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Abstract

This paper investigates finite time H_ event-triggered state feedback control problem of fractional-

order systems with delay. Based on Laplace trasform and “inf-sup” norm, a delay-dependent sufficient
condition for designingH, event-triggered control is established in terms of the Mittag-Leffler

function and Linear matrix inequalities. A numerical example is given to show the effectiveness of the
obtained result.
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1. Introduction
Nowadays, fractional calculus for delay systems is one of the hot topics in the qualitative theory
of dynamical systems (see [1, 2]).

There are some main methods used to study stability analysis of fractional order systems with
delay such as Lyapunov functionls [3], Fractional-order Hanalay inequality [4], and Gronwall
inequality [5]. The Lyapunov function well known method gives a very effective approach to
investigate the stability problem of ordinary differential equations. But it is more difficult to apply the
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method for delay systems. Gronwall inequality approach or fractional-order Hanalay inequality does
not give satisfactory solution because its conditions are always time delay - independent and it is

difficult in estimating the delay solution HXt H To the best knowledge of authors, for stabilizability of

fractional order systems with delay, controllers in many existing papers are state feedback (

u(t) = KX(t)) or output feedback control [6, 7, 8, 9]. Moreover, there are few results for finite time

stability of those systems. This inspires us to propose a new effective approach for the finite time H_

event-triggered state feedback control problem of fractional-order systems with delay in this paper.
The present paper contributes as the following:

+ A novel approach based on the fractional techniques and using event-triggered state feedback
controller are proposed for solving the problem of finite time H_ control of fractional order systems

with delay.
+ A new dependent time delay sufficient condition for the problem of finite time H_ event-

triggered state feedback control is derived. And the condition is provided into solving LMI, in which
the event-triggered state feedback controllers can be effectively designed.

The layout of this article is organized: section 2, we provide some preliminaries on fractional
derivatives, finite-time stability problem and some auxiliary lemmas needed in next section; section 3,

a sufficient condition to design finite time H_ event-triggered state feedback control for fractional

order systems with delay are presented.
Notations: For any matrix Ae R™, A>0 or A<0 means that it is positive-definite or

negative-definite matrix, respectively; A, (A) and A, (A) denote the maximal and the minimal
eigenvalues, respectively; The symbol = stands for symmetric block elements in a matrix.
2. Problem statement and preliminaries

Firstly, we give some basic concepts of fractional calculus [1, 2] as follows.

For @ € (0,1], the Riemann-Liouville integral and the Caputo fractional derivative of a function
f (t) are defined as

1 t
1“f(t) =—— | (t—s)“" f(s)ds,
]
D*f(t) = D; [f(t)— f(O)],
respectively, where Dy f (t) = % I f (t), the Gamma function T'(S) = J.e_tts_ldt.
0

Consider the fractional order control system with uncertainties:
D*x(t) = Ax(t) + Dx(t —h) +W o(t) + Bu(t),
z(t) = Cx(t), (2.2)
x(0) = 9(0), 0<[-h,0],
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where o € (0,1], the state vector X(t), the controller U(t), the disturbance @(t), the observer

Z(t), the system matrices A, B,C,D,W are given constant matrices, the constant time delay

h >0, the initial function @ € C([—h,O], R”) and [[g| = sup [jp(s)|-
se[—h,0]

Definition 1. ([10]) Given positive scalars C;,C,, T . The system (2.1) without controller u(t) is

robustly finite-time stable with respect to  (c,,C,,T) if for all te[0,T], we have

ol <& =[x <c,
In this paper, we use an event-triggered state feedback controller as follows:
u(t) = Kx(t,), teft, . t.,),
where the feedback gain matrix K is determined later and the triggering sequence defined by

t, =0, t,,, =inf {t >t :|x(t)—x(t,)|=n|x)}.

