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Abstract 

 Let R k H=  be a numerical semigroup ring over a field k and ( )gr Rm  is the associated graded ring 

of R .  In this paper, we show that ( )gr Rm  is a Cohen-Macaulay ring, provided H has minimal 

multiplicity. As a consequence, we conclude that the numerical semigroup ring R k H=  of minimal 

multiplicity is a Koszul ring, i.e., the residue field k has a ( )gr R −m linear free resolution.  
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Tính Koszul của vành nửa nhóm số có bội tối tiểu 

Đỗ Văn Kiêna*, Nguyễn Hồng Ngọca 

aTrường Đại học Sư phạm Hà Nội 2, Vĩnh Phúc, Việt Nam 

Tóm tắt 

Cho R k H=  là một vành nửa nhóm số trên một trường k và ( )gr Rm  là vành phân bậc liên kết của 

R. Trong bài báo này, chúng tôi chỉ ra rằng vành phân bậc ( )gr Rm  là một vành Cohen-Macaulay nếu 
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nửa nhóm H có bội tối tiểu. Chúng tôi áp dụng kết quả này để chỉ ra rằng vành nửa nhóm số có bội tối 

tiểu R k H=  là một vành Koszul, tức là trường thặng dư k có một giải tự do tuyến tính trên ( )gr .Rm  

Từ khóa: Vành Cohen-Macaulay; Vành Koszul; Vành nửa nhóm số; Vành phân bậc liên kết. 

1. Introduction 

Let k be a field and ( ),R m  be a standard graded k-algebra with the graded maximal ideal m.  We 

say that R is Koszul (or a Koszul algebra) if the residue field Rk =
m

 has a linear free resolution over 

R of the form 

( )                                     ( ) ( ) ( )2 12 1iR i R R R k
  

→ − → → − → − → → . 

This means that the matrices describing the differentials of k  in ( )  have non-zero entries only 

linear forms. Koszul algebras were originally introduced by Priddy ([13]) in his study of the 

homological properties of graded algebras. We refer to the survey articles/books ([5, 7, 12]) for more 

details. There are important conections between the Koszulness and the structure of non-commutative 

algebra ( )Ext ,R k k , i.e., the Yoneda-Hopf algebra of k. Among other things, Koszul algebras are also 

important because they give an interesting class of quadratic algebras with rational Poincaré series.  

Note that if R  is a standard graded k -algebra, then there is a presentation 
 1,..., nk X X

R
I

 , 

where  1,..., nk X X is a polynomial ring. We call I  the defining ideal of R . Then the condition that k  

has a linear resolution over R  is equivalent to the fact that the Betti graded numbers ( )ij 0R k =  for all 

j i . In particular, ( )2j 0R k =  for all 2j  . This implies that whenever R  is Koszul then I  is 

quadratics, that is generated by homogeneous polynomials of degree 2. The converse does not hold in 

general. For instance, the ring   ( )2 2 2 2, , , / , , , ,R k X Y Z U X Y Z U XY XZ XU= + +  has ( )34 2 0R k =   

which implies that R is not Koszul, while ( )2 2 2 2, , , ,I X Y Z U XY XZ XU= + +  is quadratic.  

Nevertheless, it is also well-known that (see [12, Theorem 34.12]) if I  has a quadratic Gröbner basis 

then R  is Koszul. 

In this survey we investigate the Koszul property of the associated graded ring of a numerical 

semigroup ring. The paper is organized as follows. In Section 2, we will begin with some 

preliminaries on numerical semigroups of minimal multiplicity that we need in the paper. Section 3 

consists of a survey on Koszul filtration, an ffective tool to prove an algebra to be Koszul. In the last 

section, we give the main results of the paper. More precisely, we show that the associated graded 

rings of numerical semigroup rings of minimal multiplicity is Cohen-Macaulay. As an application, we 

prove that numerical semigroup rings of minimal multiplicity is Koszul. We also provide a few 

examples to illustrate this result. 

