

HPU2 Journal of Sciences: Natural Sciences and Technology

TAP CHÍ KHOA HỌC

Journal homepage: https://sj.hpu2.edu.vn

Article type: Research article

Viscosity solutions of the augmented *k* -Hessian equations in exterior domains

Trong-Tien Phan^a, Hong-Quang Dinh^b, Van-Bang Tran^{c*}

^aQuang Binh University, Quang Binh, Vietnam ^bNinh So, Thuong Tin, Hanoi, Vietnam ^cHanoi Pedagogical University 2, Vinh Phuc, Vietnam

Abstract

This paper examines the Dirichlet problem for augmented k-Hessian equations in exterior domains. Building upon our previous results on the viscosity solutions to the Dirichlet problems for augmented k-Hessian equations in the bounded domain, and L. Dai, J. Bao's method to the k-Hessian equations in exterior domains, a sufficient condition for the existence and uniqueness of viscosity solutions to the Dirichlet problem for the augmented k-Hessian equations in exterior domains have been proven. During the process, a slight adjustment to the result on the existence and uniqueness of viscosity solutions to the problem in the bounded domains have been made for use in the present situation.

Keywords: Augmented *k*-Hessian equations, viscosity solutions, subsolution, (A,k)-convex function, exterior domain

1. Introduction

The viscosity solution of partial differential equations was first introduced for the first-order Hamilton-Jacobi equations in the early 1980s. This generalized solution concept has been extended to second-order nonlinear elliptic partial differential equations and has many applications, see [1]–[5] and references therein.

Received date: 30-4-2024 ; Revised date: 04-7-2024 ; Accepted date: 22-7-2024

^{*} Corresponding author, E-mail: tranvanbang@hpu2.edu.vn

https://doi.org/10.56764/hpu2.jos.2024.3.2.70-79

This is licensed under the CC BY-NC 4.0

Let $\mathfrak{D} \subset \mathbb{R}^n$ be a domain, $k \in \{1, 2, ..., n\}, \mathbb{M}^n$ the set of all $n \times n$ positive definite symmetric matrices with the norm of the matrix $X = [x_{ij}]$ given by $||X|| = \max |x_{ij}|$. For $X \in \mathbb{M}^n$, we denote $\mu(X) = (\mu_1, \dots, \mu_n)$ the vector of n eigenvalues of X,

$$\sigma_k(\mu) = \sigma_k(\mu_1, \cdots, \mu_n) = \sum_{1 \le i_1 < \cdots < i_k \le n} \mu_{i_1} \cdots \mu_{i_k}, \quad \mu = (\mu_1, \dots, \mu_n) \in \mathbb{M}^n$$

the basic symmetric polynomial of degree k. We consider the augmented k-Hessian equation

$$\left[\sigma_{k}\left(\mu(D^{2}v(x)-A(x,v(x),Dv(x)))\right)\right]^{1/k} = f(x), \quad x \in \mathfrak{D},$$
(1)

subject to

$$v(x) = \psi(x), \quad x \in \partial \mathfrak{D}, \tag{2}$$

where $A: \overline{\mathfrak{B}} \times \mathbb{R} \times \mathbb{R}^n \to \mathbb{M}^n$, $f: \mathfrak{B} \to \mathbb{R}$, and $\psi: \partial \mathfrak{B} \to \mathbb{R}$ are given continuous mappings, f > 0 in \mathfrak{B} .

When $A \equiv 0$, Equation (1) is often called k -Hessian equation. It is well-known that the k -Hessian equation is second-order nonlinear, and is elliptic only for k -convex functions (X. J. Wang [6]). The k -Hessian equation class includes the Monge-Ampere equations (when k = n) and the Poisson equations (when k = 1). It has many important applications, especially in conformal mapping problems, and curvature theory [6]–[8].

