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Solvability Analysis of high-order Linear Differential-Algebraic 

Equations with time-varying coefficients 

Ha-Phi*  

Hanoi University of Science and Technology, Hanoi, Vietnam 

Abstract 

In this paper, we study the solvability analysis of arbitrarily high-order linear differential-algebraic 

equations (DAEs) with time-varying coefficients, using the algebraic-behavior approach. We propose 

a concept of strangeness-index and construct condensed forms for high-order linear DAEs. We also 

discuss other structural properties like the existence and uniqueness of a solution, consistency and 

smoothness requirements for an initial vector and for an inhomogeneity. Our work extends the 

algebraic approach for DAEs and combines this approach with the behavior approach to establish a 

reformulation algorithm that reveals an underlying ordinary differential equation (ODE) and all hidden 

constraints in the DAE. This direct treatment of the system addresses the limitations of the classical 

approach to transforming the system into a first-order DAE. We illustrate our theoretical results with 

applications in mechanical systems and electrical circuits. This comprehensive study into general 

high-order systems is a natural progression from the extensive study of first and second-order DAEs. 

Keywords: Differential-algebraic equation, strangeness-index, regularization, index reduction 

1. Introduction 

In this paper, we delve into the solvability analysis of high-order linear differential-algebraic 

equations (DAEs) represented by the general form: 

𝐴𝑘(𝑡)𝑥
(𝑘)(𝑡) + ⋯+ 𝐴1(𝑡)�̇�(𝑡) + 𝐴0(𝑡)x(𝑡) = f(𝑡),                                             (1) 

on the time interval 𝑡 ∈ 𝕀 = [𝑡0, 𝑡𝑓) ⊂ ℝ, where 𝐴𝑖 ∈ 𝐶(𝕀, 𝐶
ℓ,𝑛), 𝑖 = 1,… , 𝑘, and 𝑓: 𝕀 → ℂℓ. To ensure 

a unique solution for this equation, an initial function is required: 

𝑥(𝑘−1)(𝑡0) = 𝑥0
(𝑘−1), … , �̇�(𝑡0) = �̇�0, 𝑥(𝑡0) = 𝑥0.                                              (2) 
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While first-order DAEs (𝑘 = 1) have been extensively studied over the past three decades with 

well-established theoretical and numerical results [1]–[3], second-order DAEs (𝑘 = 2) have found 

applications in diverse fields such as constrained mechanical systems [4], electrical and electro-

mechanical systems [5], [6], heterogeneous systems [7], and traveling waves [8], [9], etc. Recently, the 

analysis and control of second-order discrete-time system has been considered in [10], [11]. 

Consequently, a comprehensive investigation into the general high-order system (1) is a natural 

progression.  

Despite some exploration of specific cases (𝑘 = 1,2), limited results exist for the general case, 

and the classical approach of transforming (1) into a first-order DAE through variable introduction has 

shown several critical drawbacks [12]–[16]. These include excessive smoothness requirements on the 

inhomogeneity or numerical method failures in a linearized system. Consequently, a direct treatment 

of system (1) becomes imperative, forming the central objective of this paper. We adopt a unique 

perspective by extending the algebraic approach for DAEs proposed in previous works [3], [17] and 

combining it with the behavior approach [18]. The goal is to establish a reformulation algorithm that 

unveils an underlying ordinary differential equation (ODE) and all hidden constraints in the DAE (1).  

The paper is organized as follows. Section 2 introduces necessary notations and auxiliary lemmas. 

In Section 3, we extend the concept of the strangeness-index, initially designed for first-order systems, 

to the high-order system (1). Additionally, we devise a reformulation algorithm to transform (1) into 

its strangeness-free form. This section also addresses the solvability analysis of the initial value 

problem consisting of (1)–(2). Finally, Section 4 illustrates our results through examples in the fields 

of mechanics and electrical circuits. 

2. Preliminaries 

In this paper we use the following solution concept for (1). 

Definition 1.  A function 𝑥: 𝕀 → ℂ𝑛 is called 

i) a (classical) solution to (1) if 𝑥 ∈ 𝐶𝑘(𝕀, ℂ𝑛) and 𝑥 satisfies (1) pointwise. 

ii) a (classical) solution to the initial value problem (1)-(2) if 𝑥 is a solution of (1) and satisfies 

(2). 

We introduce 𝑋0 : = [𝑥0
(𝑘−1),𝑇 . . .   𝑥1

𝑇  𝑥0
𝑇]
𝑇
∈ ℂ𝑘𝑛 as an initial vector of the initial value problem 

consisting of (1) and (2). 

iii) An initial vector 𝑋0 is called consistent to system (1) if the initial value problem (1)–(2) has a 

solution. 

iv) System (1) is called solvable if for every sufficiently smooth 𝑓 and every consistent initial 

vector 𝑋0, the associated initial value problem (1)–(2) has at least one solution. It is called regular if it 

is solvable and the solution is unique. 

We recall without proof the following results, see e. g., Theorems 3.9, 3.25 ([3]) . 

Theorem 2 ([3]).  Let 𝐸 ∈ 𝐶ℓ(𝕀,ℝ𝑚,𝑛), ℓ ∈ ℕ0 ∪∞, with rank𝐸(𝑡) = 𝑟 for all 𝑡 ∈ 𝕀. Then there 

exist pointwise unitary functions 𝑈 ∈ 𝐶ℓ(𝕀, ℂ𝑚,𝑚) and 𝑉 ∈ 𝐶(𝕀, ℂ𝑛,𝑛), such that 𝑈𝐻𝐸𝑉 = [
𝛴𝐸 0
0 0

], 

with pointwise nonsingular 𝛴 ∈ 𝐶ℓ(𝕀, ℂ𝑟,𝑟). 
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Theorem 3 ([3]).  Let 𝕀 ⊂ ℝ be a close interval and 𝑀 ∈ 𝐶(𝕀, ℂ𝑚,𝑛). Then there exist open 

intervals 𝕀𝑗 ⊂ 𝕀, 𝑗 ∈ ℕ, with ⋃ 𝕀𝑗𝑗∈ℕ = 𝕀, 𝕀𝑖 ∩ 𝕀𝑗 = ∅ for 𝑖 ≠ 𝑗, and  𝑟𝑗 ∈ ℕ0, 𝑗 ∈ ℕ such that 

rank 𝑀(𝑡) = 𝑟𝑗 for all 𝑡 ∈ 𝕀𝑗. 

