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Abstract 

Time series analysis is an essential field in data analysis, particularly within forecasting and prediction 

domains. Researching and building time series models play a crucial role in understanding and predicting 

the temporal dynamics of various phenomena. In mathematics, time series data is defined as data points 

indexed in chronological order and have a consistent time interval between consecutive observations. This 

can include data such as daily stock prices, annual national income, quarterly company revenue, and more. 

The advantage of time series data is that it can capture the state of a variable over time. In contrast, the 

world is constantly changing, and phenomena rarely remain static they typically exhibit variations over 

time. Therefore, time series data has highly practical applications and is used in various fields, including 

statistics, econometrics, financial mathematics, weather forecasting, earthquake prediction, 

electroencephalography, control engineering, astronomy, telecommunications, and signal processing. 

ARIMA, which stands for Auto Regressive Integrated Moving Average, is a widely used time series 

forecasting method in data science. It is a popular model for analyzing and predicting time-dependent data 

points. ARIMA combines autoregression, differencing, and moving averages to capture different aspects of 

time series data. In this paper, we study ARIMA, which is a significant model for analyzing and predicting 

time series data. 
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1. Introduction 

A time series is a collection of values recorded at different points in time and can be used to 

describe changes over time. Examples of time series include monthly sales volume, daily stock prices, 

hourly temperatures, and daily COVID-19 infection counts. 
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A time series is a sequence of values recorded over time, where each value in the time series is 

associated with a specific timestamp [1], [2].  Time series data is commonly used to model and forecast 

variables that change over time, such as stock prices, temperature, sales, and many other variables. It 

involves using historical data to predict future values [3]–[7]. This can be applied in various fields, 

including finance, weather forecasting, and energy consumption. Time series allows you to examine 

trends and changes over time, identify factors causing variations, and extract useful information. It can 

be used to validate assumptions about data, such as correlation and seasonality [8]–[13]. 

2. Meterials and Methods 

2.1. Time series 

 

Figure 1. The trend component. (a) The trend of data reduction of food, fuel and fertilizer indices.  

(b) The trend of data increase of food. 

Time series data can also be used to predict sudden events or unexpected changes in data, such as 

anomalies or outliers. To work with time series data, appropriate methods and tools are needed, such 

as the ARIMA (Autoregressive Integrated Moving Average) model, recurrent neural networks 

(RNNs), Long Short-Term Memory (LSTM) networks, or programming languages and libraries like 

Python with pandas and scikit-learn [1], [2].  

Singular Value Decomposition (SVD) is an important method in linear algebra and data 

processing. It allows the decomposition of a not necessarily square matrix into the product of three 

special matrices: a unitary matrix U, a diagonal matrix Σ, and another unitary matrix, the transpose of 

U (U*). Below is the definition, properties, and a specific example of the SVD method [1]–[3]. 
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Trend Component: It signifies the upward or downward direction of data points in a time series. 

The trend component is often depicted on a graph as a straight line or a smooth curve, Figure 1. A time 

series data without a trend component (meaning it doesn't exhibit an apparent increase or decrease) is 

considered stationary around its mean value [4]–[6]. 

  

Figure 2. Representing changes in a time series over intervals. 

Seasonal Component: This component represents the cyclic variation in the values of y calculated 

over short time periods. For example, the number of children with respiratory illnesses tends to 

increase during peak cold seasons in our country [7]–[9]. Figure 2 provides a representation of changes 

in a time series over intervals. 

 

Figure 3. Representing the cyclical pattern in a time series. 

Cyclic Component (Long-term): It reflects the long-term increase or decrease in the time series 

data revolving around the trend. Identifying cyclic components in long-term time series data can be 

challenging. Figure 3 provides a representation of the cyclical pattern in a time series. Figure 4 

illustrates the time series in statistics. 
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Random Component: This is the opposite of cyclic components. The random component accounts 

for irregular fluctuations in the time series data and is often unpredictable. These fluctuations are 

typically caused by external factors [10]–[15].  

 

 
 

Figure 4. Time series in statistics.  

According to time series diagram 
t
Y  represents the quantitative value over time calculated at time 

t, through which we can determine the following models: 

Additive model: 
t t t t t
Y T S C I .  

Multiplicative model: 
t t t t t
Y T S C I .  

Where: T is the Trend component; S is the Seasonality component; C is the Cyclical component; I 

is the Irregular component. 

If the cyclical and seasonal components do not affect the overall level of the time series, it is 

advisable to use the additive model. Conversely, the multiplicative model is used if the seasonal 

component depends on the trend and cycle. 

2.2. Characteristics of Time Series Data 

The characteristics of time series data can be better understood by examining real-world examples 

from various fields (for example, Figure 4). Below is an example of quarterly profits for Johnson & 

Johnson.  

Figure 5 depicts the quarterly profit chart for each share of Johnson & Johnson, provided by 

Professor Paul Griffin from the University of California's School of Management. This data includes 

84 quarters (equivalent to 21 years) from the first quarter of 1960 to the last quarter of 1980. The goal 

is to build a time series model by observing key patterns in the past. In this case, we can observe a 

general upward trend and regular fluctuations added to the trend, seemingly repeating over the 

quarters. 
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Figure 5. Johnson & Johnson's Quarterly Profits. 