2. Preliminaries 

2.1. Numerical semigroups of minimal multiplicity 

Let 1 2, ,..., na a a be a sequence of positive integers such that gcd 1 2( , ,..., ) 1na a a = . Let 

https://sj.hpu2.edu.vn/
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1 2

1

, , , 0 1
n

n i i i

i

H a a a c a c for all i n
=

 
= =     

 
 . 

         Then H is a submonoid of the additive monoid and H has a finite complement in . We call 

H the numerical semigroup generated by 1 2, , , na a a . The system  1 2, ,..., na a a is said to be minimal 

if for every 1 , ii n a  can not be written as a combination of    1 2, ,..., \n ia a a a  with integer 

coefficients. In what follows, let us denote H a numerical semigroup minimally generated by n 

elements. There are a few invariants of H as follows. 

Definition 2.1.  

(1) The embedding dimension of H denoted by edim( H ) is the cardinality of the minimal set of 

generators of ,H i.e., edim( H ) = n . 

(2) The multiplicity of ,H denote by ( ),e H  is defined to be the smallest non-zero element of ,H  

i.e., ( ) 1.e H a=  

(3) The Frobenius number of ,H  denoted by ( )F S  to be max ( )\ S . 

(4) The set of gaps of ,H  denoted by ( )G S to be \ H . 

(5) The genus of ,H  denoted by ( )g S  to be the cardinality of ( )G S .  

There is an interesting relation between the embedding dimension and the multiplicity that 

( ) ( )edim H e H  (see [4, Proposition 2.10]). The semigroup H that attains this bound is called the 

minimal multiplicity or the maximal embedding dimension.  

 Let a H be a nonzero element. The Apéry set of H  with respect to a is defined by Ap ( ),H a

 |h H h a H=  −  . We summarize several characterizations of the numerical semigroup of minimal 

multiplicity in the following proposition. 

Proposition 2.2 (see [4]). The following conditions are equivalent. 

1) H  has minimal multiplicity. 

2) For all ,x y H  such that ( )x y e H   then ( )  \ 0x y e H H+ −  . 

3) Ap ( )  1 2, 0, ,..., nH a a a= . 

4) ( ) 1

21

11

2

n

i

i

a
g S a

a =

−
= − . 

2.2. Numerical semigroup rings and their associated graded rings 

Let 
1 2, ,..., nH a a a=  be a numerical semigroup of embedding dimension n. Let k be a field and 

1 ,..., naaR k H k t t= =  is a subring of the formal power series ring k t . Then R  

is a Noetherian local domain of dimension 1 with maximal ideal ( )1 ,..., naat t=m . We 

call R  the semigroup ring associated to .H  It is easy to see that ( ) ( ), edim( ) edim( ),e H e R H R= =

whence H has minimal multiplicity if and only if R has minimal multiplicity. A classical result 

connecting properties of the semigroup to properties of the ring due to Kunz [10] states that R  is 

https://sj.hpu2.edu.vn/
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Gorenstein if and only if H  is symmetric. Others have linked properties of the semigroup to 

properties of the associated graded ring of R, ( )
10

gr
i

ii
R

+
= m

m

m
 which is a standard graded ring of 

dimension 1. Let ix denote the image of ia
t  in 2

m
m

 for all i . Then ( )  1gr ,..., nR k x xm  where a 

“monomial” 1

1 ... ncc

nx x  is non-zero if and only if 
1 1

maxdeg
n n

i i i

i i

c c a
= =

 
=  

 
  . If 1

1 ... 0ncc

nx x   then 

1 1

1 1... ...n nc dc d

n nx x x x=  if and only if 
1 1

n n

i i

i i

c d
= =

=   and 
1 1

n n

i i i i

i i

c a d a
= =

=  . Here, for h H , 

( )
1 1

maxdeg max
n n

i i i

i i

h c h c a
= =

 
= = 

 
  .  