Making use of this theorem, in the remaining part of this research, we can assume constant rank 

assumptions holds, in particular in Algorithm 13.  

For two functions 𝑃 ∈ 𝐶(𝕀, ℂ𝑝,𝑛), 𝑄 ∈ 𝐶(𝕀, ℂ𝑞,𝑛), the function pair (𝑃, 𝑄) is said to have no 

hidden redundancy if 

rank ([
𝑃(𝑡)

𝑄(𝑡)
]) = rank(𝑃(𝑡)) + rank(𝑄(𝑡)) for all 𝑡 ∈ 𝕀. 

The following lemmas are taken from [17]. 

Lemma 4 ([17]).   Suppose that for 𝑃 ∈ 𝐶(𝕀, ℂ𝑝,𝑛), 𝑄 ∈ 𝐶(𝕀, ℂ𝑞,𝑛), the function pair (𝑃, 𝑄) has 

no hidden redundancy. Let 𝑈 ∈ 𝐶(𝕀, 𝐶𝑞,𝑞) and 𝑉 ∈ 𝐶(𝕀, 𝐶𝑝,𝑝) be two arbitrary functions. Then, the 

function pair (𝑈𝑃, 𝑉𝑄) has no hidden redundancy. 

If for all 𝑡 ∈ 𝕀, matrix [
𝑃(𝑡)

𝑄(𝑡)
] is of full row rank then obviously, the function pair (𝑃, 𝑄) has no 

hidden redundancy. However, the converse is not true as is obvious for 𝑄 = [
1 0
0 0

], 𝑃 = [
0 1
0 0

], 

since (𝑃, 𝑄) has no hidden redundancy, but [
𝑄
𝑃
] does not have full row rank. 

Lemma 5 ([17]).   Given two functions 𝑃 ∈ 𝐶(𝕀, ℂ𝑝,𝑛), 𝑄 ∈ 𝐶(𝕀, ℂ𝑞,𝑛). Moreover, assume that 𝑃 

has pointwise full row rank, and rank(𝑄), rank ([
𝑃
𝑄
]) are constants on 𝕀, i. e., rank(𝑄(𝑡)) = 𝑞1, 

rank ([
𝑃(𝑡)

𝑄(𝑡)
]) = 𝑞2 for all 𝑡 ∈ 𝕀. Then, there exists a function [

𝑆 0
𝑍1 𝑍2

] ∈ 𝐶(𝕀, ℂ𝑝+𝑞) such that the 

following conditions hold. 

i) [
𝑆
𝑍1
] ∈ 𝐶(𝕀, ℂ𝑝,𝑝) is pointwise unitary, 

ii) [𝑍1 𝑍2] [
𝑃
𝑄
] = 0, 

iii) the function pair (𝑆𝑃, 𝑄) has no hidden redundancy. 

Lemma 6.  Consider 𝑘 + 1 pointwise full row rank functions 𝑅0 ∈ 𝐶(𝕀, ℂ
𝑟0,𝑛), …, 𝑅𝑘 ∈

𝐶(𝕀, ℂ𝑟𝑘,𝑛), such that none of the function pairs (𝑅𝑗(𝑡), [𝑅𝑗−1
𝑇 (𝑡) … 𝑅0

𝑇(𝑡)]
𝑇
) ,  𝑗 = 𝑘,… ,1 has a 

hidden redundancy. Then, [𝑅𝑘
𝑇(𝑡) … 𝑅0

𝑇(𝑡)]𝑇 has full row rank for all 𝑡 ∈ 𝕀. 

Proof. The proof is straightly followed by induction, i.e.,   

𝑟𝑎𝑛𝑘([

𝑅𝑘
𝑅𝑘−1
⋮
𝑅0

]) =  𝑟𝑎𝑛𝑘(𝑅𝑘) + 𝑟𝑎𝑛𝑘 ([
𝑅𝑘−1
⋮
𝑅0

]) =  𝑟𝑎𝑛𝑘(𝑅𝑘) + 𝑟𝑎𝑛𝑘(𝑅𝑘−1) + 𝑟𝑎𝑛𝑘 ([
𝑅𝑘−2
⋮
𝑅0

]), 

        = . . .  = rank(𝑅𝑘) + rank(𝑅𝑘−1) + ⋯+ rank(𝑅0), 

and since 𝑅𝑘 , … , 𝑅0 have pointwise full row rank, then [𝑅𝑘
𝑇 … 𝑅0

𝑇]𝑇 has pointwise full row 

rank. ◻ 
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3. Strangeness-index concept and strangeness-free form of high-order DAEs 

As stated in the introduction, this section is devoted to a strangeness-index concept and a 

reformulation algorithm of the high-order linear DAE (1). See also [14]–[16] and the references 

therein for previous works on this topic. Note that different from previous investigations, we study 

system (1) by extending the algebraic approach for first order DAEs proposed in [3], [17] and 

combining with the behavior approach [18]. Let 

𝑀(𝑡) : = [𝐴𝑘(𝑡)⋯𝐴0(𝑡)] and 𝑋(𝑡) := [
𝑥(𝑘)(𝑡)
⋮

𝑥(𝑡)
] , 𝑡 ∈ 𝕀,  𝑋0 : = [

𝑥(𝑘−1)(𝑡0)
⋮

𝑥(𝑡0)
].               (3) 

Then 𝑀(𝑡) (resp., 𝑋(𝑡)) is called the behavior function (resp., behavior vector) of IVP (1)-(2), 

which can be rewritten as 

𝑀(𝑡)𝑋(𝑡) = 𝑓(𝑡)  for all 𝑡 ∈ 𝕀, 𝑋(𝑡0) = 𝑋0.                                             (4) 

Hypothesis 7.  Denote by 

𝑚𝑖(𝑡) : = rank([𝐴𝑘(𝑡),… , 𝐴𝑘−𝑖(𝑡)]), 𝑖 = 0,… , 𝑘, 

we assume that functions 𝐴𝑖, 𝑖 = 0,… , 𝑘 of system (1) fulfill the following constant rank 

conditions 

𝑚𝑖(𝑡) ≡ 𝑚𝑖 for all 𝑡 ∈ 𝕀, 𝑖 = 0,… , 𝑘. 