 

Figure 6. Financial Time Series Data. 

Figure 6 provides an example of financial time series data, depicting the daily changes (or 

percentage changes) of the New York Stock Exchange (NYSE) from February 2, 1984, to December 

31, 1991. In the graph, we can easily observe the market crash that occurred on October 19, 1987. The 

data in Figure 6 is a typical illustration of financial data. The time series average is stable, with an 

average return approximately equal to zero. However, the data's volatility (or standard deviation) 

varies over time.  In fact, the data exhibits clustering of volatility cycles, meaning that periods of high 

volatility tend to cluster together. An important issue in the analysis of such financial data is 

forecasting the future volatility of returns. To address this issue, models like the ARCH and GARCH 

models were developed by Engle Bollerslev, as well as the stochastic volatility models of Harvey, 

Ruiz, and Shephard. Differencing is a crucial step in the ARIMA model. It is used to remove non-

linearity and trends in time series data for analysis. The differencing process transforms the original 

data into a new time series with the aim of minimizing data dependency on previous time points [10], 

[12], [15], [16]. 
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The theory behind differencing involves using the differences between consecutive values in a 

time series. Typically, if a time series has an increasing trend, the differences between consecutive 

values will also increase over time. When differencing is applied once to this series, the increasing 

trend in differences will decrease, and there will no longer be a long-term trend. Similarly, if a time 

series has a decreasing trend, the differences between consecutive values will decrease over time. 

When differencing is applied to such a series, the decreasing trend in differences will decrease, and 

there will be no long-term trend [17]–[20]. 

The mathematical formulation of differencing involves using the difference operator denoted as 

"d" to calculate the differences between values in the time series. The difference operator is 

represented as "B," where "B" is the backward shift operator defined as: 
1

  
t t

B*Y Y  

The differencing formula can be expressed as the difference between the current value and the 

value at the previous time point. In the ARIMA model, differencing is typically used to reduce non-

linearity and trends in time series data. After applying differencing to a time series, we check if the 

new series has become more predictable. The "AR" in ARIMA stands for "autoregressive." An AR 

model uses past values to predict the current value, assuming that the time series data exhibits 

autocorrelation, meaning that adjacent values in the series are correlated. The order "p" specifies how 

many past values are considered in the model, and it is one of the parameters that need to be 

determined when fitting an ARIMA model to a specific time series dataset. For example, Amazon's 

stock price today might depend on the cost from yesterday to earlier days (for example, Figure 7).  

 

Figure 7. Amazon Stock Price. 

The AR model idea is to regress its data in the past cycles. 

In this context: 

t
Y  represents the current observation. 

1 2t t
Y ,Y ,... are past observations. 

0 1 2
a ,a ,a ,...are regression parameters. 

t
u is the random forecasting error at the current time, with an expected value of 0. 

The linear function 
t
Y  is a function of the past observations:

1 2t t
Y ,Y , etc. 
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When regressing 
t
Y  on values in the time series with a lag, the delayed time series is used, 

resulting in an AR model. The number of past observations used in the autoregression model is called 

the order 𝑝 of the AR model. For example: 

AR(1) Model: 
0 1 1t t t

Y a aY u  

AR(2) Model: 
0 1 1 2 2t t t t

Y a aY aY u  

The parameters of the AR model are determined through linear regression methods. In more 

complex cases, when the time series data exhibits a more intricate pattern, alternative methods like 

ARIMA models may be used. 

It's crucial to strike a balance between the model's complexity and its predictive ability. A model 

that is too simple might miss important data patterns, while an overly complex model can lead to 

overfitting and poor predictions. Notably, AR(p) models are most suitable for stationary time series 

data. 

3. Results and Discussion 

The value of p in the AR(p) model will affect the number of AR coefficients that need to be 

estimated. A higher p-value will require estimating more AR coefficients, potentially leading to a 

better model fit for the data. The AR model can be used for time series analysis and forecasting future 

values. However, it is suitable only for time series data with linear autocorrelation properties. If a time 

series lacks these properties, the AR model may not be appropriate. The AR model can be extended to 

include other components, such as the MA (ARMA model), differencing (I), or seasonal components 

(SARIMA model). 

AR models need to be evaluated based on the accuracy of predictions and the precision of 

parameter estimates. 

The process of analyzing time series data and forecasting is a method that utilizes historical 

values of factors such as prices, production, inflation, profits, etc., to predict the current value or 

forecast the change in the current value. Time series analysis falls under the category of quantitative 

forecasting as model's outcome is a quantitative value. It is commonly used in economic research for 

variables like GDP, inflation, growth rates, or market price studies. Some basic forecasting principles 

in this category include AR (Auto Regressive), MA (Moving Average), etc. 