García ([8]) showed the following interesting result. 

Theorem 2.3 ([8], Theorem 7).  Let 1 ,..., naaR k t t=  be a numerical semigroup ring. Then 

( )gr Rm  is Cohen-Macaulay if and only if 1x  is a non-zero divisor in ( )gr Rm . 

Several authors tried to find some classes of semigroup rings such that their associated graded 

rings are Cohen–Macaulay or at least have non-decreasing Hilbert function. D’Anna, Micale and 

Sammartano in [17, 18] characterized when ( )gr Rm  is Buchsbaum/complete intersection. For the case 

where the embedding dimension is 3, Robbiano and Valla [14] gave necessary and sufficient 

conditions on the generators of the defining ideal for the associated graded ring to be a complete 

intersection and for it to be Cohen-Macaulay. 

Note that R  and its associated graded ring have the same residue field. We say that R  is Koszul 

if ( )gr Rm  is a Koszul algebra, that is, the residue field has a linear free resolution over ( )gr Rm . 

3. Koszul filtrations  

A useful tool to attack the Koszulness is through Koszul filtrations. Concretely, one possible way 

to affirm the Koszulness of an algebra is to show that it admits a Koszul filtration. We first recall the 

notion of Koszul filtrations introduced by Conca, Trung and Valla in [6]. 

Definition 3.1.  Let G  be a standard graded ring. A family  of ideals of G  is said to be a 

Koszul filtration of G  if: 

1) Every ideal I   is generated by linear forms. 

2) The ideal ( )0  and the maximal graded ideal m  of G  belong to . 

3) For every I   different from ( )0 ,  there exists J   such that J I , I
J

 is cyclic and 

:J I  . 

In [6], it is proved that all the ideals belonging to such a filtration have a linear free resolution 

over G  and in particular, since the graded maximal ideal ,m G  will be a Koszul algebra. Using 

the Koszul filtration we have the following interesting fact. 

Lemma 3.2.  Let I  be a monomial ideal generated by quadrics in a polynomial ring 

 1 2, ,..., nS k X X X= . Then the ring SG
I

=  is Koszul. 

https://sj.hpu2.edu.vn/
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Proof. Denote ix  is the image of iX  in G  for all 1 i n  . Let  is the set of all ideals in G  

generated by variables and let 1 2, ,..., sM M M  be a minimal system of monomial generators for I . 

Note that for any ideal J R  generated by variables and any ix J , the colon ideal : iJ x  is equal to 

J + (
jx  such that 

jX  divides some M ). The ideal : iJ x  is therefore generated by variables and it 

belongs to . The family  is a Koszul filtration because any ideal in  can be filtered simply by 

dropping one variable by its minimal generators. By the maximal ideal 1 2, ,..., nx x x   has a linear 

free resolution and consequently G is Koszul.                                                                                       

                         □  

4. Main results 

 Throughout this section, let 
1 2, ,..., nH a a a=  be the numerical semigroup with 1 2 ... na a a   . 

Let k be an infinite field. We set 1 2, ,..., naa aR k H k t t t= =  is the numerical semigroup ring 

associated to H  over k , where t  is an indeterminate. It is clear that R  is a Cohen-Macaulay local 

ring of dimension 1 with the maximal ideal ( )1 2, ,..., naa at t t=m . Let 
1 2, ,..., nT k X X X=  be the 

formal power series and  1 2, ,..., nS k X X X=  the polynomial ring over k . Let :T R →  denote the 

homomorphism of k -algebras defined by ( ) ia

iX t =  for all 1 i n  . Let Ker I =   be the defining 

ideal of R . It is known that ( )
2

1 2, ,..., nI X X X  and I  is generated by the binomials 

1 1

i i

n n

i i

i i

X X
 

= =

−  with , 0i i    and 
1 1

n n

i i i i

i i

c d
= =

 =   . Let ( ) 1
0

gr
i

i
i

G R +


= = m
m
m

 the associated 

graded ring of R  with respect to the maximal ideal m . Then G  is a standard graded ring with the i -

