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Exponential stabilization of the class of the switched systems with 

mixed time varying delays in state and control 

Hoai-Nam Hoang, Thi-Hong Duong*  

Thai Nguyen University of Sciences, Thai Nguyen, Vietnam 

Abstract 

This paper presents the problem of exponential stabilization of switched systems with mixed time-

varying delays in state and control. Based on the partitioning of the stability state regions into convex 

cones, a constructive geometric design for switching laws is put forward. By using an improved 

Lyapunov–Krasovskii functional in combination with matrix knowledge, we design a state feedback 

controller that guarantees the closed-loop system to be exponentially stable. The obtained conditions 

are given in terms of linear matrix inequalities (LMIs), which can be effectively decoded in 

polynomial time by various computational tools such as the LMI tool in MATLAB software. A 

numerical example is proposed to illustrate the effectiveness of the obtained results. 

Keywords: Exponential stabilization, switched systems, varying delay, lyapunov function 

1. Introduction 

Stability theory of dynamical systems was first studied by the mathematician Lyapunov in the late 

19th century. Since then, Lyapunov stability theory has become an essential part of the study of 

differential equations, system theory, and applications. 

In particular, the stability of hybrid systems has attracted a lot of attention from many researchers 

such as Y. Zhang [1], Z. Sun [2], and A. V. Savkin [3]. Switched systems are an important class of 

hybrid systems [3], [4]. Switched systems, which are a collection of subsystems and switching rules, 

can be described by a differential equation of the form: 

( ) ( , ),x t f t x


= 0t  , 
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where { () :f
  m ={1, 2,…, m}} is a family of functions that is parameterized by some index set 

m  which is typically a finite set and (.)  depending on the system state in each time is a switching 

rule, which determines a switching sequence for a given switching system.  

The class of switched systems is of particular significance and has many important applications in 

practice. Switching systems arise in many practical processes that cannot be described by exclusively 

continuous or exclusively discrete models, such as manufacturing, communication networks, 

automotive engineering control, chemical processes [2], [3], [5]. As a consequence, many important 

and interesting results on switched systems have been reported and various issues have been studied 

by many authors [4], [6]–[17].  

In this paper, we extend the results of [18] to switched systems with mixed delays in state and 

control. The switched system in the research [18] is given by formular (1): 

( ) ( ) ( ) ( ) ( ) ( ) ( ) (1)
t t

t t r

x t A x t D x t E x s ds B u t C u t r F u s ds     




− −

= + − + + + − + 

In our research, we will consider switched system with mixed time varying delays in state and control 

as presented in (2): 

1 2

1 2

( ) ( )

( ) ( ) ( ( )) ( ) ( ) ( ( )) ( ) , (2)

t t

t k t t k t

x t A x t D x t h t E x s ds B u t C u t h t F u s ds t     
+

− −

= + − + + + − +  

We used the Lyapunov function method with the application of the LMI tool in the MATLAB 

software. The goal of this research is to find the state feedback controller ( )u t  (which will be 

introduced in Section 2) and the (.)  rule in order to apply the Lyapunov function method. From 

this, we obtain the theorem to be proved. We also use MATLAB to provide a numerical example to 

illustrate the problem. 

The paper is organized as follows. Section 2 presents main concepts and lemmas needed for the 

proof of the main result. Exponential stabilization of the class of the switched systems with mixed 

time varying delays in state and control is presented, proved, and illustrated by a numerical example in 

Section 3. The paper ends with conclusions and the cited references. 

2. Problem statement and preliminaries 

First, we introduce some notations, concepts and lemmas which are necessary for this present 

work. The following notations will be used throughout this paper: 𝑅+ denotes the set of all non-

negative real numbers; 𝑅𝑛 denotes the n-dimensional Euclidean space, with the Euclidean norm ‖. ‖ 

and scalar product 〈𝑥, 𝑦〉 = 𝑥𝑇𝑦. For a real matrix A, 𝜆𝑚𝑎𝑥(𝐴) 𝑎𝑛𝑑 𝜆𝑚𝑖𝑛(𝐴) denote the maximal and 

the minimal eigenvalue of A, respectively;  𝐴𝑇 denotes the transpose of the matrix A. Q ≥ 0 (Q > 0, 

resp.) means Q is semi-positive definite (positive definite, resp.), A ≥ B means A - B ≥ 0. 

