 1, 1,..., ;

( ) ;
; 1,..., 1, 1,..., ;

; 1,...

i
i i i i i i i i i
i
i k i ik i i i ik

i
i N i i i i i i

i
k k k ik i ik ik i ik

i
k N ik i ik i

N Q X A E A E X
X A A E Z A k i i N

E P A E Y X
Q A Z A A Z A k i i N

A Y A Z k

 



 







     
      
   
     
  

 

 

  

  

  

1, 1

1, 1

,

,

,

;

1, 1,..., ;
; 2,..., 1, 1,...

on the oth
;

, ;
;
; , 2,..., 1, 1,.

e
.

c
., ;

er as s0

i
k i i ik

i
N N i i i

i
j k ij i ik
i
j k

i i N
A Z A k i i N
P Y Y
A Z A j k j k i i N







 

 
   
  
    








 

 
     

 
 
 

max max max

1, 1, 1,
min min min

max 1 max ; max .i i i i i

i N i N i N
i i i

E PE Q R
g N

R R Q

  
 

    

                                 




 

In the following theorem, we will present the regulary, causality and FTS of the system (1). 

Theorem 1 (Finite-time stability) Let 1 2, ,c c T be positive numbers, 0iR   be given symmetric 

matrices for all 1,i N . The large-scale system (1) is finite-time stable 1 2( , , , ). .w r c Tt c R  if there 

are matrices ,i iX Z , symmetric matrices , , 0, 1,i i iP Y Q i N  , and a scalar 0   such that 

, ,1 , 1 , 1 , , 1

1,1 1, 1 1, 1 1, 1, 1

1, 1 1, 1 1, 1, 1

1, 1 1, 1, 1

1, 1

i i i i i i
i i i i i i i i N i N

i i i i i
i i N N

i i i i
i i i i i N i Ni

i i i
i i i N i N

i
N N

     
    

   
  



  

  

      

    

 

 
 
  
 
 
     

   


      

 
 

       
 
 

       
 

0,








 (2) 

1
1 2(1 ) .T gc c     (3) 

Proof. First, we prove the regularity and causality of the system. From LMI (2) we obtain that 

 , , 1

1, 1

0.
i i
i i i N

i
N N

 




 

 
     

 (4) 

Since rank i i iE r n  , from [18], there exists the matrices ( )i i in n r
iN    satisfying 

0T
i iN E   and rank i i iN n r   for all 1,i N . Leting 
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0 0 0 0
; ; ;

0 ( ) 0i
i

ii
i i i i

E I
E A P

E A E I P
     
                       

 

( 1) 0 0 0
; ; ;0 0 0 0

i i i
ii i

i

N Q N X
Q N XI Y

                           



  

Then, (4) is equivalent to  

0.
T T T T

ii i i i i i i i i i i iX N A A N X Q E P P E P         

We can see that 0iP  , which gives 

 0.
T T T T

i i i i i i i i i iX N A A N X E P P E     (5) 

Since rank ranki i i iE E r n   , there exist nonsingular matrices iM  and iG  satisfying 

0
0 0
ir

i i i

I
M EG

 
   
  

. And since 0T
i iN E   we have 

00
0

0 00

T
T ii

i i

EN
N E

I

   
    

  
 or  

1 1
0

0
0 0

i
T T r

i i i i i i i

I
N M M E G N M   

  
 

. So, we can set 

11 12 11 12 1

21 22 21 22 2

0
, ; ; ,

i i i i i

T
i i i i ii i i i i i i i i i i

A A P P X
M AG M PG G X M N KIA A P P X

 

                                          

   

where iK are appropriately dimensioned nonsingular matrices. Multiplying by 
iG and iG on the left 

and on the right of LMI (5), repectively, we obtain 

1 22 21 2 121,1

2 22 22 2

0.

i i i i i
i

i i

i i i i i

i i

X K A A K X P

X K A A K X

                                      

 


 


 

Applying the Schur complement lemma, we obtain 2 22 22 2 0,
i i i i

i iX K A A K X
             

 
 which 

gives 22det 0
i

A
    

for all 1,i N . Hence, pair  ,i iE A , by [2, 18], is regular and causal. 

Furthermore, we know that det( ) det( )i i i isE A sE A   . Hence, det( )i isE A is not identical 

zero, or system (1) is regular and causal.  

Next, we will show that large-scale system (1) is stable. To the end, we propose the following 
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Lyapunov function: 1 2
1

( , ) ( , ) ( , )
N

k i k i k
i

V k x V k x V k x


     , where 

1

1 2
1,

( , ) ( ) ( ), ( , ) ( ) ( )
ij

N k

i k i i i i i i k j j j
j j i l k

V k x x k E PE x k V k x x l Q x l


   
   



   . 

