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Abstract 

This paper deals with synchronization analysis problem for a class of fractional-order neural networks 

with unbounded delays. Using the Lyapunov function method combined with fractional Halanay 

inequality, we derive a novel sufficient condition for asymptotic stability of the error system resulting 

in two neural networks are synchronized. The obtained conditions are given in terms of linear matrix 

inequalities, which therefore can be efficiently checked. A numerical example is proposed to illustrate 

the effectiveness of the obtained results. 
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1. Introduction 

 

Neural networks have received the attention of many scientists in recent years due to its wide 

applications in image processing, combinatorial optimization, pattern recognition, adaptive control, 

and other areas [3, 13]. Theory of fractional calculus has been shown to be superior to classical 

differential and integral calculation in simulating materials and processes with memory [4, 9, 10, 11]. 

So, the neural networks model described by the fractional-order differential equation systems can 

describe the characteristics and properties of dynamical systems more efficiently and accurately. As a 
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consequence, many important and interesting results on fractional-order neural networks have been 

reported and various issues have been studied by many authors [8, 14, 16].  

Synchronization is a procedure in which two or more systems react with each other, leading to a 

joint development in some of their dynamic characteristics. The synchronization problem of integer 

order dynamic systems has received a lot of attention over the years [1, 5, 12]. However, the 

synchronization problem of fractional order neural networks is still limited. The reason is that the 

fractional order differential equations do not produce a semi-group operator. Therefore, we cannot 

easily extend the results of the synchronization problem for integer neural networks to fractional order 

neural networks. 

This paper focuses on studying the synchronization analysis problem for a class of fractional 

order neural networks with unbounded delays by using Lyapunov functional method combined with 

fractional Halanay inequality and linear matrix inequality techniques. Compared with the previous 

work of fractional order neural networks [6], our result is more advantageous because the condition is 

given in the form of linear matrix inequalities, which can be effectively solved by various 

computational tools. 

The remainder of this paper is organized as follows: Section 2 gives the main concepts and 

lemmas.  Section 3 presents a synchronization scheme for fractional-order neural networks with 

unbounded delays. A numerical example is provided in Section 4 to illustrate the effectiveness of the 

proposed method.  

Notations: ℝ𝒏 and ℝ𝒏×𝒎 stand for the 𝒏-dimensional vector space and real (𝒏 × 𝒎) matrices, 

respectively. For any matrix 𝑺 ∈ ℝ𝒏×𝒏, 𝑺 > 𝟎(𝑺 < 𝟎) means that it is positive-definite (negative-

definite matrix) respectively, if 𝑺 = 𝑺𝑻 and 𝒙𝑻𝑺𝒙 > 𝟎 (𝒙𝑻𝑺𝒙 < 𝟎), ∀𝒙 ∈ ℝ𝒏. 𝑺𝑻denotes the 

transposed matrix of 𝑺. The symbol ∗ stands for symmetric block elements in a matrix. The operator 

𝐝𝐢𝐚𝐠 {.} 𝐫𝐞𝐩𝐫𝐞𝐬𝐞𝐧𝐭𝐬 𝐚 diagonal matrix. 𝐬𝐲𝐦 (𝑷) stands for 𝑷 + 𝑷𝑻, 

⟨,⟩ 𝐫𝐞𝐩𝐫𝐞𝐬𝐞𝐧𝐭𝐬 𝐭𝐡𝐞 𝐢𝐧𝐧𝐞𝐫 𝐩𝐫𝐨𝐝𝐮𝐜𝐭. 

2. Problem statement and preliminaries 

Firstly, we introduce some concepts and properties of the fractional calculus, which are necessary 

for this present work. 

Definition 1. ([9]) The Riemann-Liouville fractional integral and derivative of order 𝛼 > 0 of a 

function 𝑥(𝑡) are defined as follows, respectively 

𝐼𝑡
𝛼𝑥(𝑡) =

1

Γ(𝛼)
∫  

𝑡

𝑎

  (𝑡 − 𝑠)𝛼−1𝑥(𝑠)𝑑𝑠, 𝑡 ≥ 0,

 0
𝑅𝐷𝑡

𝛼𝑥(𝑡) =
𝑑𝑛

𝑑𝑡𝑛
(𝐼𝑡

𝑛−𝛼𝑥(𝑡)), 𝑡 ≥ 0,

 

where 𝑛 = [𝛼] + 1, Γ(.) is the gamma function, Γ(𝑠) = ∫0

∞
 𝑒−𝑡𝑡𝑠−1𝑑𝑡, 𝑠 > 0. 

