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Abstract 

Ultrasound tomography is a non-invasive imaging technique that seeks to determine the internal 
distribution of acoustic properties within the body by analyzing measured ultrasound data. Based on 
the distorted Born iterative method (DBIM), this work suggests employing resolution-jumping and 
beamforming techniques for tomographic ultrasound imaging. The beamforming technique leverages 
multiple transmitting elements from the ultrasound probe, operating concurrently, to generate a 
focused and narrow beam. This targeted approach helps in reducing noise, thus enhancing the quality 
of the collected data. Meanwhile, resolution-jumping optimizes the imaging process by adjusting the 
resolution dynamically, thereby improving both the quality and speed of the reconstruction. The 
benefits of the proposed method are evident in the results of numerical simulations, which demonstrate 
a substantial improvement in the quality of image recovery. These simulations also highlight a 
significant reduction in the total runtime required for imaging, showcasing the efficiency of the 
approach. By combining these advanced methods, the work offers a promising pathway toward more 
accurate and faster tomographic ultrasound imaging, which could lead to better diagnostic capabilities 
in medical applications. 

Keywords: Inverse scattering, beamforming, interpolation, ultrasound tomography, distorted Born 
iterative method 

1. Introduction 

An imaging method called ultrasound tomography uses acoustic fields to provide images in 

heterogeneous media. It involves the reconstruction of cross-sections of the internal structures of the 
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body by linearizing the non-linear wave equation and applying the Born or Rytov approximation. It is 

particularly useful for imaging soft tissues and is commonly employed in various medical applications, 

including breast imaging, liver imaging, and vascular imaging. Diffraction tomography is a specific 

type of ultrasound tomography that utilizes the generalized Fourier slice theorem for image 

reconstruction 0. Ultrasonic computed tomography (UCT) is another approach that numerically solves 

the inverse scattering issue associated with the forward scattering issue in inhomogeneous media. 

Various approximations can be used depending on the level of inhomogeneity, such as the straight ray 

approximation or high-order approximations [2]. Acoustic travel-time tomography is a remote sensing 

technique that measures temperature and flow fields by analyzing the dependence of sound speed on 

temperature and wind speed. It can be used to reconstruct three-dimensional distributions of 

temperature and flow fields without the need for sensors 0.  

Research on ultrasound tomography utilizes various methodologies. One common approach is the 

distorted Born iterative method (DBIM), which uses inverse scattering techniques to detect small 

targets by analyzing sound contrast or attenuation 0–0. Another methodology is the use of the 

truncated total least squares (TTLS) and regularized total least squares (RTLS-Newton) algorithms to 

solve the ill-posed linear system of inverse scatter equations 0. Additionally, signal processing 

methods such as wavelet-based or energy-based methods are employed to determine the time of flight 

(TOF) in ultrasound tomography 0. The acoustic wave equation in the time domain is tackled using 

the finite element method, followed by the comparison of numerical results with experimental data 0. 

Additionally, a wavelet transform-based adaptive filtering algorithm is introduced to enhance filtering 

and denoising efficacy in tomography systems 0. 

Beamforming is a technique widely used in ultrasound imaging, including ultrasound 

tomography. It involves combining signals from multiple transducers to enhance the quality and 

resolution of the resulting image 0. Beamforming in ultrasound tomography offers numerous 

advantages, including improved resolution, enhanced image quality, increased penetration depth, 

customizable imaging parameters, real-time imaging capabilities, and optimal SNR. These features 

collectively contribute to the effectiveness and versatility of ultrasound tomography in medical 

imaging applications. Nearest neighbor interpolation is a simple and computationally efficient method 

used in image processing, including ultrasound tomography. While it may not be the most 

sophisticated interpolation technique, it does have some advantages in specific contexts. Nevertheless, 

it's essential to emphasize that the choice of interpolation method depends on the specific requirements 

and characteristics of the imaging application. Nearest neighbor interpolation is computationally less 

intensive compared to more complex interpolation methods 0. In real-time or near-real-time imaging 

applications, where speed is critical, the simplicity of nearest neighbor interpolation can be 

advantageous. Therefore, this study proposes the use of resolution-jumping and beamforming 

techniques for tomographic image reconstruction. The beamforming approach utilizes multiple probe 

transmitting elements concurrently to create a focused beam, thereby minimizing noise. Concurrently, 

resolution-jumping is used to boost the quality and speed of the reconstruction process. The outcomes 

from numerical simulations indicate a significant enhancement in image recovery quality, as well as a 

marked decrease in overall imaging time. 
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2. Methodology 