Taking the difference variation of ( , )kV k x , we have 

1 1 1 1( , ) ( 1, ) ( , )

( 1) ( 1) ( ) ( )

( 1) ( ) ( 1) ( )
2 ( ) ( 1) ( )

i k i k i k

i i i i i i i i i i

i i i i i i i i i

i i i i i i i

V k x V k x V k x

E x k P E x k x k E PE x k

E x k E x k P E x k E x k
x k E P E x k E x k

   
            
             

     

  



 

 

1

2
1, 1 1,

1, 1,

( , ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ),
ij ij

N k N k

i k j j j j j j
j j i l k j j i l k

N N

j j j j ij j j ij
j j i j j i

V k x x l Q x l x l Q x l

x k Q x k x k Q x k

 

 



        

   

  

   

   

 
 

 

 

 
 

On the other hand, from (1), we can find some matrices , ,i i iX Y Z with appropriate dimension 

sattisfying the following equalities: 

1,
2 ( ) ( ) ( ) ( 1) ( ) ( ) 0;

N

i i i i i i i i i ij j ij
j j i

x k X A E x k E x k E x k A x k
 

              
 

1,
2 ( 1) ( ) ( ) ( ) ( 1) ( ) ( ) 0;

N

i i i i i i i i i i i i ij j ij
j j i

E x k E x k Y A E x k E x k E x k A x k
 

                     
 

 

1, 1,
2 ( ) ( ) ( ) ( 1) ( ) ( ) 0

N N

j ij ij i i i i i i i i ij j ij
j j i j j i

x k A Z A E x k E x k E x k A x k
   

              
     . 

Furthermore, 

 

1 1, 1
( ) ( ) ( 1) ( ) ( ).

N N N

j j j i i i
i j j i i

x k Q x k N x k Q x k
   

     

Setting 1 1 2 2 1 , 1 1 , 1( ) ( ) ( ) ( ) ( )i i i i i i i i i ix k x k x k x k x k    
               

( ) ( 1) ( )N iN i i i ix k E x k E x k        
 

 , then we have 



HPU2. Nat. Sci. Tech. 2023, 2(2), 11-21 

https://sj.hpu2.edu.vn                                                                                 17 

 

 

1 1 2
1

1

1 1

( , ) ( 1, ) ( , ) ( , ) ( , )

( 1) ( ) ( 1) ( )

2 ( ) ( 1) ( ) ( 1) ( ) ( ).

( ) (

N

k k k i k i k
i

N

i i i i i i i i i
i
N N

i i i i i i i i i i
i i

j ij j j

V k x V k x V k x V k x V k x

E x k E x k P E x k E x k

x k E P E x k E x k N x k Q x k

x k Q x










 

         

             

       

 



 





  



1 1, 1

1 1 1,

1

) 2 ( ) ( ) ( )

2 ( ) ( 1) ( ) 2 ( ) ( )

2 ( 1) ( ) ( ) ( )

2 ( 1) ( )

N N N

ij i i i i i
i j j i i
N N N

i i i i i i i i ij j ij
i i j j i
N

i i i i i i i i
i

i i i i i i i

k x k X A E x k

x k X E x k E x k x k X A x k

E x k E x k Y A E x k

E x k E x k Y E x

   

   



  

       

      

     

  

  









 

 

 

1

1 1,

1 1,

1 1,

1,

( 1) ( )

2 ( 1) ( ) ( )

2 ( ) ( ) ( )

2 ( ) ( 1) ( )

2 ( )

N

i i
i
N N

i i i i i ij j ij
i j j i
N N

j ij ij i i i i
i j j i
N N

j ij ij i i i i i
i j j i

j ij ij
j

k E x k

E x k E x k Y A x k

x k A Z A E x k

x k A Z E x k E x k

x k A



  

  

  



    

      

  

      

 


 

 

 









 

  

  

 

1 1,

1

( )

,

N N N

i ij j ij
i j i j j i
N

i i i
i

Z A x k

 
   





 

  







(1.6) 

in which 

, ,1 , 1 , 1 , , 1

1,1 1, 1 1, 1 1, 1, 1

1, 1 1, 1 1, 1, 1

1, 1 1, 1, 1

1, 1

i i i i i i
i i i i i i i i N i N

i i i i i
i i N N

i i i i
i i i i i N i Ni

i i i
i i i N i N

i
N N

     
    

   
  



  

  

      

    

 

 
 
  
 
 
     

   


      

 
 

       
 
 

       
 

,








 

 ,

,

, 1

,

, 1

1 ( ) ( ) ;
( ) ; 1,..., 1, 1,... ;

( ) ;
; 1,..., 1, 1,... ;

; 1,..., 1,

i
i i i i i i i i i
i
i k i ik i i i ik

i
i N i i i i i i

i
k k k ik i ik ik i ik

i
k N ik i ik i

N Q X A E A E X
X A A E Z A k i i N
E P A E Y X

Q A Z A A Z A k i i N
A Y A Z k i i

 



 







     
      
   
      
   

 



 

  

   1,... ;N
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1, 1

,

,

;
, 1,..., 1, 1,..., ; 2,..., 1, 1,..., , ;

