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Abstract 

Let 𝑛 and 𝑚 be two positive integers such that 𝑛 > 2𝑚 ≥ 4. Let 𝜎 and 𝑝 be real such that 𝜎 < −2𝑚 
and 𝑝 > 1. In this note, we are mainly concerned with non-negative and classical solutions of the 
high-order harmonic inequality 

(−Δ) 𝑢 ≥ |𝑥| 𝑢 , 
on the punctured ball 𝑩𝑹 ∖ {𝟎} ⊂ 𝐑𝒏. Using the method of test functions, the Hölder's inequality, and 
integral estimates, we will prove that this inequality has no 𝑪𝟐𝒎 positive solution satisfying some 
sufficient conditions. It should be mentioned that our result, see Theorem 1.1 in the next section, in the 
high-order setting is analogous to that of Laptev for the case 𝒎 = 𝟐. 
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1. Introduction 

Let 𝑛 and 𝑚 be two integers such that 𝑛 > 2𝑚 ≥ 4. Let 𝜎 and 𝑝 be real such that 𝜎 < −2𝑚 and 

𝑝 > 1. In 𝐑 , we use the notation |𝑥| as the standard norm of a vector 𝑥 = (𝑥 , … , 𝑥 ) in 𝐑 , i.e. 

|𝑥| = (𝑥 + ⋯ + 𝑥 ) /  and 𝐵  is the ball of radius 𝑅, centered at the origin. We also write Δ as the 

Laplace operator: Δ =  + ⋯ + . 

We are concerned with non-negative, non-trivial and classical solutions to the following 
functional inequality involving the high-order Laplace operator: 

(−Δ) 𝑢(𝑥) ≥ |𝑥| 𝑢 (𝑥)  in 𝐵 ∖ {0} ⊂ 𝐑 .      (1)    
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The reason why we are interested in solutions to (1) goes back to a striking result due to Laptev, 

see Theorem 2 in [1]. This result says that the inequality (1) holds for 𝑚 = 2, i.e. if 𝑛 ≥ 5, 𝑝 > 1, and 

𝜎 ≤ −4, the functional inequality 

(−Δ) 𝑢(𝑥) ≥ |𝑥| 𝑢 (𝑥)  in 𝐵 ∖ {0} ⊂ 𝐑 , 

admits no punctured solution 𝑢 satisfying 

  Δ𝑢𝑑𝜎 ≤ 0.   

(2) 

See also Section 6 in [2]. To obtain the above result, Laptev used the method of test functions, 

which depends heavily on the conditions 𝑛 ≥ 5 and 𝜎 ≤ −4. 

Of interest in this paper is to extend Laptev's result to a higher order setting. The main result is as 
follows. 

Theorem 1.1. Let 𝑛 > 2𝑚 and 𝑅 > 0. Then the problem 

(−Δ) 𝑢 ≥ |𝑥| 𝑢   in 𝐵 ∖ {0} ⊂ 𝐑 , 

with 𝑝 > 1 and 𝜎 < −2𝑚 does not admit any non-negative, non-trivial punctured solution 𝑢 
satisfying: 

  (−Δ) 𝑢𝑑𝜎 ≥ 0,     (3) 

for all 1 ≤ 𝑘 ≤ 𝑚 − 1. 

It should be noted that without assuming the boundary conditions (3), Theorem 1.1 is in general 

not true. This was already discussed in [3] in the case 𝑚 = 2. For some other related results, the reader 
can consult in the recent works [1], [4]–[20]. 

To prove Theorem 1.1, we first recall a preliminary result in Section 2. Second, the proof of 
Theorem 1.1 will be shown in Section 3. 

2. A technical result 

The following lemma is the initial step of showing Theorem 1.1. 

Lemma 2.1. There exists a function Φ ∈ 𝐶 (𝐵 ∖ {0}) satisfying Φ > 0 in 𝐵 ∖ {0}, 

(−Δ) Φ = 0  in 𝐵 ∖ {0}, 

and for all 0 ≤ 𝑖 ≤ 𝑚 − 1, 

(−Δ) Φ(𝑥) = 0  in 𝐵 ∖ {0}   and    (−Δ) Φ(𝑥) ≤ 0  on ∂𝐵 . 