Consider a switched system with the delays are varying in state and control of the form: 

 

1 2

1 2

( ) ( )

1 2 1 2

( ) ( ) ( ( )) ( ) ( ) ( ( )) ( ) ,

( ) ( ), [-d, 0], d= max{h , h , k , k }, 

t t

t k t t k t

x t A x t D x t h t E x s ds B u t C u t h t F u s ds t

x t t t

     



+

− −


= + − + + + − + 




= 

 

  (3) 
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where  is the state,  is the control, and  are the varying 

delays satisfying the condition: 

1 1(t) 1h   , 

2 2(t) 1h   , 

, 

and {1, 2 ,..., m}m  =  is a switching rule depending on time and the system state. 

are constant matrices with appropriate dimensions. 

Before presenting the main result, we recall some well-known concepts, remarks and lemmas 

which will be used in the proof.  

Definition 1 ([6]). Given . System (3) with  is -exponentially stable if there 

exists an  switching rule and a constant  such that every solution  of the system 

satisfies: 

≤ , . 

Definition 2 ([6]). Given . System (3) is -stabilizable in the sense of exponential 

stability if there exists a control input  2,…, m  such that the closed-loop system: 

 

is -exponentially stable.  is called feedback controller. 

Definition 3 ([7]). The system of matrices  is said to be strictly 

complete if for every  there is  such that . 

 Let us define , . 

 It is easy to show that the system  is strictly complete if and only if: 

                                                          .   (4)  

Remark 1 ([7]). A sufficient condition for the strict completeness of the system  is that there 

exist   such that: . 

Lemma 1 (Matrix Cauchy Inequality [19]). For any symmetric positive definite matrix 

 and , we have: 

. 

( ) nx t  ( ) mu t  1 2(t), (t), h h 1 2(t), ( )k k t

1 10 (t) ,h h 

2 20 (t) ,h h 

1 10 (t) ,k k  2 20 (t)k k 

,A ,B

,C ,D ,E ( )F m  

0  ( ) 0u t = 

 0  ( , )x t 

|| ( , ) ||x t  ||| ||te  −
0t 

0  

( 1,m n

iK i = )

1

1 2

( ) 2( )

( ) [ K ] ( ) ( ( )) ( ) ( ( )) ( )

t t

t k t t k t

x t A B x t D x t h t E x s ds E x t h t F u s ds      

− −

= + + − + + − + 

 ( ) ( )u t K x t=

{ }, {1, 2,...,m}iL i m =

\{0}nx  i m 0T

ix L x 

{ : 0}n T

i ix x L x =   i m

{ }, iL i m

1

\{0}
m

n

i

i=

 =

{ }iL

i 0,  i

1

0
m

i


=

 i

1

0
m

i

i

L
=



n nM  , nx y

12 , , ,x y Mx x M y y−     +  
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Lemma 2 ([20]). For any symmetric positive definite matrix , scalar  and vector 

function  :  such that the integrals concerned are well defined, then:  

 

Lemma 3 (Schur Complement Theorem [19]). For any constant matrices , , ,n nX Y Z   where 

 . Then  if and only if 

 or . 

3. Main result 

 For given 𝛼 > 0, ℎ1 ≥ 0, ℎ2 ≥ 0, 𝑘1 ≥ 0, 𝑘2 ≥ 0, symmetric positive definite matrices P, Q, R, 

M and matrices Yi (i = 1, 2,…, m) with appropriate dimensions, we set:

22 ,T

i i i iL A P PA P G k R M= + + + + +  , 

    where 2 22 2

2

2

1

1

h kT T T T

i i i i i i i i iG BY Y B e C C k e F F 



 
= + + + 

− 
, 

               ,  , 

                ,  

                 , diag , 

               
1

1 min ( )P  −= , 21 ,k = +  

                      (5) 

                        

Theorem 1. Given . System (3) is -exponentially stabilizable if there exist symmetric 

positive definite matrices P, Q, R, M, matrices  and numbers ,  i

1

0,
m

i


=

  such that 

the following LMIs hold: 

 i) 

    (6)

 

n nM  0 

[0, ] n →

0 0 0

( ) ( ) ( ) ( ) .