th graded component 1

i

iiG +=m
m

. Let ( )1 2: , ,..., nX X X=n  denote the maximal ideal of T . Then   

induces an epimorphism ( ) ( ):gr grT R →n m . But ( )  1 1 2
0

gr , ,...,
i

i n
i

T k X X X S+


=   =n
n
n

. Hence 

there is an epimorphism from S  on G . Denote  ( )| \ 0I f f I =   the ideal generated by initial 

forms of I , where f 
 is the homogeneous component of f  of least degree. Then 

 1 2, ,..., nk X X XSG
I I  = . So we can identity 

( )i

i

S I
G

I





+
=  for all 0i   so that SG

I 
= . The 

maximal graded ideal of G  is 
I 

= n . We call I   is the defining ideal of G . We begin with the 

following which implies that G  is Cohen-Macaulay, provided R  has minimal multiplicity. 

Note that this result is also found in [16, Theorem 2], but we provide a more elementary proof. 

Proposition 4.1. Suppose that R  has minimal multiplicity. Then its associate graded ring G  is 

Cohen-Macaulay. 

Proof. Firstly, we show that 12 at=m m . The inclusion 12 atm m is clear. For converse, take any 

2i ja a
t

+
m ,1 ,i j n  . Clearly, 1i ja a at t

+
 m  once either 1ia a=  or 1ja a= . If 1ia a  and 1ja a  then 

https://sj.hpu2.edu.vn/
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by Proposition 2.2(2) we have  1 \ 0i ja a a H+ −  . This yields that 1i ja a a
t

+ −
m , whence 

1i ja a at t
+

 m . Thus 12 at=m m  and hence 11 as st+ =m m  for all 1s  . 

Denote ix  the images of ia
t  in 1

i

i+
m
m

, for all 0i  . One has 1 2

1

ax t= +m . Suppose that 

( )1

1. 0jx g ++ =m  in G  with 
jgm  for some 0j  . Then ( )( )1 2 1 0a jt g ++ + =m m  in G . This is 

equivalent to 1 2a jt g +m . Because 12 1aj jt+ +=m m , 
1jg +m . This follows that 

1 0jg ++ =m  in G . So, 

1x  is non-zero divisor in G . Hence thanks to Theorem 2.3, G  is a Cohen-Macaulay ring.   

                                                                                                                                                 □ 

Lemma 4.2. There is a homogeneous element 1x G  such that ( )0 :
G

x  has the finite length, i.e., 

( )0:G x  . 

Proof. We consider an ascending sequence of ideals in G  as follows 

2 30 : 0 : 0 :
G G G

  . 

Since G  is Notherian, there exists 0 0n   such that 0 0 1
0 : 0 :

G

n

G

n +
= = . This implies that 

00 :
n

G
L = , where ( )

0

0 :
G

i

iL


= . Hence 0 0
n

L = . This yields ( )G L  . We set Ass

( )  1, , r
G P P

L
= the set of associated prime ideals of G

L
. If /G L  then, by the definition of 

associated prime ideals, there is an element GL
L

+  , L  such that ( )0: L= + . Hence 

L   which implies 0 1
0

n +
 =  (because 0 0

n
L = ). It follows that 0 : 0 1n

L
+
=  which is a 

contradiction. This says that iP  for all 1,...,i r= . We see that 1iP G  is a proper k-vector space of 

1G . Because if otherwise, 1 1iP G G=  for some 1 i r  . Then 1iP G . In particular, 

( ) /j iX I I P +   for all 1 j n  , whence iP = . This is impossible. So, ( )1 1\ iG P G   for all 

1 i r  . On the other hand, by the assumption k = , ( )1 1

1

\
r

i

i

G P G
=

  . This implies that there is 

an element 1x G  , ix P  for all 1 i r  . Since x P  for all PAss ( )G
L

, x  is a non-zero divisor 

on G
L

. Now we take any 0 :
G

f x . Then ( )x f L xf L L+ = + = . Because x is a non-zero divisor on 

G
L

, we get f L L+ =  which implies f L . So, 0 :
G

x L . But ( )G L  , we get that 

( )0 :G
G

x  as desired.    

