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variational inequalities problems  

Van-Dong Vu* 

Hanoi University of Industry, Hanoi, Vietnam  

Abstract 

The semi-affine variational inequality problem offers a general and versatile framework applicable to 
many problems in economics, mathematical physics, operations research, and mathematical 
programming. One of the important applications of the semi-affine variational inequality problem is 
quadratic programming. It is well-known that the first-order necessary optimality condition for a 
constrained optimization problem can be rewritten as a variational inequality. This paper investigates 
the existence of solutions for the semi-affine variational inequality problem in the finite-dimensional 
Hilbert spaces. Under suitable conditions, we show that the solution set of the semi-affine variational 
inequality problem is nonempty. The obtained results contribute to and complement the existing 
literature. 

Keywords: Semi-affine variational inequalities,  finite-dimensional Hilbert space, solution existence, 
recession cone, normal cone 

1. Introduction 

Let  be a real finite-dimensional Hilbert space and let K be a nonempty closed convex set in .  

In this work, we will address the semi-affine variational inequality problem, denotes (sAVI(T,c,K)),  

 find 

such that , 0 ,

x K

Tx c y x y K


       

 (sAVI(T,c,K)) 

where ,   denotes the scalar product in  , T is a bounded linear operator on   and c . The 

solution set of (sAVI(T, c, K)) is denoted by Sol(sAVI(T, c, K)). 
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The problem (sAVI(T,c,K)) is a natural generalization of the (classical) affine variational 
inequality problem, which was introduced by Tam in [1]. The generalization here is to use a convex 

set in  other than the polyhedral convex set in  - the setting for the affine variational inequality 

problem which has been extensively studied in [2]–[5] and references therein. Problem (sAVI(T,c,K)) 
also arises under optimal conditions (see e.g., [6], [7] and references therein). For the problem 
(sAVI(T,c,K)) in Euclidean spaces, stability results have been explored, as discussed in [1]. These 
results encompass the boundedness and stability of solutions under arbitrary perturbations of 

sufficiently small magnitude. The upper and lower semicontinuity of the solution mapping were 

discussed in [7] by Nghi, particularly in the case where K  is defined by finitely many convex 
quadratic constraints. 

An extension of (sAVI(T,c,K)) is a problem of the form: finding an element nx  such that  

( )  and ( ), ( ) 0, ,G x K F x y G x y K         (1) 

where , : n nF G    are two given continuous maps. In [8], Tam and Nghi provided results for the 

existence of solutions to problem (1). However, when applied to the problem (sAVI(T,c,K)), the 

conditions for the solution existence given in [8] are equivalent to assuming either the set K  is 

compact or T  is strictly monotone. Since the semi-affine variational inequality is a subclass of 
variational inequality, the solution existence results from variational inequality (see, e.g., [9]–[11] and 

the references therein) can be applied to the semi-affine variational inequality. However, due to its 
special structure, we can derive more consistent results for that problem. The primary objective of this 

work is to establish a set of conditions under which the semi-affine variational inequality problem has 
a solution.  

The remainder of the paper is organized as follows. In Section 2, some notions and results which 
are useful in the sequel are presented. In Section 3, we prove, under suitable conditions, the solution 
set of the generalized affine variational inequality is nonempty. Section 4 presents several examples. 
Finally, we conclude our paper by emphasizing the results that have been obtained. 

2. Notations and preliminary results 

Throughout this paper,   denotes an infinite-dimensional Hilbert space equipped with the scalar 

product ,   and the induced norm || || . For a nonempty, closed, convex set K   , the recession 

cone of K , denoted by 0 K , is defined as: 

0 { 0}.K v x tv K x K t        ∣  

If K    is a nonempty set and x clK  (the closure of K ), then normal cone (see [12], [13] 

and [14]) of K  at x  is given by: 

( ) { , 0 for all }.KN x u u y x y K      ∣  

Definition 2.1. (cf.[15] and [16]) Let C  be a closed convex cone in Hilbert space   and let T
be bounded linear operator on  . We say that  

(i) T  is positive semidefinite on C  if , 0Tv v    for all v C ; 

(ii) T  is positive semidefinite plus on C  if T  is positive semidefinite on C  and if  

                               , , 0v C Tv v     then *( ) 0T T v  ; 
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(iii) T  is positive on C  if  , 0Tv v    for all v C , 0v  ; 

 (iv) T  is coercive on C  if there is an 0   such that 2, || ||Tv v v    for all v C . 