Under the Hypothesis 7, we can transform 𝑀 to the block diagonal form as in the following 

lemma. 

Lemma 8.  Consider the behavior function 𝑀 of system (1). Moreover, suppose that Hypothesis 7 

holds. Then, there exists a pointwise nonsingular function 𝑃 ∈ 𝐶(𝕀, ℂℓ,ℓ) such that  

   �̃� := 𝑃𝑀 =

[
 
 
 
 
 
𝐴𝑘,1 | 𝐴𝑘−1,1 | … | 𝐴0,1

| 𝐴𝑘−1,2 | … | 𝐴0,2
| | ⋱ | ⋮

| | | 𝐴0,𝑘+1
0 | 0 | … | 0 ]

 
 
 
 
 

, 

𝑟1
𝑟2
⋮

𝑟𝑘+1
𝑣

     (5) 

where every function 𝐴𝑗,𝑘+1−𝑗, 𝑘 ≥ 𝑗 ≥ 0 on the main diagonal has pointwise full row rank. 

Moreover, those ranks are computed via 

1 0 2 1 0 1 -1, - ,..., - , - .k k k kr m r m m r m m v m+= = = =                                              (6) 

Proof. First, due to Theorem 2, we can find a pointwise nonsingular function 𝑃1 ∈ 𝐶(𝕀, ℂ
ℓ,ℓ) such 

that 

𝑃1𝑀 = [
𝐴𝑘,1 | 𝐴𝑘−1,1 … 𝐴0,1
0 | 𝐴𝑘−1,2 … 𝐴0,2

] , 
𝑟1

ℓ − 𝑟1
 

and 𝐴𝑘,1 has pointwise full row rank. Moreover, since 

rank(𝑃1[𝐴𝑘 , 𝐴𝑘−1]) = rank ([
𝐴𝑘,1 𝐴𝑘−1,1
0 𝐴𝑘−1,2

]) = 𝑚1, for all 𝑡 ∈ 𝕀, 

it follows that rank (𝐴𝑘−1,2(𝑡)) = 𝑚1 −𝑚0 =: 𝑟2 for all 𝑡 ∈ 𝕀. Thus, using Theorem 2 again, we 

compress the 2nd block column from the second block row of 𝑃1𝑀 and then inductively for the other 

columns of 𝑀, we determine a sequence of pointwise nonsingular functions 𝑃𝑖, 1 ≤ 𝑖 ≤ 𝑘 + 1 such 

https://sj.hpu2.edu.vn/


HPU2. Nat. Sci. Tech. 2024, 3(1), 64-77 

https://sj.hpu2.edu.vn 68 

 

that 𝑃 := ∏ 𝑃𝑖
𝑖=𝑘+1
1  and 𝑃𝑀 takes the block diagonal form (5). Furthermore, (6) follows directly from 

the construction of 𝑃. ◻ 

We call the number  𝑟𝑢 : = (𝑘 + 1)𝑟1 + 𝑘𝑟2 +⋯+ 2𝑟𝑘 + 𝑟𝑘+1 the upper rank of the behavior 

function 𝑀. Note, that some of the 𝑟𝑖 may be zero while the corresponding block row is not present. 

In the following, without loss of generality, we assume that the behavior function 𝑀 is already in 

the form �̃�. For notational convenience, we omit the variable 𝑡 in 𝑥, 𝑓 and their derivatives, and also 

in all matrix-valued functions. Rewriting system (4) block row-wise, we obtain the system 

                                  

−

−

−

−

+ +

+

+ + + +

+ + +

( ) ( 1)
,1 1,1 1,1 0,1 1

( 1)
1,2 1,2 0,2 2

0, 1 1

2

= ,

= ,

...

= ,

0= .

k k
k k

k
k

k k

k

A x A x A x A x f

A x A x A x f

A x f

f

                                                  (7) 

Recall that the diagonal blocks 𝐴𝑘,1, 𝐴𝑘−1,2, … , 𝐴0,𝑘+1 have pointwise full row rank, therefore in 

system (7), for every 𝑗 with 𝑘 ≥ 𝑗 ≥ 0, the (𝑘 + 1 − 𝑗)-th block row 

𝐴𝑗,𝑘+1−𝑗𝑥
(𝑗) +⋯+ 𝐴0,𝑘+1−𝑗𝑥 = 𝑓𝑘+1−𝑗, 

represents 𝑟𝑘+1−𝑗 = rank(𝐴𝑗,𝑘+1−𝑗) scalar differential equations of order 𝑗. We apply the 

algebraic approach  to reduce the number of scalar differential equations of order 𝑗, i. e., by using 

differential equations of order smaller than 𝑗 and their derivatives. 

Let us illustrate this idea for the case 𝑗 = 𝑘 in the Lemma 9 below. For notational convenience, by 

𝐿(𝑥,… , 𝑥(𝑗)) we denote an unspecified linear function of 𝑥,… , 𝑥(𝑗), 0 ≤ 𝑗 ≤ 𝑘. 