Proof.  For clarity, we denote by Φ  the desired function. Let us construct by induction on 𝑚 that 

Φ (𝑥) = 𝛽 |𝑥| +   𝛽 |𝑥|   in 𝐵 ∖ {0},     (4) 

for some appropriate constant 𝛽 > 0 and 𝛽 ∈ 𝐑. 

 

          For 𝑚 = 1, the function Φ  is given as follows 

Φ (𝑥) = 𝑐
1

|𝑥|
− 1 , 
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where 𝑐 > 0 is a constant chosen in such a way that 𝑐 /|𝑥|  is the fundamental solution to the 

Laplace equation in 𝐑  with 𝑛 > 2. Suppose that Φ  is given by (4), we now construct Φ  as 

follows. 

Let constants 𝛾 (0 ≤ 𝑖 ≤ 𝑚 + 1) be given as follows 

⎩
⎪
⎪
⎨

⎪
⎪
⎧𝛾 =

𝛽

2𝑚(𝑛 − 2𝑚)
> 0,

𝛾 =
𝛽

2𝑖(2𝑖 + 𝑛 − 2)
  for 0 ≤ 𝑖 ≤ 𝑚,

𝛾 = −    𝛾 .

 

We define 

Φ (𝑥) = 𝛾 |𝑥| +   𝛾 |𝑥| . 

For the positivity of Φ , it can be seen that for any 𝑥 ∈ 𝐵 ∖ {0}, 

Φ (𝑥) > 𝛾 + 𝛾 +   max(𝛾 , 0) ≥ 0. 

We now prove that (−Δ) Φ = 0 in 𝐵 ∖ {0}. Indeed, using the following computations for any 

𝑎, 

∇|𝑥| = 𝑎𝑥|𝑥| ,      Δ|𝑥| = 𝑎(𝑎 + 𝑛 − 2)|𝑥| ,     (5) 

we obtain 

(−Δ)Φ  = −𝛾 (2𝑚 − 𝑛)((2𝑚 + 2 − 𝑛) + 𝑛 − 2)|𝑥|  

     −    𝛾 (2𝑖)(2𝑖 + 𝑛 − 2)|𝑥|
 

                                                     = 2𝑚(𝑛 − 2𝑚)𝛾 |𝑥| − 2 ∑    𝑖(2𝑖 + 𝑛 − 2)𝛾 |𝑥| . 

It yields (−Δ)Φ = Φ  for any 𝑥 ∈ 𝐵 ∖ {0}. Hence, we get that (−Δ) Φ = 0 in 𝐵 ∖

{0}. 

Next, let us verify the boundary conditions. For 1 ≤ 𝑖 ≤ 𝑚, we have 

(−Δ) Φ = (−Δ) Φ = 0  on ∂𝐵 , 

and 

∂

∂𝜈
(−Δ) Φ =

∂

∂𝜈
(−Δ) Φ ≤ 0  on ∂𝐵 . 

We are left to prove that 

Φ = 0  and 
∂Φ

∂𝑣
≤ 0 on ∂𝐵 . 

Clearly, we have that Φ | = 0 from the choice of 𝛾 . Together with (5), we obtain that 

∂Φ

∂𝑣
=

Φ

|𝑥|
= 0. 

The construction of Φ  is complete.                                                                                            ◻ 
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3. Proof of main result 

Have Lemma 2.1 at hand, we are ready to illustrate Theorem 1.1. 

Let 𝑛 > 2𝑚. Fix some Φ ∈ 𝐶 (𝐵 ∖ {0}) satisfying Φ > 0 in 𝐵 ∖ {0}, 

(−Δ) Φ = 0 in 𝐵 ∖ {0}, 

and 

(−Δ) Φ(𝑥) = 0,  (−Δ) Φ(𝑥) ≤ 0,  ∀0 ≤ 𝑖 ≤ 𝑚 − 1, 𝑥 ∈ ∂𝐵 . 

By the construction of Φ in (4), there exists 𝐶 > 0 such that 

∇ Φ(𝑥) ≤ 𝐶|𝑥| ,  ∀𝑥 ∈ 𝐵 ∖ {0},0 ≤ 𝑘 ≤ 2𝑚. 

Assume that 𝑢 ∈ 𝐶 (𝐑 ∖ {0}) is a nonnegative solution to (1) with 𝜎 < −2𝑚. Let 

𝜑(𝑥) = 𝜙 (𝑥)Φ (𝑥), 

where 

Φ (𝑥) = Φ
𝑥

𝑅
,  𝜙 (𝑥) = 𝜓

𝑥

𝜖
, 

with a radial function 𝜓 ∈ 𝐶 (𝐑 ) supported in 𝐑 ∖ 𝐵  and 𝜓 ≡ 1 in 𝐑 ∖ 𝐵 . 