Definition 2. ([9]) The Caputo derivative of order 𝛼 > 0 is defined by 

 0
𝐶𝐷𝑡

𝛼𝑥(𝑡) =  0
𝑅𝐷𝑡

𝛼 [𝑥(𝑡) − ∑  

𝑛−1

𝑘=0

 
𝑥(𝑘)(0)

𝑘!
𝑡𝑘], 

where 𝑛 = [𝛼] + 1. 

Particularly, for 0 < 𝛼 < 1, 
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 0
𝐶𝐷𝑡

𝛼𝑥(𝑡) =  0
𝑅𝐷𝑡

𝛼[𝑥(𝑡) − 𝑥(0)]. 

Next, the following useful properties of fractional calculus are given, which are used in this 

paper. 

Property 1. ([9]) If 𝑥(. ) ∈ 𝐿1[0,+∞) and 0 < 𝛼 < 1, then 

𝐼𝑡
𝛼( 0

𝐶𝐷𝑡
𝛼𝑥(𝑡)) = 𝑥(𝑡) − 𝑥(0). 

Property 2. ([9]) If 𝑥(. ) ∈ 𝐶[0, 𝑇], then we have 

𝐼𝑡
𝛼1(𝐼𝑡

𝛼2𝑥(𝑡)) = 𝐼𝑡
𝛼2(𝐼𝑡

𝛼1𝑥(𝑡)) = 𝐼𝑡
𝛼1+𝛼2(𝑥(𝑡)), ∀𝑡 ≥ 0, 𝛼1, 𝛼2 > 0. 

Consider the following two fractional-order neural networks  

{
 0
𝐶𝐷𝑡

𝛼𝑥(𝑡) = −𝐴𝑥(𝑡) + 𝐵𝑓(𝑥(𝑡)) + 𝐶𝑔(𝑥(𝑡 − 𝜏(𝑡)),

𝑝(𝑡) = 𝐻𝑥(𝑡),                                                                             (1)

{
 0
𝐶𝐷𝑡

𝛼𝑦(𝑡) = −𝐴𝑦(𝑡) + 𝐵𝑓(𝑦(𝑡)) + 𝐶𝑔(𝑦(𝑡 − 𝜏(𝑡)) + 𝑊𝑢(𝑡),

𝑞(𝑡) = 𝐻𝑦(𝑡),
                                                         (2)

 

where 𝛼 ∈ (0,1) is the fractional order of the systems, 𝑥(𝑡) ∈ ℝ𝑛 is the state vector of the system 

(1), 𝑦(𝑡) ∈ ℝ𝑛 is the state vector of the system (2), 𝑢(𝑡) ∈ ℝ𝑘 is the control vector, 𝑝(𝑡), 𝑞(𝑡) ∈ ℝ𝑙 

are the output vectors, 𝑓(. ) = (𝑓1(. ), . … , 𝑓𝑚(. )) ∈ ℝ𝑚, 𝑔(. ) = (𝑔1(. ), . … , 𝑔𝑚(. )) ∈ ℝ𝑚 are 

activation functions, the timevarying function 𝜏(𝑡) satisfying 𝑡 − 𝜏(𝑡) ≥ −ℎ for all 𝑡 ≥ 0 and 𝑡 −

𝜏(𝑡) → ∞ as 𝑡 → ∞. 𝐴 ∈ ℝ𝑛×𝑛 is the diagonal positive definite matrix, 𝐵 ∈ ℝ𝑛×𝑚 is the connection 

weight matrix, 𝐶 ∈ ℝ𝑛×𝑚 is the delayed connection weight matrix of the model and 𝑊 ∈ ℝ𝑛×𝑘 , 𝐻 ∈

ℝ𝑙×𝑛 are known real constant matrices. 