2.1. Distorted Born iterative method  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. The ultrasonography imaging system's transducer arrangement. 

For collecting scattered data, we establish a transducer setup, as shown in Figure 1, assuming the 
presence of Nr receivers and Nt transmitters. These transmitters Nt are strategically positioned at 

various angles around the object to capture comprehensive information about it. The ultrasonic signal 
reception and transmission follow this procedure: Initially, the first three transmitters' ultrasonic waves 
are simultaneously captured by all receivers (Nr), while the remaining transmitters remain inactive. 
This assembly of measurements (i.e., 1×Nr measurements) is employed to determine the original 
transmitter positions. Subsequently, the process is repeated with the next set of three transmitters, with 
all receivers detecting scattering signals at the second set of transmitter locations. This results in a 
subsequent set of measurements, totaling 2×Nr measurements. The identical procedure is then applied 
to the remaining transmitters. Once the measurement process is completed, we acquire Nt/3 sets of 
collected values, totaling Nt×Nr/3 measurements. In order to achieve a holistic perspective of the 
object from multiple angles, the results obtained from these Nt/3 sets are integrated. 

The integral equation can be used to describe the propagation of waves in an inhomogeneous 
medium 0, 0:  

σ(r⃗) = σ (r⃗) +   dr⃗ θ(r⃗ )p(r⃗ )G (r⃗, r⃗ )  (1) 

where 𝛔(�⃗�) denotes the acoustic pressure, while 𝛔𝐢𝐧𝐜(�⃗�) represents the incident field. 𝐆𝟎(�⃗�, �⃗� ) is 

the Green's function associated with a background environment characterized by wave number 𝐤𝟎. 

The function 𝛉(�⃗�) contains details about the acoustic properties of the imaging target. When 

considering constant density and negligible attenuation, 𝛉 = 𝐤𝟐(�⃗�) − 𝐤𝟎
𝟐 . Using the method of 

moments (MoM), Equation (1) can undergo discretization, enabling its representation in matrix form 

for both the pressure field within the computational domain, denoted as 𝛔‾ , and the scattered field 

outside the computational domain, represented as 𝛔‾ sc, as follows: 
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σ‾ = (I‾ − C‾ ⋅ 𝒟(θ)) ⋅ σ        (2) 

σ‾ sc = B‾ ⋅ 𝒟(θ) ⋅ σ‾        (3) 

here 𝐁‾  is a matrix containing Green's coefficients that describe the influence of each pixel on the 

receivers, while 𝐂‾ is a matrix encompassing Green's coefficients across all pixels. Additionally, 𝓓 is 
an operator that converts a vector into a diagonalized matrix. Discretizing Equation (1) applied to both 
2-D and 3-D scenarios was carried out using sinc basis and delta testing functions 0. 

An iterative algorithm is utilized to reconstruct the object function from the scattered field data. 