For any 0 < 2𝜖 < 𝑅, taking 𝜑 as test function to the equation, applying integration by parts, we 
get 

  |𝑥| 𝑢 𝜑 𝑑𝑥 ≤   𝑢(−Δ) 𝜑 𝑑𝑥 +     (−Δ) 𝑢
∂

∂𝑣
[(−Δ) 𝜑]. 

Thanks to (3) and 𝜑 ≡ Φ  near ∂𝐵 , we get 

  |𝑥| 𝑢 𝜑𝑑𝑥 ≤   𝑢(−Δ) 𝜑𝑑𝑥. 

Applying the Hölder's inequality, there holds 

 | 𝑥| 𝑢 𝜑𝑑𝑥 ≤   |𝑥| 𝜑 |Δ 𝜑| 𝑑𝑥. 

As (−Δ) Φ = 0 in 𝐵 , we have, for 𝑥 ∈ 𝐵 ∖ {0}, 

|Δ 𝜑|(𝑥) = |Δ (𝜙 Φ )|(𝑥) ≤ 𝐶     ∇ 𝜙 (𝑥) ∇ Φ (𝑥)

 ≤ 𝐶    𝜖 𝑅 ∇ 𝜓
𝑥

𝜖
∇ Φ

𝑥

𝑅
                                     

 ≤ 𝐶𝑅    𝜖 |𝑥| ∇ 𝜓
𝑥

𝜖
.

 

Keep in mind that 2𝑚 − 𝑘 − 𝑛 < 0 for 𝑘 ≥ 0. Hence for 𝑥 ∈ 𝐵 ∖ 𝐵 , there holds 

|Δ 𝜑|(𝑥) ≤ 𝐶𝑅 𝜖   ∇ 𝜓
𝑥

𝜖
. 

For any 𝑅 > 0 fixed, we can claim that, for 𝜖 > 0 small enough 
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∖

  |𝑥| 𝜑 |Δ 𝜑| 𝑑𝑥

≤𝐶𝜖      
∖

  |𝑥| ∇ 𝜓
𝑥

𝜖
𝜓

𝑥

𝜖
Φ

𝑥

𝑅
𝑑𝑥

≤𝐶𝜖      
∖

  |𝑥| ∇ 𝜓
𝑥

𝜖
𝜓

𝑥

𝜖
𝑑𝑥

=𝐶𝜖      
∖

  |𝑦| ∇ 𝜓(𝑦) 𝜓(𝑦) 𝑑𝑦 =: 𝐶 𝜖 ,

 

here we used again the property of Φ near the origin, namely Φ(𝑥) ≲ |𝑥|  for small |𝑥|. 

Remark that the constants 𝐶 depend on 𝑅 but remain independent on 𝜖 > 0 small. We can choose 

suitable 𝜓 such that 𝐶 < ∞. Moreover, as 𝜑 ≡ Φ  in 𝐵 ∖ 𝐵  and 𝜑 ≡ 0 in 𝐵  since 𝜓 is supported 

in 𝐑 ∖ 𝐵 , there holds 

    |𝑥| 𝑢 𝜑𝑑𝑥 ≤     |𝑥| 𝜑 |Δ 𝜑| 𝑑𝑥

 =  
∖

 +  
∖

 +    |𝑥| 𝜑 |Δ 𝜑| 𝑑𝑥

 =  
∖

  |𝑥| 𝜑 |Δ 𝜑| 𝑑𝑥

 ≤ 𝐶 𝜖 .

 

Let 𝜖 → 0, recall that 2𝑚 + 𝜎 < 0 and 𝑝 > 1, we conclude then |𝑥| 𝑢 Φ = 0 in 𝐵 ∖ {0}, 

hence 𝑢 = 0 in 𝐵 ∖ {0}. 

4. Conclusion 

In this paper, we have investigated the non-existence of positive solutions to the functional 

inequality involving the Laplace operator of order 𝑚 on the punctured ball in  𝐑 , where 𝑛 > 2𝑚 ≥ 4.  

Based on the test function methods, we obtain the main result, Theorem 1.1, which is a generalization 
of Theorem 2 in [1].  
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