Assumption 1. The activation functions 𝑓𝑖(.) and 𝑔𝑖(. ) (𝑖 = 1,2, … ,𝑚) are continuous, 𝑓𝑖(0) =

𝑔𝑖(0) = 0 and satisfy the following conditions on ℝ for some known positive scalars 𝑙𝑖, 𝑘𝑖(𝑖 =

1,2,… , 𝑛) 

𝑙𝑖
− ≤

𝑓𝑖(𝑎) − 𝑓𝑖(𝑏)

𝑎 − 𝑏
≤ 𝑙𝑖

+,                                                                                                                               (3)

𝑡𝑖
− ≤

𝑔𝑖(𝑎) − 𝑔𝑖(𝑏)

𝑎 − 𝑏
≤ 𝑡𝑖

+,                                                                                                                            (4)

 

∀𝑎, 𝑏 ∈ ℝ, 𝑎 ≠ 𝑏. 

Set 

𝐿1 = diag {𝑙1
−, 𝑙2

−, … , 𝑙𝑛
−}, 𝐿2 = diag {𝑙1

+, 𝑙2
+, … , 𝑙𝑛

+},

𝑇1 = diag {𝑡1
−, 𝑡2

−, … , 𝑡𝑛
−}, 𝑇2 = diag {𝑡1

+, 𝑡2
+, … , 𝑡𝑛

+}.
 

We define the error as 𝑒(𝑡) = 𝑥(𝑡) − 𝑦(𝑡), 𝑧(𝑡) = 𝑝(𝑡) − 𝑞(𝑡), and set 𝑝(𝑡) = 𝑓(𝑥(𝑡)) −

𝑓(𝑦(𝑡)), q(𝑡 − 𝜏(𝑡)) = 𝑔(𝑥(𝑡 − 𝜏(𝑡)) − 𝑔(𝑦(𝑡 − 𝜏(𝑡), the relevant error system can be formulated by 

{
 0
𝐶𝐷𝑡

𝛼𝑒(𝑡) = −𝐴𝑒(𝑡) + 𝐵𝑝(𝑡) + 𝐶𝑞(𝑡 − 𝜏(𝑡)) − 𝑊𝑢(𝑡),

𝑧(𝑡) = 𝐻𝑒(𝑡).
                                                                            (5) 

With the control law 𝑢(𝑡) = 𝐾𝑧(𝑡) = 𝐾𝐻𝑒(𝑡), the corresponding closed-loop system of the 

system (5) is 

{
 0
𝐶𝐷𝑡

𝛼𝑒(𝑡) = (−𝐴 − 𝑊𝐾𝐻)𝑒(𝑡) + 𝐵𝑝(𝑡) + 𝐶𝑞(𝑡 − 𝜏(𝑡)),

𝑧(𝑡) = 𝐻𝑒(𝑡).
                                                                          (6) 

Definition 3. Systems (1) and (2) are said to be completely synchronized if the error vector 𝑒(𝑡) 
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converges to zero, that is, 

lim
𝑡→∞

  ∥ 𝑒(𝑡) ∥= lim
𝑡→∞

  ∥ 𝑥(𝑡) − 𝑦(𝑡) ∥= 0. 

Below, we recall several technical lemmas for deriving the main results.  

Lemma 1. ([15]) Let 𝑉:ℝ𝑛 → ℝ+be a convex and differentiable function on ℝ𝑛 such that 

𝑉(0) = 0 and 𝛼 ∈ (0,1), 𝑥(𝑡) ∈ ℝ𝑛 be a continuous function. We get 

 0
𝐶𝐷𝑡

𝛼𝑉(𝑥(𝑡)) ≤ ⟨∇𝑉(𝑥(𝑡)),  0
𝐶𝐷𝑡

𝛼𝑥(𝑡))⟩, 𝑡 ≥ 0 

where ∇𝑉(.) is the gradient of the function 𝑉 and ⟨,⟩ is the inner product. 

Lemma 2. (Fractional-order Hanalay inequality, [7]) Let 𝛼 ∈ (0,1) and 𝑉: [−ℎ,∞] → ℝ+be 

continuous on [0,∞) and bounded on [−ℎ, 0]. Asume that 𝜏(. ) ∈ 𝐶(ℝ+, ℝ+)satisfies 𝜏(𝑡) ≤ 𝑡 + ℎ for 

some fixed ℎ > 0, 𝑡 − 𝜏(𝑡) → ∞ as 𝑡 → ∞. For some scalars 𝜆 > 𝜅 > 0, the following inequality 

holds 

 0
𝐶𝐷𝑡

𝛼𝑉(𝑡) ≤ −𝜆𝑉(𝑡) + 𝜅 sup
−𝜏(𝑡)≤𝜎≤0

 𝑉(𝑡 + 𝜎), 

for all 𝑡 ≥ 0. Then 

lim
𝑡→∞

 𝑉(𝑡) = 0. 