The process begins with an initial trial function 𝛉(𝟎), and the corresponding scattered field is 

calculated based on this initial guess. The object function is then refined iteratively according to the 

update equation as 𝛉(𝐧 𝟏) = 𝛉(𝐧) + 𝚫𝛉(𝐧), where 𝚫𝛉(𝐧) is the change in the object function for the nth 

iteration. This change is determined by solving a regularized optimization problem, which aims to 
minimize the difference between the measured and calculated scattered fields while incorporating 
regularization terms to ensure stability and convergence:  

Δθ( ) = argmin
𝒪

∥∥Δσ‾ sc − H‾ ( ) ⋅ Δθ∥∥ + γ ∥ Δθ ∥        (4) 

where the term 𝚫𝛔‾ sc represents the discrepancy among the predicted and measured scattered 

fields, while the regularization parameter 𝛄 controls the trade-off between data fidelity and model 

stability. The Frechet derivative matrix 𝐇‾ (𝐧) is structured as follows 0:  

H‾ ( ) = B‾ ⋅ I‾ − 𝒟 θ( ) ⋅ C‾ ⋅ 𝒟(σ‾)       (5) 

The iterative process continues until the relative residual error (RRE) meets the desired 

termination tolerance. The RRE is calculated as RRE = ∥∥𝚫𝛔‾ sc ∥∥𝟐/∥∥𝛔‾ sc ∥∥𝟐, where ∥∥𝚫𝛔‾ sc ∥∥𝟐 denotes the 

2-norm of the variance between the predicted and measured scattered fields. The regularization 

parameter 𝛄 is determined based on the method outlined in 0: 

γ = 0.5σ max 10  , 10        (6) 

where the square of the dominant singular value of 𝐇‾ (𝐧), denoted as 𝛔𝟎
𝟐, is computed using the 

power iteration method in conjunction with Rayleigh quotient estimation. This approach provides an 
efficient way to estimate the largest singular value and its corresponding square. The quality of the 
reconstructions is assessed by calculating the mean average error (MAE). The MAE is calculated 

based on the difference between the reconstructed speed of sound contrasts 𝚫�̂� and the ideal speed of 

sound contrasts 𝚫𝐜. This metric quantifies the average deviation between the reconstructed and ideal 
values, providing a measure of the accuracy and effectiveness of the reconstruction process as follows:  

MAE =
∥ Δĉ − Δc ∥

∥ Δc ∥
       (7) 

The single-frequency DBIM may experience divergence issues when the excess phase 

magnitude Δϕ accumulates from the acoustic wave as it travels through the scatterer approaches π 0. 

In the case of a homogeneous sphere, Δϕ shown in Eq. (8) can be estimated based on factors such as 
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the size of the sphere, the speed of sound in the sphere relative to the surrounding medium, and the 
frequency of the acoustic wave. This estimation helps determine whether the phase shift is within a 
tolerable range for the method to remain stable and accurate. 

Δϕ = 2k a(c − 1)     (8) 

where the relative speed of sound, denoted as 𝐜𝐫 = 𝐜/𝐜𝟎, measures the speed of sound in the 

scatterer 𝐜 relative to the speed of sound in the surrounding medium 𝐜𝟎. For a homogeneous sphere 

with radius 𝐚, the excess phase |𝚫𝛟| accumulated from the acoustic wave while passing through the 

sphere can be estimated using these parameters. When applying the linearized first-order Born 

approximation, the quality of the reconstructions can degrade even when the absolute value of 𝚫𝛟 is 

smaller than 𝛑 0. As a result, any scattering object for which |𝚫𝛟| > 𝛑 is considered to possess a 
significant acoustic contrast and may pose challenges for accurate reconstruction due to the higher 

likelihood of divergence. 

Nearest neighbor interpolation is the simplest and most commonly used interpolation method. It 
is computationally less intensive compared to more sophisticated interpolation methods like bilinear or 
cubic interpolation. The algorithm is easy to implement and requires minimal computational resources. 
The new pixel takes the value of the original pixel closest to it and does not consider other values in all 
neighboring points. The distance between two points is often measured as the Euclidean distance or 

Minkowski distance with k = 2. Kernel function of the nearest neighbor interpolation method 0 is 
shown as:  

h(x) =
1 |x| ≤

1

2

0
1

2
≤ |x|

 
         
(9) 

where, x is the distance between the interpolation point and the grid point. Suppose that we have 
a pixel (u,v) with four neighbours (i, j), (i, j + 1), (i + 1, j) and (i + 1, j + 1), and values f(i, j), f(i, j + 

1), f(i + 1, j), f(i + 1, j + 1) as shown in Figure 2. The distance between (u,v) and (i, j), (i, j + 1), (i + 
1, j), (i + 1, j + 1) will be calculated, the value at (u, v) will be assigned the value of the point closest 
to it. 