Definition 2. Given positive scalars C,C,, T . The finite-time H_ control problem for system

(21) is solvable if there exist the event-triggered state feedback controller
u(t) = Kx(t,), t €[t ,t,.,), such that following closed loop system:

D*X(t) = AX(t) + DX(t — h) +W a(t) + BKX(t, ), t [t, t...),

(2.2)
x(0) = p(0), 0<[-h,0],

is robustly finite-time stable w.r.t (Cl,CZ,T) and the y» —optimal level condition holds

a 2
sup 1| z(t)]
tel0.T] . 5 <y, where the supremum is taken over zero initial condition and all
o sup 1“|e(t)
te[0,T]
2
admissible disturbances @(t) satisfying Ha)(t)H <d, vt>0 (2.3)

Remark 1. It is notable that for & =1, T =0, the ¥ —optimal level condition:

sup 1°[z(t)|° [z at
tSeEj,T]I 7 (t)||2 <yosupl——<y,
2] (2] 2
te[o,B] “ J”“’(t)” dt
0

which is widely known [11, 12].

Proposition 1. ([13]) Let V : R" — R" be a convex and differentiable function on R" such that
V(0)=0. If @ €(0,1], x(t) € R" be a continuous function on [0,0),a matrix P = PT >0, then
D[x" (t)Px(t)] < 2x" (t)PD*x(t), Vt > 0.

Proposition 2. (Schur lemma, [14]) For X,Y,Z € R™", and positive definite matrices
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T T X Z7
Y=Y ,wehave X+Z2'YZ <0< <0.
Z =Y
3. Main results
In this section, we will give sufficient conditions for designing the feedback gain matrix K of the

event-triggered state feedback controller u(t) =Kx(t, ), t [t t.,,), for system (2.1). The

following notations are defined for simplicity:

The Mittag-Leffler function E, ;(2) Z

o D(a k +8) = ;F(ak 1)

[T/h]

a=E,(hT%), B, =Y (@-1'E, (") (a), 7, = 7T ,
j:O * 1
( P Fasn j
. [T/h]+1 _ . ) o
B.= (P2 Y (a-1)7, Po=1fy sup 1°|eS), K=YP",
j:0 Se| y

Theorem 1. For positive scalars 7, C,C,, T, finite-time H_ control problem for the system

(2.1) is solvable if there exists a symmetric positive definite matrix P and a free-weight matrix Y
such that the following conditions holds:

[BY +AP]+[BY+AP] -hP+1 DP W 0 PCT 4P O |

* P 0 0 0 0 0
* * 4yl 0 0 0 0
* * % J-2p 0 0 [BY]|<O, (31)
x s o+ x| 0 0
* * * * * —1 0
x e x x|

Bc 7’1ﬂ2 e +1)d o -

Zmin (P7) i

The event-triggered state feedback controller u(t) = YP'x(t, ), t € [t, ,t,.,)-

Proof. Consider the functional V (t) = x(t)" P~*x(t). Take the Caputo derivertive of V (t)

along the solution of (2.2), we have for t €[t ,t,.,),

DV (t) < 2x(t)" P~ ( AX(t) + Dx(t —h) +W e(t) + BKx(t,))

=2x(t)" P ([BK + A]x(t) + Dx(t —h) +Weo(t) + BK [ x(t,) - x(1)])
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—hx(t—h)P*x(t—h) +hV (t —h)
~x®Px(®) + hV (©) +[CxO - 71 |0 + (- + 710 ). (3.3)

From (3.3) and the following inequalities

X(t)" PBK [x(t,) — x(®)] < x(t)" (P-1)2 x(t) + [x(t,) —x®)] [BK] BK [x(t,) - x()],