First we need to assume that functions 

[
 
 
 
𝐴𝑘,1
𝐴𝑘−1,2
⋮

𝐴0,𝑘+1]
 
 
 
, [

𝐴𝑘−1,2
⋮

𝐴0,𝑘+1

] have constant rank on 𝕀. By dividing 𝕀 into a 

union of (at most) countable disjoint intervals ⋃
𝑗∈ℕ

𝕀𝑗 as in Theorem 3, this constant rank assumption 

will be fulfilled on each interval 𝕀𝑗. 

Suppose that the function pair (𝐴𝑘,1, [

𝐴𝑘−1,2
⋮

𝐴0,𝑘+1

]) has a hidden redundancy, using Lemma 5, we 

can find functions 𝑆𝑘, 𝑍𝑘,𝑘, 𝑍𝑘,𝑘−1, … , 𝑍𝑘,0 of appropriate size such that 

i) [
𝑆𝑘
𝑍𝑘,𝑘

] ∈ 𝐶(𝕀, ℂ𝑟1,𝑟1) is pointwise unitary, 

ii) ∑ 𝑍𝑘,𝑖
𝑖=𝑘
0 𝐴𝑖,𝑘+1−𝑖 = 0,             (8) 

iii) the function pair (𝑆𝑘𝐴𝑘,1, [

𝐴𝑘−1,2
⋮

𝐴0,𝑘+1

]) has no hidden redundancy. 

The following lemma shows that we can reduce the number of scalars 𝑘-th order differential 

equations in system (7) from 𝑟1 = rank(𝐴𝑘,1) to 𝑑1 = rank(𝑆𝑘𝐴𝑘,1). 

Lemma 9.  The system (7) has the same solution set as the DAE 
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−

−

− −

+ −

−

−

+ +

+

+ + + +

+ + +



( ) ( 1)

,1 1,1 1,1 0,1 1

( 1) ( )

, 1
=0( 1)

1,2 1,2 0,2 2

0, 1 1

2

= ,

( , , )= ,

= ,

...

= ,

0= .

k k

k k k k k k k

k
k k i

k i k i
ik

k

k k

k

S A x S A x S A x S A x S f

L x x Z f

A x A x A x f

A x f

f

                                (9) 

for some linear function 𝐿 of 𝑥,… , 𝑥(𝑘−1). 

Proof. Firstly, we replace the first equation of system (7) by the scaled one 

[
𝑆𝑘
𝑍𝑘,𝑘

] (𝐴𝑘,1𝑥
(𝑘) + 𝐴𝑘−1,1𝑥

(𝑘−1) +⋯+ 𝐴1,1�̇� + 𝐴0,1𝑥) = [
𝑆𝑘
𝑍𝑘,𝑘

] 𝑓1, 

or equivalently, 

𝑆𝑘𝐴𝑘,1𝑥
(𝑘) + 𝑆𝑘𝐴𝑘−1,1𝑥

(𝑘−1) +⋯+ 𝑆𝑘𝐴1,1�̇� + 𝑆𝑘𝐴0,1𝑥 = 𝑆𝑘𝑓1,                                            

𝑍𝑘,𝑘  𝐴𝑘,1 𝑥
(𝑘) + 𝑍𝑘,𝑘(𝐴𝑘−1,1𝑥

(𝑘−1) +⋯+𝐴0,1𝑥) = 𝑍𝑘,𝑘𝑓1.                                          (10) 

then obviously, it does not change the solution set. 

On the other hand, for 1 ≤ 𝑖 ≤ 𝑘 − 1, the (𝑘 + 1 − 𝑖)-th equation of (7) is 

𝐴𝑖,𝑘+1−𝑖𝑥
(𝑖) +∑𝐴𝑞,𝑘+1−𝑖

𝑖−1

𝑞=0

𝑥(𝑞) = 𝑓𝑘+1−𝑖. 

Taking the (𝑘 − 𝑖)-th derivative of it and scaling the resulting equation with 𝑍𝑘,𝑖, we obtain 

𝑍𝑘,𝑖 (
𝑑

𝑑𝑡
)
𝑘−𝑖

(𝐴𝑖,𝑘+1−𝑖𝑥
(𝑖) +∑𝐴𝑞,𝑘+1−𝑖

𝑖−1

𝑞=0

𝑥(𝑞)) = 𝑍𝑘,𝑖𝑓𝑘+1−𝑖
(𝑘−𝑖)

, 

⇔  𝑍𝑘,𝑖𝐴𝑖,𝑘+1−𝑖𝑥
(𝑘) + ∑ (

𝑘 − 𝑖

𝑝
)

𝑘−𝑖−1

𝑝=0

𝐴𝑖,𝑘+1−𝑖
(𝑘−𝑖−𝑝)

𝑥(𝑖+𝑝) + 𝑍𝑘,𝑖
𝑑𝑘−𝑖

𝑑𝑡𝑘−𝑖
(∑𝐴𝑞,𝑘+1−𝑖

𝑖−1

𝑞=0

𝑥(𝑞))

⏟                                        
=: 𝐿(𝑥,…,𝑥(𝑘−1))

= 𝑍𝑘,𝑖𝑓𝑘+1−𝑖
(𝑘−𝑖) . 

Thus, we have the new equation  

𝑍𝑘,𝑖𝐴𝑖,𝑘+1−𝑖𝑥
(𝑘) + 𝐿(𝑥,… , 𝑥(𝑘−1)) = 𝑍𝑘,𝑖𝑓𝑘+1−𝑖

(𝑘−𝑖) .                                            (11) 

Replacing equation (10) in system (7) by the sum of itself and all equations of the type (11), 𝑖 =

0,… , 𝑘 − 1, we get 

∑𝑍𝑘,𝑖

𝑖=𝑘

0

𝐴𝑖,𝑘+1−𝑖𝑥
(𝑘) + 𝐿(𝑥,… , 𝑥(𝑘−1)) =∑𝑍𝑘,𝑖

𝑘

𝑖=0

𝑓𝑘+1−𝑖
(𝑘−𝑖) , 

and hence, the equality (8) implies that  𝐿(𝑥,… , 𝑥(𝑘−1)) = ∑ 𝑍𝑘,𝑖
𝑘
𝑖=1 𝑓𝑘+1−𝑖

(𝑘−𝑖) .  ◻ 

Note that, in order to apply the same argument for the block rows numbered 𝑗 = 𝑘 − 1,… ,1, in 

system (7), it is necessary to require the constant rank conditions in the following hypothesis. 