Lemma 3. ([2]) Given 𝐸 ∈ ℝ𝑝×𝑝, 𝐺 ∈ ℝ𝑝×𝑞 , 𝑍 ∈ ℝ𝑞×𝑝, 𝑈 ∈ ℝ𝑞×𝑞 and scalar 𝜁. Inequality 

𝐸 + 𝑍𝑇𝐺𝑇 + 𝐺𝑍 < 0. 

is fulfilled if the following condition holds 

[
𝐸 𝜁𝐺 + 𝑍𝑇𝑈𝑇

∗ −𝜁𝑈 − 𝜁𝑈𝑇] < 0. 

3. The synchronization scheme for fractional-order neural networks with unbounded delays 

The following theorem presents a sufficient condition for the error system (6) to be 

asymptotically stable resulting in the system (1) and the system (2) are synchronized. 

Theorem 1. The system (6) is asymptotically stable if there exist a symmetric positive definite 

matrix 𝑃 ∈ ℝ𝑛×𝑛, two positive definite diagonal matrix 𝛴, 𝛥 ∈ ℝ𝑚×𝑚, a non-singular matrix 𝛬 ∈

ℝ𝑛×𝑘, a matrix 𝑈 and two positive numbers 𝜆 > 𝜅 such that the following condition holds 

[
 
 
 
 
𝛺11 0 𝑃𝐵 + (𝐿1 + 𝐿2)𝛴 𝑃𝐶 𝛺15

∗ −𝜅𝑃 − 2𝑇1𝛥𝑇2 0 (𝑇1 + 𝑇2)𝛥 0
∗ ∗ −2𝛴 0 0
∗ ∗ ∗ −2𝛥 0
∗ ∗ ∗ ∗ 𝛺55]

 
 
 
 

< 0,                                                       (7) 

where 

𝛺11 = −𝑃𝐴 − 𝐴𝑇𝑃 − 2𝐿1𝛴𝐿2 + 𝜆𝑃 − 𝑊𝑈𝐻 − 𝐻𝑇𝑈𝑇𝑊𝑇 ,

𝛺15 = 𝜁(𝑊𝛬 − 𝑃𝑊) + 𝐻𝑇𝑈𝑇 ,

𝛺55 = −𝜁𝑈 − 𝜁𝑈𝑇 .

 

In addition, the control gain matrix is given by 𝐾 = 𝛬−1𝑈. 

Proof. Consider the Lyapunov function candidate for the system (6) 

𝑉(𝑒(𝑡)) = 𝑒𝑇(𝑡)𝑃𝑒(𝑡) 

where 𝑃 ∈ ℝ𝑛×𝑛 is a symmetric positive definite matrix. 
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Using Lemma 1, we calculate 𝛼(0 < 𝛼 < 1) Caputo derivative of 𝑉(𝑒(𝑡)) along the trajectories 

of system (6) as follows 

 0
𝐶𝐷𝑡

𝛼𝑉(𝑒(𝑡)) ≤ 2𝑒𝑇(𝑡)𝑃 0
𝐶𝐷𝑡

𝛼𝑒(𝑡)                                                                     

= 2𝑒𝑇(𝑡)𝑃[(−𝐴 − 𝑊𝐾𝐻)𝑒(𝑡) + 𝐵𝑝(𝑡) + 𝐶𝑞(𝑡 − 𝜏(𝑡))]                        

= 𝑒𝑇(𝑡)(−𝑃𝐴 − 𝐴𝑇𝑃 − 𝑃𝑊𝐾𝐻 − 𝐻𝑇𝐾𝑇𝑊𝑇𝑃)𝑒(𝑡)                                  

+2𝑒𝑇(𝑡)𝑃𝐵𝑝(𝑡)

+ 2𝑒𝑇(𝑡)𝑃𝐶𝑞(𝑡 − 𝜏(𝑡)).                                                                                                         (8) 

From (3), it is easy to derive that 

[𝑝𝑇(𝑡) − 𝑒𝑇(𝑡)𝐿1][𝑝(𝑡) − 𝐿2 𝑒(𝑡)] ≤ 0.                                                                                                          (9) 