0< 7 x@)[ —[x(t)—x@)[, foran telt.t,,),
it follows that:
DV (t) < 4" Qu+hV () +hV (t—h) = [Cx @) + ¥ (®)]
where 1 =[X,X,,®o,V, ],
x:=X(1), X, =x{t—h), v, =x(t)-X(t), o=af), Q=] ]M ,
Q, =P?[BK +Al+[BK + Al P —hP+CTC+[ P T +77I;
Q,=P"'D; Q,=P"W; Q,=0;,Q,, =-hP™; Q,, =0; Q,, =0;
Q, =—5l; Q, =[BK] BK-I;
Noting that K =YP™ and

Q<0< diag(P,P,1,P) x Qxdiag(P,P,1,P)=Q:=[ Oy | <0,

where Qu =[BY + AP]+[BY + AP]' ~hP +PCTCP + | +7°P?;

Qi =DP; Qus =W; Qus =0; Oz =—hP; Qo =0; Qus =0;

Qs =—y,1; Qu =[BY] BY -P%
Using Schur lemma and —P? < | — 2P, the condition (3.1) leads to Q< 0.
Hence DV (t) <hV/ (t) + hV (t—h) - [Cx(t)| +7; |(®)]"- (3.4)
Step 1. Robustly finite-time stability.

From —|Cx(t)|* <0, we have
DV () —hV (t) <hV (t—h) + 7, |e(®)]"-

Let G(t) =DV (t)—hV (t). Applying the Laplace transform to the both sides of the

expression, we have
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L[G(®)](s) =L[ DV (t) |(s)~hL[V (©)](s)
=LV (®)](s) -V (0)s“* ~hL[V ()] (s),
and hence
LV(®)](s) = (s* =h)* (V(0)s** +L[G(1)](s)).
Using the inverse Laplace transform to the above identity gives the following:
V(t) =V (0)E, (ht*) +j(t ~9)“*E, , (h(t—5)")G(s)ds.

Thus, we obtain for all t [0,T],

V() =V (0)E, (ht*) + j(t -s)'E,, (h(t—s)*)| D*V(s)—hV (s) |ds
<V(0)E, (ht“)+tj(t =5)E, , (n(t=9)) hV (s =)+, Jo(s)|] | ds
=V (0)E, (ht*) +j(t —~5)“E,, (h(t—s)*)hV (s —h)ds

[ t=9)"E, , (h(t-5)") o) ds

<V(0)E, (ht) +[E, (ht*)-1] sup V(s) +/E, ., (ht*)[(a) 1*]e)|

se[-h,t-h]

<V(0)E, (hT*)+[E,(hT*)=1] sup V(s)

se[-h,t-h]
a a 2
+1E, . ("T)C(a) sup 19]a(s)|
se[0,T]
Since the function H(t):= sup V(S) is non-decreasing with respect to t, letting
se[—h,t]

a=E_(hT“), we obtain that:
H(t)<aH(0)+(@a-DH({t-h)+xE, ,(hT“)[(a) S[LCJ)FTJ] 1« ||co(S)||2 , te[0,T].
By induction and the inequalites E_ (hT“) >1, we have
H(O) < A Pl < Al + 5.

HO <A e[ + 8, vte[0T],
then
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V(t) < s[uE)]V ) <Blof + B, vte[-hTI. (3.5)
se[-h,t
[T/h]+1 _ [T/h] _
where 8, =, (PMa Y (a-1)', B, =) (a-1'E,,(hT")(),
j=0 j=0
[T/h]

B, =72, @-DE, (" )(a) sup 1 |a(s)][ =5/, sup 1 |e(s)| -
o0 se[0,T] se[0,T]

Besides, since V (t) > /Imin(l:’_l)HX(t)H2 and the inequalities (2.3) and (3.2) if H(DHZ <¢,, the
inequality holds:

o < YO . HO Bilel +4,
ﬂ’min(P ) j'min(l:) ) j’min(P )

a

C, +78" sup 14]as)| C+ 7 d
A+ by - sup 1 Ja(s)| </311 1P L)
ﬂmin (P_l) - j’min (P_l)

Therefore, the closed loop system (2.2) is robustly finite-time stable w.r.t (Cl ,Co, T ) :

<

<c,, Vte[0,T].