Let x  be a point belonging to K . For any number r , we denote, 

: { || || } and : .rx x x r K K      ∣  

Lemma 2.1. Let x  be a point belonging to K . The problem (sAVI(T,c,K)) has a solution if and 

only if there exists some 0r   so that the variational inequality problem r(sAVI(T,c,K ))  has a 

solution rx  with || ||rx x r  . 

Proof. This proof is similar to the proof of [9, Theorem 4.2].                                                        

Lemma 2.2. Let x  be a point belonging to K . Suppose that there exists 0r   such that rK  is 

nonempty set. Then, rx  is a solution to the variational inequality problem r(sAVI(T,c,K ))  if and 

only if, there exist some scalar r , 0,r   such that 

( ) ( ).r r r k rTx c x x N x      (2) 

Proof.  We have 

rSol(sAVI(T,c, K )) , 0

, 0

( ).
r

r r r r

r r r

r K r

x Tx c x x x K

Tx c x x x K

Tx c N x

        

       

   

         
(3) 

Since (int )rK K    , by  [17, Theorem 3.10],  

( ) ( ) ( ).
rK r r K rN x N x N x   

Hence 

 rSol(sAVI(T,c, K )) ( ) ( ) .r r r K rx Tx c N x N x       

It is easy to check that ( ) { ( )}r r rN x x x   for all 0r  . Consequently, rx  is a solution of 

the problem r(sAVI(T,c,K ))  if and only if there exists some scalar 0r  such that 

( ) ( )r r r K rTx c x x N x     , 

and the proof is complete.                                                                                                                           

Note that if condition (2) is satisfied for all 0r  , then the (sAVI(T,c,K)) problem is uncertain to 

have a solution. 

Lemma 2.3. Consider the problem (sAVI(T,c,K)). Suppose that x K . Then, x  is a solution to 

the variational inequality problem (sAVI(T,c,K)) if and only if  

( ).KTx c N x    

Proof. This proof is similar to the proof of Lemma 2.2.                                                                   

To prove our main result, we need to use the concept of an exceptional family of elements, as 

introduced by  G. Isac et al.  in  [18]. 



HPU2. Nat. Sci. Tech. 2024, 3(2), 35-45 

https://sj.hpu2.edu.vn 38   

Definition 2.2. We say that 0{ }r rx K   is an exceptional family for the variational inequality 

(sAVI(T,c,K)),  if the following conditions are satisfied: 

(i) || ||  as rx r  , 

(ii) for any 0r   there exists a real number 0r   such that  

( ) ( ).r r r K rTx c x x N x      

3. Main results 

In order to prove  the solution existence of (sAVI(T,c,K)),  we need the following lemmas.  

Lemma 3.1 (cf. [19]). Let K  be a nonempty closed convex set in  . Suppose that kx K  for 

all k , || ||kx   as k   and 1|| ||k kx x  weakly converges to v . Then, 0 .v K  

Proof. Take any y K  and 0t  . We have  1
|| || || ||

k
k k k

x t
y t y K

x x

 
    

 
 and it is clear 

that ky  converge weakly to tv y K  . Hence 0v K .                                                                    

Lemma 3.2 (cf. [9]). Consider the problem (sAVI(T,c,K)) where K  is a nonempty compact and 

convex subset in   . Then, (sAVI(T,c,K)) has a solution. 

The following theorem is a special case of the variational inequality. However, for the sake of 
completeness, we provide the complete proof here. 

Theorem 3.1. Consider the problem (sAVI(T,c,K)). Suppose that  the variational inequality 
problem (sAVI(T,c,K))  has no exceptional family.  Then (sAVI(T,c,K)) has  at least one solution. 

Proof. Suppose that, contrary to our claim,  the problem (sAVI(T,c,K)) has no solution. We show 

that (sAVI(T,c,K)) has an exceptional family. 

Taking any point, denoted as x , belonging to the set K .  Since (sAVI(T,c,K)) has no solution, 

by Lemma  2.1, there exists no 0r   such that the problem r(sAVI(T,c,K ))  has a solution r rx K   

with  

|| || .rx x r   

It is evident that rK   is a nonempty, compact and convex set for each r .  Consequently, 

according to   Lemma  3.2,  we deduce that the  problem r(sAVI(T,c,K ))  has at least one solution. 