T

Ts ds M s ds s M s ds

  

    
   

      
   
  

,TX X= 0TY Y=  1 0TX Z Y Z−− 

0
TX Z

Z Y

 
 

 
0

T

Y Z

Z X

− 
 

 

i m

{ : 0}n T

i ix x L x =   {P : },i is x x=  i m

1 1,s s=
1

1

\
i

i i j

j

s s s
−

=

= 2,3,..., ,i m=

[i iU D P= ]iE P H = 1 12 2

1

1

1
(1 ) ,h ke Q e R

k

  − − 
− 

 

1 1 1 2 1 1

2 max 1 max 1 max

1
( ) ( ) ( )

2
P h P QP k P RP   − − − − −= + +

2 1 1

2 2 max

1
( ).

2

T

i ih k P Y Y P − − 
+ + 
 

0 

iY i 0,  i m

i

1

0,
m

i

i

L
=


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 ii)    .    (7) 

 The switching rule is chosen as  whenever 
 
and the feedback controller is 

given by: 

 , .        (8) 

Moreover, the solution  of the closed-loop system satisfies:   

 
  . 

Proof 

 It follows from (6), that the system matrices  is strictly complete, so we have 

. Based on the set  we construct the sets  and we will show that: 

  , i js s = , .     (9) 

Obviously i js s = , . For any  there  such that . Then 

we have, . Therefore and by the construction of sets  it follows that 

.  

 The switching rule is chosen as  whenever (this switching rule is well 

defined due to (9)). So when , the ith subsystem is activated and then we have the following 

subsystem: 

1 2

1 2

( ) ( )

( ) ( ) ( ( )) ( ) ( ) ( ( )) ( ) . (10)

t t

i i i i i i

t k t t k t

x t A x t D x t h t E x s ds B u t C u t h t F u s ds
− −

= + − + + + − + 

 Denote , ,  and consider the following Lyapunov–Krasovskii 

functional for the closed-loop system of (10), where 
1( ) ( )iu t Y P x t−= : 

 

,  (11) 

where:          1( ) ( ) ( ),T

tV x x t Xx t=  

              

0 0,

0

T

i i

T

i

i

M U Y

U H

Y I





 
 

 
 
 

i m

( ( ))x t i = ( ) ix t s

1( ) ( )u t Y P x t

−= 0t 

( , )x t 

|| ( , ) ||x t   2

1

|| ||,te 




− 0t 

{ }iL

1

\{0}
m

n

i

i=

 = i is

1

\{0}
m

n

i

i

s
=

= i j

i j \{0}nx i m
-1y= P ix

= Py ix s
1

\{0}
m

n

i

i

s
=

= is

1

\{0}
m

n

i

i

s
=

=

( ( ))x t i = ( ) ix t s

( ) ix t s

1X P−=
1Q XQX= 1R XRX=

5

1

( ) ( )t i t

i

V x V x
=

=

1

2 ( )

2 1

( )

( ) ( ) ( ) ,

t

s t T

t

t h t

V x e x s Q x s ds −

−

= 
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2

2 ( ) 2

5

( )

( ) || ( ) || .

t t

t

t

t k t t s

V x e u t d ds   −

− +

= +   

 It is easy to verify that:  

 
   (12) 

where ,  is defined in (5). 

 Taking derivative of  with respect to t along the solution  of the system, we have: 

  ( )1( ) ( ) ( )T T T T

t i i i i i iV x x t A X XA X BY Y B X x t = + + +
 

 

      .    (13)                    

Applying Lemma 1 and 2 gives: 

1 1

1 1

2 21

1 1 1

( )

2 ( ) ( ) ( ) ( ) ( ) ( ) , (14)

t t

k kT T T T

i i i

t k t t k

x t XE x s ds k e x t XE R E Xx t e x s R x s ds −−

− −

 + 

 

2 2

2 2

2 2 2

2

( )

2 ( ) ( ) ( ) ( ) || ( ) || . (15)

t t

k kT T T

i i i

t k t t k

x t XF u s ds k e x t XF F Xx t e u s ds −

− −

 + 

 

Therefore, from (13) to (15) we have: 

 ( )( ) ( )T T T T

i i i i i ix t A X XA X BY Y B X x t + + +
 

 

              

              +  

              +    (16) 

Next, taking derivative of , , , 5( )tV x  with respect to t along the solution

of the system, we have:  

  

1

2 ( )

3 1

( )

( ) ( ) ( ) ,

t t

t T

t

t k t t s

V x e x R x d ds    −

− +

=  

2

2 ( ) 2

4

( )

