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Abstract 

The Z transformation has many applications in Mathematics, especially in solving difference 

equations to help handle discrete data models. This article provides one more application of the Z 

transformation, which is the summation of a series. The author through the research method of theory 

development from some properties of the Z  transformation to obtain the result which is a theorem 

about the formula for the sum of a series, with the proof attached. From there, apply the theorem 

together with the Z transformation to calculate the sum of some series in specific problems. Thus, the 

problem of calculating the sum of the series has one more method of solving, as well as expanding the 

application of the Z transformation in the field of Mathematics, especially analysis. 
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1. Introduction 

The Z  transformation is useful tool in handling discrete data models, widely used in the fields of 

applied mathematics, digital signal processing, control theory and economics [1,2,3,4,5]. These 

discrete models are solved by difference equations similar to the continuous models solved by 

differential equations. The Z  transform plays an important role in solving difference equations in the 

same way that the Laplace transform plays an important role in solving differential equations. In this 

article, the author mentions another application of the Z  transformation to calculate series sums. The 

author has researched and developed the theory to obtain a way to calculate series sums through the Z  
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transformation. 

Below, the author will describe in detail how to approach the research problem, starting from 

introducing the concept and some related properties of the Z  transformation, accompanied by 

illustrative examples. Then the author will give a way to calculate the series sum using the Z  

transformation by a theorem and some examples. 

2. Research methods 

The author uses the research method of theory development. First of all, we approach the 

definition of the Z  transformation. 

Definition 1. Let T  be a fixed positive number (can be taken 1=T ). Suppose ( )f t  identifies with 

0t  and t  gets the value at ; 0,1,2,...=nT n . The Z  transformation of function ( )f t , or sequence 

 ( )f nT , is a complex variable function z  determined by formula 
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Example 3. With ( ) cos =f nT nT  we have 
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The Z  transformation has many properties. Here, the author only states some necessary related 

properties: 

i. Proportional properties 

 ( ) ( ).−=nT TZ a f nT F a z                                                                          (3) 

ii. Multiplication 
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iv. Initial value theorem 

Suppose  ( ) ( )=Z f nT F z . Then 

(0) lim ( ).
→

=
z
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v. Final value theorem 

Suppose  ( ) ( )=Z f nT F z . Then 

1
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n z
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where, the limits are assumed to exist. 

vi. Inverse Z  transformation 

 1 11
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where C  is the closed circuit surrounding the origin and outside the circle =z R . 

3. Results and discussion 

Theorem 1. Suppose  ( ) ( )=Z f nT F z . Then 
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Take the Z transformation both sides of the above equation, we get 
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According to (5) we have  
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We will apply the above theorem to some specific problems below. 

Problem 1. Use the Z  transformation to calculate the sum of the series 
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Using Theorem 1 (ii) we get 
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Applying Theorem 1 (ii) gives us the result 
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Problem 3. Calculate the sum of the series 
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Set ( ) sin=f n nx , we have the Z  transformation 
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According to (3) we get 
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4. Conclusions 

Thus, the above result shows that the sum of many series can be calculated through the Z  

transformation. From there, we see another application of the Z  transformation in Mathematics, as 

well as opening up research suggestions about its other applications. 
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