Therefore, there exists a sequence { }rx  with the following property: For each r ,  

rSol(sAVI(T,c,K ))rx   and  

|| || .rx x r   

We next claim { }rx  is an exceptional family for (sAVI(T,c,K)). It is easy to check that 

|| ||rx   as r  . Since rSol(VI(T,c,K ))rx  , by Lemma 2.2, there exists a scalar 0r   such 

that  

( ) ( ).r r r k rTx c x x N x      (4) 
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It follows from (4) that  

( )r K rTx c N x    

if 0r  . Thus we deduce from Lemma 2.3 that Sol(sAVI(T,c,K))rx  . This is in 

contradiction with our assumption at the beginning of the proof. Consequently, 0r  . So we have 

shown that the sequence  { }rx   satisfies  || ||rx   as r  , and for each 0r  , there exists a 

real number 0r    such that (4) holds. By Definition 2.2, { }rx  is an exceptional family for 

(sAVI(T,c,K)). This contradicts our assumption that the problem (sAVI(T,c,K)) has no exceptional 

family. Hence, (sAVI(T,c,K)) has at least one solution.                                                                         

The following theorem gives a sufficient condition for the solution existence of (sAVI(T,c,K)). 

Theorem 3.2. Consider the problem (sAVI(T,c,K)). Suppose that 

 (i) T  is positive semidefinite plus on 0 K ; 

(ii) if { }kx K  and || ||kx   as k   then  
,

sup 0;
|

l
| ||

im
k k

k
k

Tx x

x

 
  

(iii) there exists x K  such that  , 0Tx c v     for all (0 ) {0}v K  . 

Then, the set Sol(sAVI(T,c,K)) is nonempty. 

Proof. Take any point x  in K . For any number r , we denote { || || }x x x r  ∣    and 

rK K  . 

To prove the theorem, we first show that the problem (sAVI(T,c,K)) has no exceptional family. 

Suppose on the contrary that (sAVI(T,c,K)) has exceptional family. By Definition 2.2, we have that 

|| ||rx   as r  , and that, for each r , there a scalar 0r   such that  

( ) ( ).r r r k rTx c x x N x      (5) 

Since (5) is satisfied with 0r  , it follows from  Lemma 2.2  that for each 0r  , rx  is a 

solution to the variational inequality problem r(sAVI(T,c, K )) . As the solution set to the problem 

r(sAVI(T,c, K ))  is  nonempty for each 0r  , it follows that  

, 0 0.r rTx c x x r        (6) 

Put 1|| ||k
r rv x x . One has || || 1kv  , then there exists a subsequence of kv  weakly converges to 

v . Without loss of generality we can assume that 1|| ||r rx x  weakly converges to some v  as 

r  . It follows from Lemma  3.1 that  

0 .v K  

From (6) it follows that 

, , , 0.r r r rTx x Tx c x c x r            (7) 

Multiplying both sides of (7) by 2|| ||rx   and letting r   we obtain 
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2 2

2 2

lim , lim , , ,
|| || || || || || || || || || || ||

lim , , , 0.
|| || || || || || || ||

r r r r

r r
r r r r r r

r r

r
r r r r

x x x xx x
T T c c

x x x x x x

x xx x
T c c

x x x x

 



 
    

 
 

     
 

 (8) 

Since T  is a continuous linear operator, we have 

lim , , .
|| || || ||

r r

r
r r

x x
T Tv v

x x
  (9) 

From (8), (9) and the positive semidefiniteness of T  on 0 K , it follows that 

0 , lim , 0.
|| || || ||

r r

r
r r

x x
Tv v T

x x
      

Hence  

lim , 0 , .
|| || || ||

r r

r
r r

x x
T Tv v

x x
            (10) 

  

Since , 0Tv v    for all 0v K , and by assumption (i), it follows that  

*( ) 0T T v   

or equivalent 

* .Tv T v            (11) 

By dividing  both sides of the (7)  by || ||jx  and letting j  , and use assumption (ii), we get  

, , 0.Tv x c v           (12) 

Combining (11) and  (12) we obtain , 0Tx c v    . Since || || 1kv   and kv  converges to some 

v , it follows that 0v  . Thus we have shown that there exists a nonzero v  such that , 0Tx c v    . 

This, however, contradicts assumption (iii). Therefore, (sAVI(T,c,K)) has no exceptional family 
elements. 