Step 2. The ¥ —optimal level condition
From (3.4), it follows that:

l2@®)]" <[ex®)]” <-DV (&) +hV () +hV (t —h) + , (@) -
Hence and the zero initial condition ¢ = 0and (3.5), we have
1 |2@)[ < 1DV () +h1°V (©) +h1“V (t —h) + 7,1 |o(t)|
=—[V (&) -V (Q)]+hI*V (1) +hl°V (t —h) + 7,1 |e(®)]’
V(O +201“[4 o] + A1+ 71 o]

a

t
IN'a+1)

=V +2h(Alof +4, )=+ 1 o0

T 2
<2h 1«
Py 7 S lets)

* a 2 Ta a 2
=2h 3,53, 'i[‘i?]' |eo(s)| F(a+l)+ 7 SE[L(J)FT)]l |eo(s)|

N 2
<| 2h —_ I«
2 gy | 1ot
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a

T 2 2
—+1 ¢ = ¢ .
5 1ol =7 50 1ot

*

= 71[2h:32

Consequently,
sup 1“ ||z(s)||2
se[0,T]

<
sup 1“ ||co(s)||2 4
se[0,T]

sup 1 |z(s)|" < 7 sup 1% (s)[" <
se[0,T] se[0,T]

This completes the proof.
Remark 1. In Theorem 1, the scalars q,CZ,T,y,d are given positive. Therefore, to check the
conditions of the theorem, we prescribe these parameters firstly. Since the scalars C,C,, are not

involved in (3.1) we first find the unknowns of LMI (3.1) by using LMI Tollbox algorithm and then
verify the inequality (3.2).

Remark 2. The system (2.1) as D =0 can be simplified to
D7 x(t) = Ax(t) +W o(t) + Bu(t),
z(t) = Cx(t), (3.6)
X(0) = X,.

In [15], the authors discuss the problem of finite time H_ state feedback control (u(t) = Kx(t))

for the system (3.6). Their approach, however, is not suitable for fractional-order delayed systems.
Furthermore, it is unable to utilize event-triggered state feedback control to address the H_ control

0

problem for system (3.6). It is worth noting that Theorem 1 can be used to obtain a sufficient condition
for solving the finite-time H_ control problem for the system (3.6). This demonstrates the usefulness

of Theorem 1 in the paper.
4. A numerical example

Example 4.1. Consider the system (2.1), where &« =0.1, h=0.1, 7=0.1, y =1,d =1,
-1 0.1 0.01 O. 04 0.1

A= , D= W = ,
101 -1 0 0.01 0.1 04

1 2 01 0.1
B= , C= :
3 4 0.1 0.1
By using LMI Toolbox in Matlab, the LMI (3.1) is feasible with

o_ 0.9963 0.0411 y_ 0.5481 -0.3743
10.0411 0.9963|" |-0.3743 0.2807 |

https://sj.hpu2.edu.vn 74


https://sj.hpu2.edu.vn/

HPU2. Nat. Sci. Tech. 2023, 2(3), 67-76

For ¢, =1, ¢, =3, T =10, we can calculate

[T/h]

a=E,(hT*)=11521, B, = > (a-1)’E,, (hT“)['(a)=1.5585,
j=0
7 [T/h]+1 )
7, = =0.7080, B, =4, (PMa > (a-1)’ =1.4225.
Ta j=0
2hp, — - +1
IN'a+1)

And the condition (3.2) satisfies due to

a

ﬂlcl 71ﬂ2 ( )
it ~2.9906 <c, =3.
mln (P )

Hence finite - time H_ control problem for the system (2.1) is solvable w.r.t. (1, 3, 10) with the

event-triggered state feedback controller:

0.5666 —0.3990

ut)=Kxtt) = {—o 3880 0.2978

j|x(tk)’ te [tk 1tk+1)'
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