Figure 2. Illustration of calculating new pixels (u,v) using the nearest neighbor interpolation method. 

The image restoration procedure comprises two distinct phases: In the initial stage, the object is 

reconstructed with low resolution (N1×N1) during the initial iterations employing the beamformed 
approach. This initial stage employs lower resolution to facilitate rapid convergence. Subsequently, in 
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the second stage, the object is reconstructed with high resolution (N2×N2) during the remaining 
iterations, still utilizing the beamformed approach. Using high resolution is implemented to get the 
desired image resolution. Expanding the dimensions of an image can be achieved through a technique 

known as nearest-neighbor interpolation, where each pixel is replaced by four pixels of equal intensity. 
This process enlarges the image without sacrificing its inherent details. Notably, nearest-neighbor 

interpolation boasts a straightforward implementation and consumes minimal processing time. While 
various interpolation techniques exist, such as bilinear, bicubic, and spline interpolation, among 
others, we select nearest-neighbor interpolation mainly because of its time efficiency and its avoidance 
of the need to generate new data. Normalized error and noise reduction are shown by the obtained 
results of the proposed approach.  

2.2. Numerical simulation and discussion 

Simulation parameters: Transmitter frequency sets at 1 MHz, sound contrast of 10%, object 
diameter 7.3 mm, transducer-to-object distances spanning 100 mm, background environment's sound 
velocity established at 1540 m/s, the number of pixels along an axis is N, a total of 8 iterations (with 
iterations for N1×N1 denoted as NN1 = 3 and for N2×N2 denoted as NN2 = 5), and a 10% level of noise. 
Figure 3. indicates the ideal target function that needs to be recovered.    

a) b) 

  
Figure 3. Ideal target function for a) N=9 and b) N=18. 

Figure 4. presents the normalized error differentiation between the beamforming-DBIM and beamforming-

interpolation-DBIM after each iteration in the case of Nt = 15, Nr = 15, N = 18, or Nt×Nr = 0.694N2. Initially, the 

beamforming-DBIM approach starts with a higher normalized error compared to the beamforming-interpolation-

DBIM approach. As iterations progress, both approaches show a decrease in their normalized error values, 

indicating improvement in performance. The beamforming-interpolation-DBIM approach consistently maintains 

a lower normalized error compared to the beamforming-DBIM approach throughout all iterations. Towards the 

end of the iterations, the difference in normalized error between the two approaches becomes smaller, but the 

beamforming-interpolation-DBIM approach consistently outperforms the beamforming-DBIM approach. 

Overall, the trend suggests that the beamforming-interpolation-DBIM approach tends to converge to a lower 

normalized error faster and maintains a better performance throughout the iterations compared to the 

beamforming-DBIM approach.  

Notably, in the third iteration of the beamforming-interpolation-DBIM method, the normalization error 

reaches its minimum. This is understandable because in the first 3 iterations, the image restoration process is 

performed with low resolution (N1×N1). That is, the number of variables is small, while the number of 

measurements remains constant, so the normalization error is minimized at this stage. However, what we want is 

to restore the image with high resolution (N2×N2) starting from the fourth iteration. This shows that estimating 

the target in the first iterations is very essential to achieve convergence speed and the beamforming-
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interpolation-DBIM method has proven quite effective. Moreover, the total runtimes of the beamforming-DBIM 

and the beamforming-interpolation-DBIM are 13.608345 and 9.062086 seconds, respectively. Hence, the 

reduced percentage of the total runtime for beamforming-interpolation-DBIM compared to the beamforming-

DBIM is approximately 33.41%. This indicates that the beamforming-interpolation-DBIM outperforms the 

beamforming-DBIM in terms of total runtime, completing its execution faster. 