Since the problem (sAVI(T,c,K)) has no exceptional family elements, it follows from Theorem 

3.1 that it has a solution. Thus, the proof is complete.                                                                            

  

Let us mention a consequence of the theorem. 

Corollary 3.1. Consider the problem (sAVI(T,c,K)). Suppose that 

 (i) the operator T  is  positive semidefinite on   ;  

 (ii) there exists x K  such that  , 0Tx c v     for all (0 ) {0}v K  . 

Then, the set Sol(sAVI(T,c,K))  is nonempty.  
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Proof. To prove the corollary, by Theorem 3.2,  it suffices to verify that  T  is copositive plus on 

0 K . Indeed, since T  is  positive semidefinite on   , , 0Tv v    for all 0v K  . 

Moreover, if , 0Tv v    then v  is minimum point of the convex quadratic program 

*min ( ) ,
x

T T x x

  


. By the Fermat rule, *( ) 0T T v  . The proof is complete.                                                                 

   

In the remainder of this section, we investigate the existence of solutions to problem 

(sAVI(T,c,K))   where the set K   is defined by  

1
{ ( ) , , , 1,2, , },

2i i iK x g x x Tx c x i m          ∣   (13) 

where iT  are positive semidefinite continuous linear self-adjoint operators on   , ic   and i  are 

real numbers. 

Theorem 3.3. Consider the problem (sAVI(T,c,K)), where T  is  a positive semidefinite 

continuous linear self-adjoint operator on   . Suppose that set K  is defined as in (13). Then, the set 

Sol(sAVI(T,c,K)) is nonempty if any one of the following conditions is satisfied 

1(b )   0c  ,  

2(b )  (0 ) \{0}, 0 , 0,( )v K Tv c v       

3(b )   1(0 ), 0 , 0, , 0,( ) ( )iv K Tv c v c v i I           

where 1{1,2, , }, { 0}iI m I i I T    ∣ . 

Proof. Let 
1

( ) : , ,
2

f x x Tx c x      . Since T  is  a positive semidefinite continuous linear self-

adjoint operator on   , by applying Theorem 3.5 in [20], we derive the convex quadratic 

programming problem 

min ( )
x K

f x


 (14) 

has a solution if one of the conditions 1(b ) , 2(b ) , 3(b )   is satisfied. That is,  there exists *x  in 

K  such that *( ) ( ) 0f x f x   for all x K . 

It remains to prove that  *x  is a solution of (sAVI(T,c,K)).  Indeed, since *x  is a solution of  (14), 

by [4, Theorem 3.1] it follows that 

* *, 0, .Tx c x x x K        

The proof is complete.                                                                                                                       

4. Examples 

The following example illustrates that in Theorem 3.2, one cannot omit assumption (i)  while 

keeping the other assumptions. 

 



HPU2. Nat. Sci. Tech. 2024, 3(2), 35-45 

https://sj.hpu2.edu.vn 42   

Example 4.1. Consider the problem (sAVI(T,c,K)) where 2  , 2 2:T     is defined by 

 2,0Tx x  , 
1

( ,1)
2

c   and the set K  is defined 

2
1 2 1 2{ ( , ) 0, 0}.K x x x x x      ∣  

We have  

2
1 2 1 20 { ( , ) 0, 0}.K v v v v v      ∣  

Since  

1 2, 0 ,Tx x x x x K        

the assumption (ii)  in Theorem 3.2 is satisfied. For ˆ (0,1)x K  . we have 

1 2

1
ˆ , 0 0 \{0}.

2
Tx c v v v v K          

Hence the assumption (iii)  in Theorem 3.2 is satisfied. As  

, 0 0 ,Tv v v K      

T  is positive semidefinite on 0 K . However, 

*
1 2( ) ( , ) (0,0) 0 \{0}.T T v v v v K        

In particular, for (0,1) 0v K   satisfying , 0Tv v   , one does not have *( ) 0T T v  . 

Thus the assumption (i)  in Theorem 3.2 is violated.  

We claim that Sol(sAVI(T,c,K))  . Indeed, suppose that 1 2( , )x x x  is a solution of 

(sAVI(T,c,K)) . Then,   by Theorem 5.3 in [11], 1 2( , )x x x  is a solution of (sAVI(T,c, K))  if and 

only if there exists 2
1 2( , )     such that 

2 1 2

1 2 1 1 2 2

1 2

1
0,1 0

2
0, 0, 0, ( ) 0,

0, 0.

x

x x

x x

 

   

      


    
   


 

This system implies that 

1 2 1 2 1

1
0, 1, 0, 0, 0,

2
x x         

which is impossible. Thus Sol(sAVI(T,c,K))  . 