( ) || ( ) || ,

t

s t

t

t h t

V x e u s ds −

−

= 

2 2

1 2|| ( ) || ( ) || ||t tx t V x x  

1 2

1( )tV x ( )x t

12 ( ) ( ( ))T

ix t XD x t h t+ −

22 ( ) ( ( ))T

ix t XC u t h t+ −

1 2( ) ( )

2 ( ) ( ) 2 ( ) ( )

t t

T T

i i

t k t t k t

x t XE x s ds x t XF u s ds
− −

+ + 

1( )tV x 

1 22 ( ) ( ( )) 2 ( ) ( ( ))T T

i ix t XD x t h t x t XC u t h t+ − + −

1 1

1

2 21

1 1 1( ) ( ) ( ) ( )

t

k kT T T

i i

t k

k e x t XE R E Xx t e x s R x s ds −−

−

+ 

2 2

2

2 2 2

2 ( ) ( ) || ( ) || .

t

k kT T

i i

t k

k e x t XF F Xx t e u s ds −

−

+ 

2( )tV x 3( )tV x 4( )tV x

( )x t

12 ( )

2 1 1 1 1 1 2( ) ( ) ( ) (1 ( )) ( ( )) ( ( )) 2h tT T

tV x x t Q x t h t e x t h t Q x t h t V −= − − + − − −
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           , 

 1

1

2

3 1 1 1 3( ) ( ) ( ) ( ) ( ) 2

t

kT T

t

t k

V x k x t R x t e x s R x s ds V −

−

 − − ,               

 
   

(17) 

, 

 

2

2

5 2 5( ) ( ) ( ) || ( ) || 2
i

t

T T

t i

t k

V x k x t XY Y Xx t u s ds V
−

 − − . 

Combining (16) and (17) implies: 

 ( ) 1( ) 2 ( ) ( ) ( ) 2T T T T

t t i i i i i iV x V x x t A X XA X BY Y B X x t V  +  + + + +
 

 

                           

                           + +  

                           + ( ) ( )Tx t XQXx t +
1

2 ( ) ( )Tk x t XRXx t +
2

2(1 ) ( ) ( )
i

T T

ik x t XY Y Xx t+  

                           - - . 

Applying Lemma 1 and 2 gives: 

 

,              

  

Therefore, we obtain: 

( ) 2 ( ) ( ) 2 ( )T T

t t i iV x V x x t A X XA X x t  +  + +   

1 2
( ) [B Y +Y B +Q+k R+(1+k )Y Y ]X (t)

i i i i

T T T T

i i
x t X x+  

1 12 21 1

1 1 1
1

1
( ) ( ) ( ) ( )

1

h kT T T T

i i i i
e x t XD Q D Xx t k e x t XE R E Xx t 



− −+ +
−

 

2 22 2

2
2

1
( ) ( ) ( ) ( )

1

h kT T T T

i i i i
e x t XC C Xx t k e x t XF F Xx t 


+ +

−
 

( ) 2 ( )T T

i ix t XPA X XA XP XP X x t = + +   

2 22 2

1 2
2

1
( ) B Y +Y B +Q+k R ( )

1i

h kT T T T T

i i i i i i ix t X e C C k e F F Xx t 



  
+ + +  

−  
 

12

1 1 1 1 1 2( ) ( ) (1 ) ( ( )) ( ( )) 2hT Tx t Q x t e x t h t Q x t h t V − − − − − −

22 ( ) 2

4 2 2 4( ) ( ) ( ) (1 ( )) || ( ( )) || 2h tT

tV x u t u t h t e u t h t V −= − − − −

22 2

2 2 4( ) ( ) (1 ) || ( ( )) || 2
i

hT T

ix t XY Y Xx t e u t h t V − − − − −

1 22 ( ) ( ( )) 2 ( ) ( ( ))T T

i ix t XD x t h t x t XC u t h t+ − + −

12 1

1 1( ) ( )k T T

i ik e x t XE R E Xx t − 22

2 ( ) ( )k T T

i ik e x t XF F Xx t

12

1 1 1 1(1 ) ( ( )) ( ( ))h Te x t h t Q x t h t −− − − 22 2

2 2(1 ) || ( ( )) ||he u t h t −− −

12

1 1 1 1 12 ( ) ( ( )) (1 ) ( ( )) ( ( ))hT T

ix t XD x t h t e x t h t Q x t h t −− − − − −

12 1

1

1

1
( ) ( )

1

h T T

i ie x t XD Q D Xx t



−
−

22 2

2 2 22 ( ) ( ( )) (1 ) || ( ( )) ||hT

ix t XC u t h t e u t h t −− − − − 22

2

1
( ) ( ).