Therefore, for any positive definite diagonal matrix Σ, we always have 

−2𝑝𝑇(𝑡)Σ𝑝(𝑡) + 2𝑒𝑇(𝑡)(𝐿1 + 𝐿2)Σ𝑝(𝑡) − 2𝑒𝑇(𝑡)𝐿1Σ𝐿2𝑒(𝑡) ≥ 0.                                                        (10) 

Similarly, inequality (4) results 

−2𝑞𝑇(𝑡 − 𝜏(𝑡))Δ𝑞(𝑡 − 𝜏(𝑡)) + 2𝑒𝑇(𝑡 − 𝜏(𝑡))(𝑇1 + 𝑇2)Δ𝑞(𝑡 − 𝜏(𝑡)) 

−2𝑒𝑇(𝑡 − 𝜏(𝑡))𝑇1Δ𝑇2𝑒(𝑡 − 𝜏(𝑡)) ≥ 0,                                                                                                 (11)     

where diagonal matrix Δ > 0.  

From conditions (8)-(11), we obtain 

 0
𝐶𝐷𝑡

𝛼𝑉(𝑒(𝑡))  ≤ 𝑒𝑇(𝑡)(−𝑃𝐴 − 𝐴𝑇𝑃 − 𝑃𝑊𝐾𝐻 − 𝐻𝑇𝐾𝑇𝑊𝑇𝑃)𝑒(𝑡)

 +2𝑒𝑇(𝑡)𝑃𝐵𝑝(𝑡) + 2𝑒𝑇(𝑡)𝑃𝐶𝑞(𝑡 − 𝜏(𝑡)) − 2𝑝𝑇(𝑡)Σ𝑝(𝑡) 

 +2𝑒𝑇(𝑡)(𝐿1 + 𝐿2)Σ𝑝(𝑡) − 2𝑒𝑇(𝑡)𝐿1Σ𝐿2𝑒(𝑡)

 −2𝑞𝑇(𝑡 − 𝜏(𝑡))Δ𝑞(𝑡 − 𝜏(𝑡)) + 2𝑒𝑇(𝑡 − 𝜏(𝑡))(𝑇1 + 𝑇2)Δ𝑞(𝑡 − 𝜏(𝑡))

−2𝑒𝑇(𝑡 − 𝜏(𝑡))𝑇1Δ𝑇2𝑒(𝑡 − 𝜏(𝑡))

 = 𝑒𝑇(𝑡)(−𝑃𝐴 − 𝐴𝑇𝑃 − 𝑃𝑊𝐾𝐻 − 𝐻𝑇𝐾𝑇𝑊𝑇𝑃 − 2𝐿1Σ𝐿2)𝑒(𝑡)

+2𝑒𝑇(𝑡)(𝑃𝐵 + (𝐿1 + 𝐿2)Σ)𝑝(𝑡) + 2𝑒𝑇(𝑡)𝑃𝐶𝑞(𝑡 − 𝜏(𝑡))

 

                            +2𝑒𝑇(𝑡 − 𝜏(𝑡))(𝑇1 + 𝑇2)Δ𝑞(𝑡 − 𝜏(𝑡))      

 −2𝑝𝑇(𝑡)Σ𝑝(𝑡) − 2𝑞𝑇(𝑡 − 𝜏(𝑡))Δ𝑞(𝑡 − 𝜏(𝑡))                  

−2𝑒𝑇(𝑡 − 𝜏(𝑡))𝑇1Δ𝑇2𝑒(𝑡 − 𝜏(𝑡)).                                     

Hence, with constants 𝜆 > 𝜅 > 0, we have 

 0
𝐶𝐷𝑡

𝛼𝑉(𝑒(𝑡)) + 𝜆𝑉(𝑒(𝑡)) − 𝜅 sup
−𝜏(𝑡)≤𝜎≤0

 𝑉(𝑒(𝑡 + 𝜎))

 ≤ 𝑒𝑇(𝑡)(−𝑃𝐴 − 𝐴𝑇𝑃 − 𝑃𝑊𝐾𝐻 − 𝐻𝑇𝐾𝑇𝑊𝑇𝑃 − 2𝐿1Σ𝐿2)𝑒(𝑡)

 + 2𝑒𝑇(𝑡)(𝑃𝐵 + (𝐿1 + 𝐿2)Σ)𝑝(𝑡) + 2𝑒𝑇(𝑡)𝑃𝐶𝑞(𝑡 − 𝜏(𝑡))