The following example illustrates that if condition (ii)  in Theorem 3.2 is disregarded, the 

(sAVI(T,c,K))  problem may not have a solution. 

Example 4.2. Consider the problem (sAVI(T,c,K))  where   2  , 2 2:T     is defined 

by  1,0Tx x  , 
1

(2, )
2

c   and the set K  is defined by 
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2 2
1 2 1 2 1 2{ ( , ) ( ) 0, ( ) 0}.iK x x x g x x g x x x        ∣  

We have  

2
1 2 1 20 { ( , ) 0, 0},K v v v v v      ∣  

2 *
1 1, 0 and ( ) ( 2 ,0) (0,0) 0 .Tv v v T T v v v K            

Hence the assumption (i)  in Theorem 3.2 is satisfied. For ˆ ( 1,1)x K   , we have  

2

1
ˆ , 0 0 \{0}.

2
Tx c v v v K        

Thus the assumption (iii)  in Theorem 3.2 is satisfied. Sine 2
1, 0Tx x x x K       , the 

assumption (ii)  is violated. 

We now show that Sol(sAVI(T,c,K))  . Indeed, suppose that 1 2( , )x x x  is a solution of 

(sAVI(T,c,K)) . Take, for instance, 0h x x   where 0 ( 1,2)x   . It is easy to check that 

( ), 0 ( )ig x h i I x     ( ( )ig x  denotes the gradient of ig  at x , ( ) { {1,2} ( ) 0}iI x i g x  ∣ ). 

Hence the Mangasarian–Fromovitz Constraint Qualification holds at x . By Proposition 1.3.4 in [7], 

1 2( , )x x x  is a solution of (sAVI(T,c, K))  if and only if there exists 2
1 2( , )     such that. 

1 1 2 1 2

2
1 2 1 1 2 1 2

2
1 1 2

1
2 2 0, 0

2
0, 0, 0, ( ) 0,

0, 0.

x x

x x x

x x x

  

   

       


    
   


 

This system implies that 

2
1 2 1 1 1 1

1
2 0, , 0, 0, ,

2
x x x         

which is impossible. Thus Sol(sAVI(T,c,K))  . 

The following example shows that condition (iii)  in Theorem 3.2 cannot be omitted. 

Example 4. 3. Consider the problem (sAVI(T,c,K))  where 2  , 2 2:T     is defined 

by  1,0Tx x , (1,0)c   and the set K   as in Example 4.2.  We have  

2
1 2 1 20 { ( , ) 0, 0}.K v v v v v      ∣  

Since , 0Tx x    for all 2x  and   2   is of finite dimension, it follows that assumptions 

(i) and (ii)  of the Theorem 3.2 hold. For any 1 2ˆ ˆ ˆ( , )x x x K  , we have 

ˆ , 0 0 \{0}.Tx c v v K       

Hence, the assumption (iii)  of Theorem 3.2  is violated. 
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We now show that Sol(sAVI(T,c,K))  . Indeed, suppose that 1 2( , )x x x  is a solution of 

(sAVI(T,c,K)) .  Then, by Proposition 1.3.4 in [7],  1 2( , )x x x  is a solution of (sAVI(T,c,K))  if 

and only if there exists 2
1 2( , )     such that 

1 1 2 1 2
2

1 2 1 1 2 1 2
2

1 1 2

1 2 0, 0,

0, 0, 0, ( ) 0,

0, 0.

x x

x x x

x x x

  
   
     

     
   

 

which is impossible. Thus Sol(sAVI(T,c,K))  . 

Remark 4.1. Based on Example 4.3, we can deduce that the condition  , 0Tx c v     in 

assumption (ii) of Theorem 3.2 cannot be replaced by , 0Tx c v    . This implies that assumption 

(ii) of  Theorem 3.2 cannot be weakened. 

5. Conclusions 

In this work, we address the semi-affine variational inequality problem in finite-dimensional 
Hilbert space and propose conditions for the existence of solutions to the problem. Our results are 
established without requiring the monotonicity of the operator or the compactness of the constraint set. 
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