1

h T T

i ie x t XC C Xx t




−
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1 1

1 1

2 21 1

1 2
1

1
( ) (1 ) ( )

1

h kT T T T

i i i i i ix t X e D Q D k e E R E k Y Y Xx t 



− − 
+ + + + − 

 

Since [i iU D P=   ]iE P , H = diag 1 12 2

1

1

1
(1 ) ,h ke Q e R

k

  − − 
− 

 
, we have: 

 1 12 21 1 1

1
1

1

1

h kT T T

i i i i
UH U e D PQ PD k e E PR PE 



− − − 
= + − 

 

           1 12 21 1

1
1

1
( ) ( )

1

h kT T

i i i i
e D XQX D k e E XRX E 



− − 
= + − 

 

           1 12 21 1

1 1 1
1

1
.

1

h kT T

i i i i
e DQ D k e E R E 



− − 
= + − 

 

where , .  

Moreover, we have:   

Therefore: ( )
1

22 ( )T

i i iPA A P P G Q k R t + + + + + +  

By Schur complement theorem (Lemma 3), (7) implies that: 

, i=1, 2,…, m. 

Therefore: .  

Noting that  implies ( ) ( ) it Xx t =   and ( ) ( ) 0T

it L t   (According to (6) and 

Remark 1, the system  is strictly complete), we have: 

, . 

Hence:  . 

On the other hand, we have:  therefore 

, . 

where ,  is defined in (5). The proof is complete.  □ 

Example. Consider switching system (3): 

1

1 2

( ) 2( )

( ) ( ) ( ( )) ( ) ( ) ( ( )) ( ) ,

t t

i i i i i i

t k t t k t

x t A x t D x t h t E x s ds B u t C u t h t F u s ds
− −

= + − + + + − +   i = {1, 2},        (18) 

where: , , , , 

( ) ( )t Xx t = 1

2(1 )T T

i i i i iU H U k Y Y− = + +

22 2 2

2

2

1

1

hT T T k T

i i i i i i i i iG BY Y B e C C k e F F 



 
= + + + 

− 

( ) 2 ( )t tV x V x+  ( )T t ( ) ( ).T

it t 

1

2(1 )T T

i i i iM U H U k Y Y− + +

( ) 2 ( )t tV x V x+  ( ) ( ),T

it L t  0t 

( ) ix t s

{ }iL

( ) 2 ( ) 0t tV x V x+  0t 

2 2 2

2( ) ( ) || || ,t t

tV x V e e   − −  0t 

2

1 || ( ) || ( )tx t V x 

|| ( , ) ||x t   2

1

|| ||te 




− 0t 

1 2

2

1

1
( ) sin

2
h t t= 2

2

1
( ) sin

2
h t t= 2

1( ) 0.9 osk t c t=
2

2

1
( ) 0.9 os

3
k t c t=

https://sj.hpu2.edu.vn/


HPU2. Nat. Sci. Tech. 2024, 3(1), 47-56 

https://sj.hpu2.edu.vn 55 

 

         , ,  

and 1 1 1 1 1 1

15 2 2 1 2 1 1 0 1
, , , , ,

5 1 2 1 0 5 0 1 1
A D E B C F

− −           
= = = = = =           

− − − −           
, 

     2 2 2 2 2 2

5 1 1 5 2 1 0 1 1
, , , , ,

2 45 2 7 4 5 1 0 1
A D E B C F

− − − −           
= = = = = =           

− − −           
. 

 For  and . By using LMIs in Matlab, we can check the system (18) is 

exponentially stabilizable with (The LMIs (6) and (7) in Theorem 1 are satisfied): 

 , , 

                   , , 

                   ,  . 

Then the system of matrices {L1, L2}, where 

                          , . 

are strictly complete. The switching regions are constructed by: 

 

 

 With the switching rule  whenever , i = {1, 2} and the state feedback 

controller , , where: 

, , 

the system (18) is 0.3-exponentially stabilizable. 

 Moreover, every solution of  the closed-loop system satisfies:  

. 

4. Conclusion 

By using the Lyapunov function method in combination with matrix knowledge, we have given a 

sufficient condition for “Exponential stabilization of the class of the switched systems with mixed time 

varying delays in state and control”. We also give a numerical example to illustrate this problem. 
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