Hypothesis 10.  Denote by 
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𝑞𝑗(𝑡) = rank

(

 

[
 
 
 
𝐴𝑗,𝑘+1−𝑗(𝑡)

𝐴𝑗−1,𝑘+2−𝑗(𝑡)

⋮
𝐴0,𝑘+1(𝑡) ]

 
 
 

)

 , 𝑗 = 𝑘,… ,1, 𝑡 ∈ 𝕀, 

we assume that 

𝑞𝑗(𝑡) ≡ 𝑞𝑗 for all 𝑡 ∈ 𝕀, 𝑗 = 𝑘,… ,1. 

Applying the same argument to the block rows numbered 𝑗 = 𝑘 − 1,… ,1, we obtain the 

following two lemmas. 

Lemma 11.  Consider the DAE (1) and its behavior form (4). Moreover, assume that Hypotheses 

7, 10 hold. Then, there exist functions 𝑆𝑗, 𝑍𝑗,𝑖, 𝑗 = 𝑘,… ,1, 𝑖 = 𝑗, … ,0 of appropriate size such that the 

following assertions hold true 

i) the functions [
𝑆𝑗
𝑍𝑗,𝑗
] ∈ 𝐶(𝕀, ℂ𝑟𝑗,𝑟𝑗), 𝑘 ≥ 𝑗 ≥ 1 are pointwise unitary, 

ii) for each 𝑗 with 𝑘 ≥ 𝑗 ≥ 1, 𝑍𝑗,𝑗𝐴𝑗,𝑘+1−𝑗 + [𝑍𝑗,𝑗−1…𝑍𝑗,0] [

𝐴𝑗−1,𝑘+2−𝑗
⋮

𝐴0,𝑘+1

] = 0, 

iii) for each 𝑗 with 𝑘 ≥ 𝑗 ≥ 1, the function pair (𝑆𝑗𝐴𝑗,𝑘+1−𝑗, [

𝐴𝑗−1,𝑘+2−𝑗
⋮

𝐴0,𝑘+1

]) has no hidden 

redundancy. 

Proof. For each 𝑗 with 𝑘 ≥ 𝑗 ≥ 1, by applying Lemma 5 to the function pair 

(𝐴𝑗,𝑘+1−𝑗 , [

𝐴𝑗−1,𝑘+2−𝑗
⋮

𝐴0,𝑘+1

]) 

we obtain functions 𝑆𝑗, 𝑍𝑗,𝑖, 𝑖 = 𝑗, … ,0 that satisfy conditions i)-iii). ◻ 

Setting 

�̃� : = diag ([
𝑆𝑘
𝑍𝑘,𝑘

] , … , [
𝑆1
𝑍1,1

] , 𝐼𝑟𝑘+1+𝑣) ∈ 𝐶(𝕀, ℂ
ℓ,ℓ), 

and scaling system (1) with �̃� from the left we obtain 

  

1,1

, 1, ,1

( )
1 21 1,2

( 1)

1, 1 21, 1 1,2

10, 1

2

| * | | *

| * | | *

| | | *

=| | | *

| | |

| | |

0 | 0 | | 0

kk k

k kk k k

k
x kk k

k

k kk k k

kk

k

S fS A

Z fZ A

S fS A
x Z fZ A

x

fA

f

−− −
−

− −− − −

++

+

  
  
  
    
    
    
     
  
  
  

   

.             (12) 

For each 𝑗 with 𝑘 ≥ 𝑗 ≥ 1, we then reduce the number of scalar differential equations of order 𝑗 

by eliminating the block 𝑍𝑗,𝑗𝐴𝑗,𝑘+1−𝑗 of (12), as in the following lemma. 

Lemma 12.  Let functions 𝑆𝑗, 𝑍𝑗,𝑖, 𝑗 = 𝑘,… ,1, 𝑖 = 𝑗, … ,0, be defined as in Lemma 11. Then, the 

DAE (12) has the same solution set as the DAE  
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11 ,1

21

( )
1 22 1 1,2

( 1)

2( 1)2

11 0, 1

2

| * | | *

0 | * | | *

| | | *

=| 0 | | *

| | |

| | |

0 | 0 | | 0

kk k

k

k
x kk k

k

k

kk k

k

S fd S A

gs

S fd S A
x gs

x

fd A

fv

M

−− −
−

−

++ +

+

  
  
  
    
    
    
     
  
 
 

   

,

f




                                         (13) 

where 𝑔2𝑗 : = ∑ 𝑍𝑗,𝑖
𝑗
𝑖=0 𝑓𝑘+1−𝑖

(𝑗−𝑖)
, 𝑗 = 𝑘,… ,1. 

Proof. The form (13) can be directly obtained by applying the same argument as in Lemma 9 for 

𝑗 = 𝑘,… ,1. ◻ 

From (13), we deduce that 𝑟𝑗 = 𝑑𝑗 + 𝑠𝑗, 𝑗 = 1,… , 𝑘 + 1, 𝑠𝑘+1 = 0 and therefore the upper rank of 

the behavior function �̆� can be estimated via 

�̆�𝑢 ≤ (𝑘 + 1)𝑑1 + 𝑘(𝑠1 + 𝑑2) + ⋯+ (𝑠𝑘 + 𝑑𝑘+1),

     = (𝑘 + 1)(𝑑1 + 𝑠1) + 𝑘(𝑑2 + 𝑠2) +⋯+ (𝑑𝑘+1 + 𝑠𝑘+1) −∑𝑠𝑖

𝑘      

𝑖=0      

,

     = (𝑘 + 1)𝑟1 + 𝑘𝑟2 +⋯+ 𝑟𝑘+1 −∑𝑠𝑖

𝑘     

𝑖=0      

= 𝑟𝑢 −∑𝑠𝑖

 𝑘       

𝑖=0      

.