 + 2𝑒𝑇(𝑡 − 𝜏(𝑡))(𝑇1 + 𝑇2)Δ𝑞(𝑡 − 𝜏(𝑡))

−2𝑝𝑇(𝑡)Σ𝑝(𝑡) − 2𝑞𝑇(𝑡 − 𝜏(𝑡))Δ𝑞(𝑡 − 𝜏(𝑡)) − 2𝑒𝑇(𝑡 − 𝜏(𝑡))𝑇1Δ𝑇2𝑒(𝑡 − 𝜏(𝑡))

 +𝜆𝑒𝑇(𝑡)𝑃𝑒(𝑡) − 𝜅 sup
−𝜏(𝑡)≤𝜎≤0

 𝑒𝑇(𝑡 + 𝜎)𝑃𝑒(𝑡 + 𝜎)

  ≤ 𝑒𝑇(𝑡)(−𝑃𝐴 − 𝐴𝑇𝑃 − 𝑃𝑊𝐾𝐻 − 𝐻𝑇𝐾𝑇𝑊𝑇𝑃 − 2𝐿1Σ𝐿2 + 𝜆𝑃)𝑒(𝑡)

 +2𝑒𝑇(𝑡)(𝑃𝐵 + (𝐿1 + 𝐿2)Σ)𝑝(𝑡) + 2𝑒𝑇(𝑡)𝑃𝐶𝑞(𝑡 − 𝜏(𝑡))
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+2𝑒𝑇(𝑡 − 𝜏(𝑡))(𝑇1 + 𝑇2)Δ𝑞(𝑡 − 𝜏(𝑡))                                                              

 −2𝑝𝑇(𝑡)Σ𝑝(𝑡) − 2𝑞𝑇(𝑡 − 𝜏(𝑡))Δ𝑞(𝑡 − 𝜏(𝑡))

 + 𝑒𝑇(𝑡 − 𝜏(𝑡))(−𝜅𝑃 − 2𝑇1Δ𝑇2)𝑒(𝑡 − 𝜏(𝑡)) ≤ 𝜂𝑇(𝑡)Ω𝜂(t),                                     

 where
 𝜂(𝑡) = [𝑒𝑇(𝑡)       𝑒𝑇(𝑡 − 𝜏(𝑡))      𝑝𝑇(𝑡)      𝑞𝑇(𝑡 − 𝜏(𝑡))]𝑇 ,

 Ω = [

Ω‾ 11 0 𝑃𝐵 + (𝐿1 + 𝐿2)Σ 𝑃𝐶

∗ −𝜅𝑃 − 2𝑇1Δ𝑇2 0 (𝑇1 + 𝑇2)Δ
∗ ∗ −2Σ 0
∗ ∗ ∗ −2Δ

] ,

Ω‾ 11 = −𝑃𝐴 − 𝐴𝑇𝑃 − 𝑃𝑊𝐾𝐻 − 𝐻𝑇𝐾𝑇𝑊𝑇𝑃 − 2𝐿1Σ𝐿2 + 𝜆𝑃.

 

To solve the problem we need to eliminate the nonlinearities related to the control gain 𝐾. Set 

𝐾 = Λ−1𝑈, where Λ is a non-singular matrix, we have 

𝑃𝑊𝐾𝐻 = 𝑃𝑊Λ−1𝑈𝐻 = (𝑃𝑊 − 𝑊Λ)Λ−1𝑈𝐻 + 𝑊𝑈𝐻 

Then it is easy to see 

 

 = [

Ω11 0 𝑃𝐵 + (𝐿1 + 𝐿2)Σ 𝑃𝐶

∗ −𝜅𝑃 − 2𝑇1Δ𝑇2 0 (𝑇1 + 𝑇2)Δ
∗ ∗ −2Σ 0
∗ ∗ ∗ −2Δ

]

 + sym([
𝑊Λ − 𝑃𝑊

0
0

]Λ−1[𝑈𝐻 0 0]) ,

                                     

where Ω11 = −𝑃𝐴 − 𝐴𝑇𝑃 − 2𝐿1Σ𝐿2 + 𝜆𝑃 − 𝑊𝑈𝐻 − 𝐻𝑇𝑈𝑇𝑊𝑇 . 