                                                            □ 

With the element x  as in Lemma 4.2, we set /G G xG= . 

https://sj.hpu2.edu.vn/
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Proposition 4.3.  Suppose R  has minimal multiplicity. Then x  is regular on G  and 

( ) ( )e G e G= . 

 Proof. We consider two the following exact sequences 

( )0 1 0
0 :

x

G

G
G G

x
→ − ⎯⎯→ → → , 

0 0 : 0
0 :G

G

Gx G
x

→ → → → . 

Denote ( )GH t the Hilbert series of G . Since dim dimR 1G = = , ( )
( )

1
G

q t
H t

t
=

−
 for some 

( )  q t t (see [12, Theorem 16.7]), with ( ) ( )1q e G= . Using [12, Theorem 16.1], we get 

( )
G

H t  ( )
( )

( )
1

0 :
G

G G

x

H t H t
−

= −  

( ) ( )

( ) ( ) ( )( )
( ) ( ) ( )

( ) ( ) ( )

0 :

0 :

0 :

0 :

1

*

G

G

G

G

G G

x

G H x

G x

x

H t tH t

H t t H t H t

t H t tH t

q t tH t

= −

= − −

= − +

= +

 

          Since R  has minimal multiplicity, by Proposition 4.1, G  is a one dimensional Cohen-Macaulay 

ring. This implies ( )0 0H G = , i.e., ( )
0

0 : 0i

G
i

= , or equivalently, 0L = . It implies that 0 : 0
G

x =  

because 0 : .
G

x L This concludes that x  is regular on G  and G  is Artinian. Hence, by the equality 

(∗), we get  ( ) ( ) ( ) ( )1 1
G

e G H q e G= = = . 

                                                                                                                                                        □ 

We now show that if R  has minimal multiplicity then it is Koszul. 

Theorem 4.4. Suppose that H  has minimal multiplicity. Then the semigroup ring R H=  is 

Koszul.  

Proof.  With the element x  as in Lemma 4.2, we set /G G xG= . By the definition, we need to 

show the associated graded ring G  of R  is a Koszul algebra. Note that G  and G  or both are Koszul 

or both are not Koszul (see [12, Exercise 34.14]). So, it is sufficient to show that G  is Koszul. Since 

x  is a homogeneous element of degree 1 in SG
I 

= , x  has the form x f I = + , where 1f S . 

Without loss of generality, we may assume 1 2 ... sf X X X= + + +  for some 1 s n  . Then 

https://sj.hpu2.edu.vn/
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 

( )
 

( )

1

1

11

,...,
,...,

......

n

n

ss

k X X
k X XIGG

xG X X IX X I




= = 

+ + ++ + +
 . 

By dividing polynomials in I   by 1X  we can write ( ) ( )1 1... ...s sX X I X X J+ + + = + + +  with 

 2 ,..., sJ k X X . Then one has 

                                                 
 

( )
1

1

,...,

...

n

s

k X X
G

X X J


+ + +
 

 
( )

( )( )
( )

 

1

1

1

1

2

,...,

,...,
.

n

s

s

s

n

k X X

X X

X X J

X X

k X X
J

+ +


+ + +

+ +



 

The last equality follows from 
 

( )  1
2

1

,...,
,...,n

n
s

k X X
k X X

X X


+ +
 and ( )1 ... 0sX X J+ + = . 