0 on the other cases;

i
N N i i i

i
j k ik i ik
i
j k

P Y Y
A Z A j i i N k i i N j k





    
       




   

The inequality (2) gives 0, 1, ,i i N    and from (6), we obtain 

 , 0.kV k x   

This implies 

       1 1
1 0 01, , (1 ) 0, (1 ) 0,k T

k kV k x V k x V x V x  
       for all [0, ],k T  

where 

         

 
       

     

 
   

ij

1

0
1 1,

1
max max

1 1,min min

max

1,
min

0, 0 0

0 0

max 0

ij

N N

i i i i i j j j
i j j i l

N N
i i i j

i i i j j j
i j j i li j

i i i
i i ii N

i

V x x E PE x x l Q x l

E PE Q
x Rx x l R x l

R R

E PE
x R x

R



 


 







   



   



 
   
  
 
   
   
        

  

  





  


 


  

 
   

 
     

 
 

1

max

1, 1 1, 1min

max

1, 1min

max

01, min

0

max sup ( )

max 0 0

max sup

ij

N

i

N N
j

ij j j ji N i j j ii

N
i i i

i i ii N ii

j

i N i

Q
x R x

R

E PE
x R x

R

Q

R






  














          

 

   

        
        

        



 
















 

 
     

 

1 1,

max max
1 1 11, 1,

min min

( )

max 1 max : .

N N

j j j
i j j i

i i i i

i N i N
i i

x R x

E PE Q
N c c

R R

 

 
 

 

   

 

                        

 







 

So 

         
     

 
   
 
 

max

1,1 1min

max
11,

min

max 1
1 1 21,

min

max

max 1,

max (1 ) ,

N N
i

i i i i i ii Ni ii

i
ki N

i

i T

i N
i

R
x k Rx k x k Rx k x k Q x k

Q
R

V k x
Q
R

c c
Q








 


 







       
      
       

   

 

which completes the proof of the theorem.  
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Remark. It is notable that the proposed result is not true for 1N   (normal singular discrete-time 

systems). In [8], the authors solved the suboptimal control problem of finite-time H  control and 

guaranteed cost control for linear singular large-scale discrete-time systems with delays and bounded 
disturbance. In this paper,  building upon the results in [18] by Wu et al. for general discrete time 
systems, we showed the finite-time stability of the system (1) without disturbance and control 

function.   

4. Example 

Now, we give an example which illustrate the proposed method. Consider the large-scale 
discrete-time system with with N=3 includes 3 subsystems where  

1 2 3 1 2 3

12 13 21 23 31

5 1 1 4 3 0 3 0 3 1.8 3 1
; ; ; ; ; ;

0 0 0 0 3 0 1 3.8 1 2 1 4.1

1.5 0.3 1.5 1 0.5 0.5 1.1 1.2 0.5 0.2
; ; ; ; ;

2 1 0 1.1 1.5 0.9 0.4 1 1 1

E E E A A A

A A A A A

            
                             
         

                        

32 1 2 3

1.5 0 2 0 2 0 3 0
; ; ; .

5 0.9 0 2 0 3 0 3
A R R R

       
                 

 

The delays include 12 13 21 23 31 321; 3; 1; 2; 2; 3            and exist the matrices 

1 2 3

0 0 0 0 0 1
; ;

1 1 1 1 0 1
N N N

     
              

 satisfying 1 1 2 2 3 3 0.T T TN E N E N E    If take 

1 21; 14.3; 0.1; 10c c T    , by using Matlabs Control, we obtain the matrices solutions are  

1 2 3

0.1623    0.0286 0.1843     0.1454 0.7214    0.4649
; ; ;

-0.2192    0.2349 0.2645   0.0003 -0.1404    0.0574
X X X

     
       
     

 

1 2 3

0.0908   -0.0656 0.1143    0.0736 0.3155    0.0200
; ; ;

-0.0656    0.1421 0.0736    0.1506  0.0200    0.0869
Y Y Y

     
       
     

 

1 2 3

-0.0209      0.0365 0.0198    0.0197 -0.0275   -0.0551
; ; ;

0.0375   -0.0445 0.0113    0.0440  0.0446   -0.0844
Z Z Z

     
       
     

 

1 2 3

0.0571   -0.0485 0.0390    0.0353 0.2578    0.0571
; ; ;

 -0.0485    0.0676 0.0353    0.0868  0.0571    0.0173
P P P

     
       
     

 

1 2 3

5.9506    1.0527 4.4053    1.8358 3.2483   -0.6900
; ; ;

1.0527    2.3184 1.8358    3.1386  -0.6900    2.7042
Q Q Q

     
       
     

 

5. Conclusions 

This paper proposed some criteria for finite-time stability of singular large-scale discrete-time 

systems with interconnected delays. By using matrix transformations combining Lyapunov function 
method, some conditions are expressed as feasible linear matrices inequalities conditions. An example 

is given to demonstrate the validity of the proposed results. 
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