 

This reduction of the upper rank leads to the following algorithm. 

Algorithm 13.   

Input: The DAE (1) and its behavior form (4). 

Begin: Set 𝛼 = 0 and let 𝑀0 = 𝑀, 𝑓0 = 𝑓, 

Step 1. Determine a pointwise nonsingular function 𝑃 ∈ 𝐶(𝕀, ℂℓ,ℓ) (as in Lemma 8) such that 

𝑃𝑀𝛼 =

[
 
 
 
 
 
𝐴𝑘,1 | 𝐴𝑘−1,1 | … | 𝐴0,1

| 𝐴𝑘−1,2 | … | 𝐴0,2
| | ⋱ | ⋮

| | | 𝐴0,𝑘+1
0 | 0 | … | 0 ]

 
 
 
 
 

, 

𝑟1
𝑟2
⋮

𝑟𝑘+1
𝑣

 

where all the functions on the main diagonal have pointwise full row rank, and let 

𝑟𝑢
𝛼 : = (𝑘 + 1)𝑟1 +𝑚𝑟2 +⋯+ 2𝑟𝑘 + 𝑟𝑘+1, 

be the upper rank of the behavior function 𝑀𝛼 in the 𝛼-th iteration. 

Step 2. Determine functions 𝑆𝑗, 𝑍𝑗,𝑖, 𝑗 = 𝑘,… ,1, 𝑖 = 𝑗, … ,0 of appropriate sizes such that for 

each 𝑘 ≥ 𝑗 ≥ 1 the following conditions hold 

i) the function [
𝑆𝑗
𝑍𝑗,𝑗
] ∈ 𝐶(𝕀, ℂ𝑟𝑗,𝑟𝑗) is pointwise unitary, 

ii) 𝑍𝑗,𝑗𝐴𝑗,𝑘+1−𝑗 + [𝑍𝑗,𝑗−1…𝑍𝑗,0] [

𝐴𝑗−1,𝑘+2−𝑗
⋮

𝐴0,𝑘+1

] = 0, 
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iii) the function pair (𝑆𝑗𝐴𝑗,𝑘+1−𝑗, [

𝐴𝑗−1,𝑘+2−𝑗
⋮

𝐴0,𝑘+1

]) has no hidden redundancy. 

Step 3. Setting 

�̃� : = diag ([
𝑆𝑘
𝑍𝑘,𝑘

] , … , [
𝑆1
𝑍1,1

] , 𝐼𝑟𝑘+1+𝑣) ∈ 𝐶(𝕀, ℂ
ℓ,ℓ), 

and scaling system (1) with �̃� from the left we obtain 

                             

1,1

, 1, ,1

( )
1 21 1,2

( 1)

1, 1 21, 1 1,2

10, 1

2

| * | | *

| * | | *

| | | *

= .| | | *

| | |

| | |

0 | 0 | | 0

kk k

k kk k k

k
x kk k

k

k kk k k

kk

k

S fS A

Z fZ A

S fS A
x Z fZ A

x

fA

f

−− −
−

− −− − −

++

+

  
  
  
    
    
    
     
  
  
  

   

           (14)     

Step 4. For each 𝑘 ≥ 𝑗 ≥ 1, we then reduce the number of scalar differential equations of order 

𝑗 by eliminating the block 𝑍𝑗,𝑗𝐴𝑗,𝑘+1−𝑗 of (14), as in Lemma 12. In this way, we obtain the system 

11 ,1

21

( )
1 22 1 1,2

( 1)

2( 1)2

11 0, 1

2

| * | | *

0 | * | | *

| | | *

=| 0 | | *

| | |

| | |

0 | 0 | | 0

kk k

k

k
x kk k

k

k

kk k

k

S fd S A

gs

S fd S A
x gs

x

fd A

fv

M

−− −
−

−

++ +

+

  
  
  
    
    
    
     
  
 
 

   

,

f




 

with 𝑔2𝑗 : = ∑ 𝑍𝑗,𝑖
𝑗
𝑖=0 𝑓𝑘+1−𝑖

(𝑗−𝑖)
, 𝑗 = 𝑘,… ,1. 

Let 𝑠𝛼 : = ∑ 𝑠𝑖
𝑘     

𝑖=0      
. If 𝑠𝛼 =  0 then we terminate the process here. Otherwise, we then increase 𝛼 

by 1, set 𝑀𝛼 = �̆�, 𝑓𝛼 = 𝑓, and repeat the process from Step 1. 

End. 

In Algorithm 13, we construct a decreasing sequence  ur



 which satisfies 𝑟𝑢

𝛼+1 ≤ 𝑟𝑢
𝛼 − 𝑠𝛼, 

where 

0

0
k

i
i

s s

=

=  . Since this squence  ur



is non-negative, Algorithm 13 must terminate after 

a finite number of iterations. 

Definition 14.  Consider the DAE (1) and the sequence (𝑟𝑢
𝛼 , 𝑠𝛼), 𝛼 ∈ ℕ of characteristic 

invariants generated by Algorithm 13. Then, we call 

𝜇 = min{𝛼 ∈ ℕ0| 𝑠𝛼 = 0} 

the strangeness index of (1). 
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Note that, the strangeness-index 𝜇 is well-defined if and only if Hypotheses 7, 10 are satisfied in 

every iteration of Algorithm 13. 

Theorem 15.  Consider the DAE (1) and assume that the strangeness-index 𝜇 is well-defined. 