 

Figure 4. The normalized error differentiation between the beamforming-DBIM and beamforming-interpolation-
DBIM after each iteration in case of Nt = 15, Nr = 15, N = 18, or Nt×Nr = 0.694N2. 

 

Figure 5. The normalized error differentiation between the beamforming-DBIM and beamforming-interpolation-
DBIM after each iteration in the case of Nt = 20, Nr = 20, N = 18, or Nt×Nr = 1.235N2. 
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a) b) 

  
c) d) 

  
e) f) 

  
g) h) 

  

Figure 6. Reconstructed target function of the beamforming-DBIM (a, c, e, and g) and beamforming-
interpolation-DBIM (b, d, f, and h) after first (a and b), third (c and d), fifth (e and f), and eighth (g and h) 

iterations when Nt= Nr= 15. 
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a) b) 

  
c) d) 

  
e) f) 

  
g) h) 

  

Figure 7. Reconstructed target function of the beamforming-DBIM (a, c, e, and g) and beamforming-
interpolation-DBIM (b, d, f, and h) after first (a and b), third (c and d), fifth (e and f), and eighth (g and h) 

iterations when Nt= Nr= 20. 
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The normalized error differentiation between the beamforming-DBIM and beamforming-
interpolation-DBIM after each iteration in the case of Nt = 20, Nr = 20, N = 18, or Nt×Nr = 1.235N2 is 
shown in Figure 5. For the initial error of the first iteration, the beamforming-interpolation-DBIM has 

a significantly lower initial error compared to the beamforming-DBIM. The error reduction is 
substantial from the first iteration itself. For the convergence rate, both approaches show a decrease in 

error with each iteration, indicating convergence towards a solution. However, the beamforming-
interpolation-DBIM tends to converge faster, reaching lower error values in fewer iterations compared 
to the beamforming-DBIM. For stability, the beamforming-interpolation-DBIM appears to have a 
more stable convergence pattern, with consistent decreases in error across iterations. The 
beamforming-DBIM, while showing a reduction in error, demonstrates slightly more fluctuations in 
error values between iterations. For the final error of the last iteration, beamforming-interpolation-
DBIM achieves a lower error compared to the beamforming-DBIM, indicating superior performance 
in terms of accuracy. In general, the beamforming-interpolation-DBIM exhibits a notable 

improvement over the beamforming-DBIM in terms of both initial error reduction and convergence 
speed. It consistently maintains a lower error throughout iterations, indicating its effectiveness in 
producing accurate results more efficiently. The total runtime of the beamforming-DBIM and the 
beamforming-interpolation-DBIM are 23.192424 and 16.575251 seconds, respectively. Therefore, the 
reduced percentage of the total runtime for the beamforming-interpolation-DBIM compared to the 
beamforming-DBIM is approximately 28.53%. This indicates that the beamforming-interpolation-
DBIM completes its execution approximately 28.53% faster than the beamforming-DBIM. Figure 6 

and Figure 7 show the reconstructed target function of the beamforming-DBIM and beamforming-
interpolation-DBIM after the first, third, fifth, and eighth iterations in the case of Nt= Nr= 15 and 20, 

respectively. Visually, we see that the beamforming-interpolation-DBIM method converges quite well 
as the number of iterations increases. This is shown by the recovered object function. 

3. Conclusions 

Ultrasound tomography plays a pivotal role in medical diagnostics, providing non-invasive 
imaging capabilities for soft tissues with high resolution. This work introduces a novel approach to 
enhance image reconstruction within the context of diffraction tomography. By integrating techniques 
of beamforming and interpolation, we aim to improve the convergence rate and image reconstruction 
quality. By steering the transmitted and received signals toward specific directions, beamforming 
enhances the signal-to-noise ratio and improves the quality of acquired ultrasound data. Additionally, 
nearest neighbor interpolation is leveraged for its computational efficiency and simplicity, ensuring 
rapid processing suitable for real-time applications. Results demonstrate the potential for more 
accurate information retrieval and improved convergence rate of the imaging target. 
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