Applying Lemma 3, the inequality Ω < 0 can be guaranteed by the following condition 

[
 
 
 
 
Ω11 0 𝑃𝐵 + (𝐿1 + 𝐿2)Σ 𝑃𝐶 Ω15

∗ −𝜅𝑃 − 2𝑇1Δ𝑇2 0 (𝑇1 + 𝑇2)Δ 0
∗ ∗ −2Σ 0 0
∗ ∗ ∗ −2Δ 0
∗ ∗ ∗ ∗ Ω55]

 
 
 
 

< 0, 

where Ω15 = 𝜁(𝑊Λ − 𝑃𝑊) + 𝐻𝑇𝑈𝑇 , Ω55 = −𝜁𝑈 − 𝜁𝑈𝑇 

Therefore, the conditions (8) implies Ω < 0. Thus, 

 0
𝐶𝐷𝑡

𝛼𝑉(𝑒(𝑡)) + 𝜆𝑉(𝑒(𝑡)) − 𝜅 sup
−𝜏(𝑡)≤𝜎≤0

 𝑉(𝑒(𝑡 + 𝜎)) ≤ 0 
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Based on Lemma 2, it implies that 

lim
𝑡→+∞

 𝑉(𝑒(𝑡)) = 0. 

Then, the system (6) is asymptotically stable, which the system (1) and the system (2) are said to 

be completely synchronized. 

Remark 1. In recent times, the synchronization issue of the chaotic systems has raised wide 

concerns from scientists around the world. However, these results are mainly studied for integer order 

dynamic systems [1, 5, 12]. For the fractional order neural networks, constructing a positive definite 

function and calculating its derivative is still difficult. Therefore, how to design synchronization 

controller for the system has been a challenge. This paper considers the synchronization scheme for 

fractional order neural networks with unbounded delays by using the lyapunov function method 

combined with fractional Halanay inequality and LMI techniques. This makes the key contribution of 

this paper. 

Remark 2. Synchronization scheme of fractional order neural networks with unbounded delays 

has been studied by B.B. He and H.C. Zhou in 2021 [6]. However, unlike our work, studying the 

problem using the Lyapunov function method combined with the LMI technique, the authors in [6] 

have investigated the synchronization analysis of fractional order neural networks using Laplace 

transform. Compared with the above work, our result is more advantageous because the condition is 

given in the form of linear matrix inequalities. So we can easily solve numerically by using the 

MATLAB software.  

4. Example 

Consider the system (6) with parameters described as: 𝛼 ∈ (0,1), 

𝐴 = (
1 0
0 2

) , 𝐵 = (
2 1
2 −3

) ,𝑊 = (
2 3
1 −2

), 

𝐻 = (
3 1
2 −1

) , 𝐶 = (
1 0

−1 2
) 

𝑝(𝑡) = 0.5(|𝑒(𝑡) + 1| − |𝑒(𝑡) − 1|),  

𝑞(𝑡 − 𝜏(𝑡)) = 0.5(|𝑒(𝑡 − 𝜏(𝑡)) + 1| − |𝑒(𝑡 − 𝜏(𝑡)) − 1|),  

It's easy to see that 𝐿1 = 𝑇1 = 0, 𝐿2 = 𝑇2 = 1. 

Choosing 𝜆 = 1, 𝜅 = 0.5, 𝜁 = 1. 

Using LMI Control Toolbox in MATLAB, the condition (7) in Theorem 1 is feasible with 

𝑃 = (
1.16 −0.008

−0.008 0.745
) , Σ = (

2.004 0
0 2.02

) , Δ = (
0.6132 0

0 0.4029
), 

Λ = (
−0.0016 0.6824
0.2017 0.5699

) , U = (
0.7956 −0.3389

−0.3389 0.7181
). 

According to Theorem 1, the error system (6) is asymptotically stable with the feedback 

controller gain  

K = (
−4.9405 4.93
1.154 −0.4848

). 

Therefore, the system (1) and the system (2) are said to be completely synchronized. 

5. Conclusions 

This research has studied the synchronization analysis problem using an output feedback control 

for a class of fractional-order neural networks with unbounded delays. The fractional Halanay 
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inequality in conjunction with the Lyapunov function approach has allowed for the determination of a 

sufficient condition to guarantee synchronization of the systems under consideration. Additionally, a 

example is provided to demonstrate the viability and efficacy of the suggested approach. 
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