Thus it is enough to prove that 
 2 ,..., nk X X

J
 is Koszul. Indeed, we have 

            ( ) ( )  2 ,...,
dim n

k

k X X
e G G

J
 

= =  
 

 

 
( )

( )

( )

2

2 2
2

2

2

2

,..., ,...,
dim dim

,...,

,...,
dim .

n n
k k

n

n
k

k X X X X
JX X

X X
n

J

 
= −   

 

 
= −   

 

 

On the other hand, 

   ( ) ( )
( )

( )22
edim dim dimk k

Ie G G

I





 = =

n
n
nn

 (because 
2I   n ) 

                               

 
( )

 
( )

1 1
2

11

,..., ,...,
dim dim

,...,,...,

1 .

n n
k k

nn

k X X k X X

X XX X

n n n

= −

= + − =

 

Since H  has minimal multiplicity, so is R . By Proposition 4.3, we have 

( ) ( ) ( )
2

1,...,dim n
k

X X
e G n e G n

J
= − =   which implies that 

( )
2

1,..., 0nX X
J
= . Hence 

( )
2

1,..., nJ X X= . Finally, it is easy to see that  
( )

2
2

1

,...,

,...,
n

n

k X X

X X
 is Koszul because it 

possesses the Koszul filtration ( ) ( ) ( ) 2 2 3 2 30, , , ,..., , ,..., nX X X X X X=  in the sense of Definition 

3.1 (or also by Lemma 3.2). Thus G  and hence G  is Koszul.                                                                                                                                               
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    □ 

We close this article with a few the following examples. Here we use Macaulay2 (see [11]) to 

compute Betti diagrams. 

Example 4.5.  Let 4,11,14,17H =  and R k H= . Let G  is the associated graded ring of R . 

Then since R  has minimal multiplicity, G  is Koszul. The fact that in this example the defining ideal 

of G  is ( )2 2 2, , , , ,I u zu yu z yz y = , that is,   ( )2 2 2, , , / , , , , ,G k x y z u u zu yu z yz y . We have the Betti 

diagram of k over G : 

 0  1  2  3  4  5  

0  1  4  12  36  108  324  

This follows that ( )ij 0G k =  for all i j . 

Let us give the following two examples. In which the semigroup ring R  has no minimal 

multiplicity while one of them is Koszul and the other one is not Koszul. 

Example 4.6.  Let 8,10,11,12H =  and R k H= . Let G  is the associated graded ring of R . In 

this example the defining ideal of G  is ( )2 2 2, ,I u z yu y xu = − − , that is,

 
( )2 2 2

, , ,

, ,

k x y z u
G

u z yu y xu


− −
. The Betti diagram of k over G  is given by   

 0  1  2  3  4  5  

0  1  4  9  16  25  36  

This yields that ( )ij 0G k =  for all i j  which implies that G also is Koszul. Note that because 

( ) ( )8 edim 4e R R=  = , R  has no minimal multiplicity. 

Example 4.7.  Let 12,14,15,16,18,19H =  and R k H= . Let G  is the associated graded ring 

of R . Then the defining ideal of G is  

( )2 2 2 2 2, , , , , , , ,I w v uv xw zv yw u yv zu xw yu xv z xv y xu = − − − − − − − . 

In this example, the Betti diagram of k over G is given by  

 0  1  2  3  4  5  

0  1  6  24  84  276  877  

1  0  0  0  0  1  14  

We see that ( )45 1 0G k =   which implies that G  is not Koszul. Note that in this case, R  has no 

minimal multiplicity because ( ) ( )12 edim 4e R R=  = .  

5. Conclusions  

The article focuses on the Koszul property of semigroup rings. We provide a brief proof to show 

that the associated graded rings of numerical semigroup rings of minimal multiplicity are Cohen-

https://sj.hpu2.edu.vn/


HPU2. Nat. Sci. Tech. 2023, 2(3), 03-12 

https://sj.hpu2.edu.vn                                                                                 12 

 

Macaulay (Proposition 4.1). Based on the Cohen-Macaulayness we show that numerical semigroup 

rings of minimal multiplicity are Koszul (Theorem 4.4). 
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