Then, the DAE (1) has the same solution set as the so-called strangeness-free DAE 

      

[
 
 
 
 
 
�̂�𝑘,1 | �̂�𝑘−1,1 | … | �̂�0,1

| �̂�𝑘−1,2 | … | �̂�0,2
| | ⋱ | ⋮

| | | �̂�0,𝑘+1
0 | 0 | … | 0 ]

 
 
 
 
 

[

𝑥(𝑘)

𝑥(𝑘−1)

⋮
𝑥

] =

[
 
 
 
 
 
𝑓1
𝑓2
⋮

𝑓𝑘+1
𝑓𝑘+2]

 
 
 
 
 

 ,                                                  (15) 

 where [�̂�𝑘,1
𝑇 … �̂�0,𝑘+1

𝑇 ]
𝑇

 has pointwise full row rank. 

Proof. Clearly, after carrying out Algorithm 13, we obtain a system of the form (15), where 

�̂�𝑘,1, … , �̂�0,𝑘+1 have pointwise full row rank and none of the function pairs 

(�̂�𝑖,𝑘+1−𝑖, [
�̂�𝑖−1,𝑘+2−𝑖

⋮
ℎ𝐴0,𝑘+1

]) ,  𝑖 = 𝑘,… ,1, 

has a hidden redundancy. Applying Lemma 6 to the functions �̂�𝑖,𝑘+1−𝑖, 𝑖 = 𝑘,… ,0, it follows that 

[�̂�𝑘,1
𝑇 … �̂�0,𝑘+1

𝑇 ]
𝑇

 has pointwise full row rank. ◻ 

Obviously, if at 𝑡 = 0 the consistency assumptions 

( )

( )

( 1) (1)

1,2 1,2 0,2 2

0, 1 1

2

ˆˆ ˆ ˆ( ) ( ) ( ) ( ) = 0, = 0,1,

...

ˆˆ ( ) ( ) = 0, = 0, , ,

ˆ ( ) = 0,

i

k

k

i

k k

k

d
A x t A x t A x t f t i

dt

d
A x t f t i k

dt

f t

−

−

+ +

+

 
+ + + − 

 



  −  



                                         (16) 

hold, then we can differentiate all except the first equation of system (15) to obtain an underlying 

ODE as in the next theorem. 

Theorem 16.  Consider the DAE (1) and assume that the strangeness-index 𝜇 is well-defined. 

Moreover, suppose that the consistency condition (16) is satisfied. Then, (1) has the same solution set 

as the underlying ODE 

[
 
 
 
 
 
�̂�𝑘,1 | ∗ | … | ∗ | ∗

�̂�𝑘−1,2 | ∗ | … | ∗ | ∗

⋮ | ∗ | … | ∗ | ∗

�̂�1,𝑘 | ∗ | … | ∗ | ∗

�̂�0,𝑘+1 | ∗ | … | ∗ | ∗]
 
 
 
 
 

[
 
 
 
 
𝑥(𝑘)

𝑥(𝑘−1)

⋮
𝑥(1)

𝑥 ]
 
 
 
 

=

[
 
 
 
 
 
𝑓1

𝑓2
(1)

⋮

𝑓𝑘
(𝑘−1)

𝑓𝑘+1
(𝑘)

]
 
 
 
 
 

, 

where the function [�̂�𝑘,1
𝑇 … �̂�0,𝑘+1

𝑇 ]
𝑇
 has pointwise full row rank. 

The following corollary is a direct consequence of Theorem 15. 

Corollary 17.  Consider the initial value-problem (1)–(2), and let (15) be the strangeness-free 

formulation of the DAE (1). Then we have: 
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i) The DAE (1) is solvable if and only if the following consistency condition holds 

0 = 𝑓𝑘+2(𝑡)  for all 𝑡 ∈ 𝕀. 

ii) The initial vector 𝑋0 is consistent if and only if 

[
 
 
 
 
�̂�𝑘−1,2 �̂�𝑘−2,2 … �̂�0,2

�̂�𝑘−2,3 … �̂�0,3
⋱ ⋮

�̂�0,𝑘+1]
 
 
 
 

[
 
 
 
 𝑥0
(𝑘−1)

𝑥0
(𝑘−2)

⋮
𝑥0 ]

 
 
 
 

=

[
 
 
 
𝑓2(0)

𝑓3(0)
⋮

𝑓𝑘+1(0)]
 
 
 

. 

iii) To guarantee that at least 𝑥 ∈ 𝐶𝑘(𝕀, ℂ𝑛,𝑛), 𝑓 must satisfies that 𝑓 ∈ 𝐶𝑘𝜇+𝑘(𝕀, ℂℓ). 

iv) The corresponding initial value problem (1)-(2) is regular if and only if in addition, the 

function [�̂�𝑘,1
𝑇 … �̂�0,𝑘+1

𝑇 ]
𝑇
 is square. 

4. Examples 

In this section we illustrate our results by considering some examples. 

Example 1.  We consider the second order DAE from  

[
1 𝑡 + 1
𝑡 𝑡2 + 𝑡

] �̈� + [
0 2
0 2𝑡

] �̇� + [
1 𝑡

1 + 𝑡 1 + 𝑡 + 𝑡2
] 𝑥 = [

𝑓1
𝑓2
] , 𝑡 ≥ 0.                (17) 

The system in behavior form is 

12 2

2

1 1 | 0 2 | 1

| 0 2 | 1 1 = .

+   
    

+ + + +     
       

M

t t x
f

t t t t t t t x
f

x

 

Scaling 𝑀 with [
1 0
−𝑡 1

], we bring 𝑀 to the block diagonal form 

�̃�0 = [
1 𝑡 + 1 | 0 2 | 1 𝑡
0 0 | 0 0 | 1 1 + 𝑡

] =: [
𝐴21 𝐴11 𝐴01
0 0 𝐴03

] . 
𝑟1 = 1
𝑟3 = 1

 

All the constant rank conditions are satisfied since 

rank(𝐴2) = 1, rank([𝐴2 𝐴1]) = 1, rank([𝐴2 𝐴1 𝐴0]) = 2,

rank(𝐴21) = 1, rank(𝐴03) = 1, rank ([
𝐴21
𝐴03

]) = 1.
 