The Box-Jenkins method is considered one of the highly effective techniques for producing 

accurate and reliable forecasts. Its strength lies in providing information to analysts to select an 

appropriate model for the observed data. In contrast to other methods, where analysts assume a 

specificmodel and then estimate its parameters, Box-Jenkins methodology identifies a tentative model 

initially by comparing the sample autocorrelation and partial autocorrelation functions of the 

stationary time series data with the theoretical autocorrelation and partial autocorrelation functions of 

ARMA models. 

ARIMA is a common and versatile forecasting model that uses historical data to make forecasts. 

This type of model serves as a basic forecasting technique that can serve as a foundation for more 

complex models. Based on these characteristics, the trainee decided to use the ARIMA model to 

experiment with time series data in the practical experiment. 

The main steps in the Box-Jenkins methodology include: 

Step 1: Model Identification 
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Historical data is used to tentatively identify a suitable ARIMA model. 

Step 2: Model Estimation 

Historical data is used to estimate the parameters of the tentative model. 

Step 3: Model Checking for Adequacy 

Various assessments are used to check the suitability of the tentative model, and if necessary, 

suggest a better model, which then becomes a new tentative one. 

This methodology is essential for time series analysis and forecasting as it allows analysts to 

systematically identify, estimate, and validate models for making accurate predictions based on 

historical data. 

Step 4: Forecasting 

Once the final model has been selected, it is used to forecast future values of the time series. 

In summary, time series data analysis typically involves the following steps: 

Data Collection: Gather time series data from the respective source, such as databases, APIs, or 

direct data sources. For example, the following example will use stock price data from Yahoo Finance. 

Exploratory Data Analysis (EDA): Before delving into detailed analysis, examine the data to 

understand basic characteristics such as line plots, percentage plots, descriptive statistics, and identify 

issues such as noise or missing values. 

Data Preprocessing: Remove noise, impute missing values (if any), and normalize data if 

necessary. 

Modeling: Build an appropriate model for the time series data. For example, the example below 

will use the ARIMA model. 

Model Evaluation: Assess the performance of the model using evaluation methods like Mean 

Squared Error (MSE), Mean Absolute Percentage Error (MAPE), or posterior checks for Bayesian 

models. 

Prediction and Evaluation: Utilize the model to forecast future values and evaluate the accuracy 

of the predictions. 

We give a specific example of time series data analysis using Python and the pandas, numpy, and 

statsmodels libraries: 

# Import the necessary libraries: 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

from statsmodels.tsa.arima_model import ARIMA 

# Step 1: Read data from a CSV file or another data source: 

data = pd.read_csv('stock_price.csv') 

data['Date'] = pd.to_datetime(data['Date']) 

data.set_index('Date', inplace=True) 

# Step 2: Exploratory Data Analysis (EDA) - Plotting: 

plt.figure(figsize=(12, 6)) 

plt.plot(data['Close'], label='Closing Price') 

plt.title('Stock Price Over Time') 

plt.xlabel('Time') 

plt.ylabel('Stock Price') 

plt.legend() 
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plt.show() 

# Step 3: Data Preprocessing (if needed) 

# Example: Handling missing values 

data['Close'].fillna(method='ffill', inplace=True) 

# Step 4: ARIMA Modeling 

model = ARIMA(data['Close'], order=(1, 1, 1)) 

model_fit = model.fit(disp=0) 

# Step 5: Model Evaluation 

mse = ((model_fit.fittedvalues - data['Close']) ** 2).mean() 

print(f'Mean Squared Error: {mse}') 

# Step 6: Prediction and Evaluation 

predicted = model_fit.predict(start=len(data), end=len(data)+10, typ='levels') 

plt.figure(figsize=(12, 6)) 

plt.plot(data['Close'], label='Closing Price') 

plt.plot(pd.date_range(start=data.index[-1], periods=11, closed='right'), predicted, 

label='Predicted') 

plt.title('Stock Price Prediction') 

plt.xlabel('Time') 

plt.ylabel('Stock Price') 

plt.legend() 

plt.show() 

In this problem, we perform time series data analysis for stock price data using Python. We 

provide the steps as follows. 

Import the necessary libraries. 

Read the data from a CSV file and set the 'Date' column as the index. 

Plot the stock price data for exploratory data analysis. 

Preprocess the data if needed (e.g., handling missing values). 

Create an ARIMA model and fit it to the data. 

Evaluate the model by calculating the Mean Squared Error (MSE). 

Make predictions for future time periods and visualize the results. 

This example provides a clear and structured approach to time series analysis using Python and 

ARIMA modeling. 

4. Conclusion 

Time series analysis is a valuable technique for anyone dealing with temporal data. It provides the 

tools and methodologies needed to understand historical patterns, make informed predictions, and 

ultimately make better decisions. As technology advances, the importance of time series analysis will 

continue to grow, making it an essential skill for data scientists, economists, and analysts across 

various industries. In this article, we've only scratched the surface of time series analysis. More 

advanced models, techniques, and considerations exist for dealing with complex temporal data. 

Nonetheless, this overview should serve as a solid foundation for diving deeper into the fascinating 

world of time series analysis. Whether forecasting stock prices, analyzing climate data, or studying 

customer behavior, timeseries analysis offers a powerful toolkit for extracting meaningful insights 

from your data. 
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