Obviously, the function pair (𝐴21, 𝐴03) has a hidden consistency, we therefore perform 

Algorithm 13 which contains only one iteration (index reduction step) with 𝑆1 = ∅, 𝑍11 = 1, 𝑍12 = 0, 

𝑍13 = −1. Finally, we obtain the strangeness-free formulation 

[
0 0 | 0 2 | 1 𝑡
0 0 | 0 0 | 1 1 + 𝑡

] [
�̈�
�̇�
𝑥
] = [

𝑓1 − 𝑓2̈
𝑓2

]. 

Since only one index reduction step is used, the strangeness-index is 𝜇 = 1. 

Example 2.  Consider the model of a two dimensional, three link mobile manipulator from [19]–

[21]. The linearized equation around a non-stationary solution yields a linear time varying model in 

3D of the form 

[
𝑀(𝑡) 0
0 0

] �̈� + [
𝐷(𝑡) 0
0 0

] �̇� + [
𝐾(𝑡) −𝐹𝑇(𝑡)

𝐹(𝑡) 0
] 𝑥 = [

𝑓1(𝑡)

𝑓2(𝑡)
] .     
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Moreover, the matrix-value functions 𝑀, 𝐷, 𝐾 are pointwise positive definite, and 𝐹(𝑡) has 

pointwise full row rank. The index reduction algorithm of the system above implies that the 

strangeness index is 𝜇 = 2. 

Example 3. Consider a simple electrical circuit that includes a resistor (𝑅), an inductor (𝐿), a 

capacitor (𝐶), with an external force input (𝑢(𝑡)), a current source (𝑓2(𝑡)), and an additional forcing 

term (𝑓1(𝑡)), Figure 1. Here we assume that the resistance R, inductance L, capacitance C are 

functions of time t. 

Here 𝑖1 and 𝑖2  are the currents flowing through different parts of the circuit. Specifically, 𝑖1 is the 

current flowing through the resistor (R) and the inductor (L), and  𝑖2 is the current flowing through the 

capacitor (C). Besides that,  𝑣1, 𝑣2, and  𝑣3 are voltages at different points in the circuit. Here  𝑣1 (or 

u(t)) is the voltage of the source connected to the resistor (R), 𝑣2 is the voltage across the inductor (L), 

and  𝑣3 is the voltage across the capacitor (C). Making use of the Kirchhoff’s voltage law, which states 

that the sum of the electrical potential differences (voltages) around any closed loop or mesh in a 

network is always equal to zero, we obtain the following equations for the circuit 

 

Figure 1. Second order electrical circuit.   

𝑅𝑖1 + 𝐿
𝑑𝑖1

𝑑𝑡
+
1

𝐶
𝑣3     = −𝑢(𝑡) + 𝑓1(𝑡)

𝐿
𝑑𝑖2

𝑑𝑡
+ 𝑅𝑖2 + 𝑣2             =    0                     

1

𝐶
𝑣3 + 𝑣2         =     𝑓2(𝑡)             

                                            (18) 

Substitute the capacitor and inductor equations 

𝑖1 = 𝐶
𝑑𝑣3
𝑑𝑡

, 𝑖2 =
𝑑𝑣2
𝑑𝑡

 

into system (18) we then have a second order system 

1

3 3 3

2 2 2

2

1

0 0 0

0 0 0 1 0

0 0 0 0 1 1

 
 + − +     

             
+ + =                             

 

LC RC LC u fC
v v v

L R
v v v

f

C

                             (19) 

Now in the behavior form we have that 

1

0111 121

313 031

0 0 0
2

: 0 0 0 1 : ,
10

0 0 0 0 1

−

−

 +
=  

= =    =  
 

LC RC LC C
AA rA

M L R
rA A

C
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Here we see that clearly the function pair (𝐴21, 𝐴03) has a hidden consistency, we therefore 

perform Algorithm 13, which contains only one iteration (index reduction step). This implies that the 

strangeness index is 𝜇 = 1. 

5. Conclusion 

In this study, we have delved into the solvability analysis of linear differential-algebraic equations 

(DAEs) with time-varying coefficients. We have successfully extended the strangeness-index concept, 

originally proposed in [3], to systems of arbitrarily high order by integrating the algebraic and 

behavior approaches [3], [17], [18]. This extension of the strangeness-index concept mirrors the 

approach taken for first-order DAEs, necessitating certain constant rank assumptions at each stage of 

the index reduction process (Algorithm 13). The successful application of this algorithm yields not 

only an underlying ordinary differential equation (ODE) but also a consistency condition for the initial 

vector. Looking ahead, we see the exploration of derivative arrays for high-order DAEs, particularly 

from a numerical perspective, as a promising avenue for future research. 

Appendix 

Nomenclature 

ℕ set of natural numbers including 0 

ℝ (ℂ) set of real (complex) numbers 

𝕀 = [𝑡0, 𝑡𝑓) time interval 

ℝℓ,𝑛 (ℂℓ,𝑛) space of real (complex) matrices of size ℓ × 𝑛 

𝐼 (𝐼𝑛) identity matrix (of size 𝑛 × 𝑛) 

𝑥(𝑗) the 𝑗𝑡ℎ-derivative of a vector-valued function 𝑥(𝑡) 

𝑥(𝑗),𝑇 transpose of 𝑥(𝑗) 

𝐶𝑘(𝕀, ℂ𝑛) space of 𝑘-time continuously differentiable functions from 𝕀 to ℂ𝑛 

rank(⋅) rank of a matrix or a matrix-valued function 

𝑟𝑢 upper rank of a matrix of a matrix-valued function 

𝐿(𝑥, … , 𝑥(𝑗)) unspecified linear function of 𝑥, … , 𝑥(𝑗). 

∗ unspecified matrices or matrix-valued functions. 
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