The augmented k -Hessian equations appear when studying the optimal transport problems. When the domain $\mathfrak{D} = \Omega$ is bounded, some properties of classical solutions to the Dirichlet problem (1), (2) have been studied [9], [10], and some sufficient conditions for the existence and uniqueness of viscosity solutions to that problem were proved in [11] when the data of the problem are not smooth enough. In the case $\mathfrak{D} = \mathbb{R}^n \setminus \overline{\Omega}$ is an exterior domain, where $\Omega \subset \mathbb{R}^n$ is a bounded domain, and contains origin, the existence of solution with prescribed asymptotic behavior to the problem (1), (2) has studied in [7] and [8] (for $A \equiv 0, k = n$), in [12] and [13] (for $A \equiv 0, f \equiv 1$), in [14] and [15] (for $A \equiv 0, f$ is unbounded and has a special growth).

In this paper, we establish a sufficient condition for the existence, uniqueness of viscosity solution with prescribed asymptotic behavior to the problem (1), (2) on the exterior $\mathfrak{D} = \mathbb{R}^n \setminus \overline{\Omega}$, in the case $A(x, z, p) \leq 0$ and f(x) is bounded.

2. Research content

From now on, we always assume that $k \in \{1, 2, ..., n\}$, $\mathfrak{D} = \mathbb{R}^n \setminus \overline{\Omega}$ is an exterior domain, where $\Omega \subset \mathbb{R}^n$ is a bounded domain, and contains origin 0, $A : \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^n \to \mathbb{M}^n$, $f : \mathbb{R}^n \to \mathbb{R}$ are given continuous mappings, f(x) > 0, and

$$\Gamma_k := \{ \mu \in \mathbb{R}^n : \sigma_i(\mu) > 0, \forall j = 1, 2, \dots, k \}.$$

It is well-known that

$$\Gamma_n = \{ \mu \in \mathbb{R}^n : \mu_i > 0, \forall j = 1, 2, \dots, n \}, \quad \Gamma_i \subset \Gamma_i, \forall i > j.$$

For convenience, we will recall the concept of (A, k) -convex function and the concept of viscosity solution to Problem (1), (2).

Definition 2.1. ([11]). Given a pair (A, k). A function $v \in C(\overline{\mathfrak{P}})$ is said to be (A, k)-convex on \mathfrak{P} iff for any $\varphi \in C^2(\mathfrak{P})$, φ touches v from below at $x_0 \in \mathfrak{P}$ we have

 $\mu(D^2\varphi(x_0) - A(x_0, \varphi(x_0), D\varphi(x_0))) \in \overline{\Gamma}_k.$

Remark 2.2. It is clear that if $v \in C^2(\overline{\mathfrak{B}})$ and v is (A, k)-convex on \mathfrak{B} then,

$$\mu(D^2v(x) - A(x, v(x), Dv(x))) \in \overline{\Gamma}_k, \quad \forall x \in \mathfrak{B},$$

and for C^2 -functions, the (0, n)-convexity is exactly the usual convexity.

Definition 2.3. ([15]). A function $u \in C(\mathfrak{P})$ is called a *viscosity subsolution* to Equation (1) if for any $y \in \mathfrak{P}$, any (A, k)-convex function $\xi \in C^2(\mathfrak{P})$ satisfying

$$u(x) \leq \xi(x), x \in \mathfrak{B}; \quad u(y) = \xi(y),$$

we have

$$\left[\sigma_{k}(\mu(D^{2}\xi(y) - A(y,\xi(y),D\xi(y))))\right]^{1/k} \geq f(y),$$

A function $u \in C(\mathfrak{P})$ is called a *viscosity supersolution* to Equation (1) if for any $y \in \mathfrak{P}$, any (A,k)-convex function $\xi \in C^2(\mathfrak{P})$ satisfying

$$u(x) \ge \xi(x), x \in \mathfrak{B}; \quad u(y) = \xi(y),$$

we have

$$[\sigma_k(\mu(D^2\xi(y) - A(y,\xi(y), D\xi(y))))]^{1/k} \le f(y).$$

A function $u \in C(\mathfrak{D})$ is called a *viscosity solution* to Equation (1) if u is both a viscosity subsolution and a viscosity supersolution to (1).

A function $u \in C(\mathfrak{P})$ is called a *viscosity subsolution* (resp. *viscosity supersolution, viscosity solution*) to the problem (1), (2) if u is a viscosity subsolution (resp. viscosity supersolution, viscosity solution) to Equation (1) and $u \leq (\text{resp.} \geq =)\psi$ on $\partial \mathfrak{P}$.

Remark 2.4. By [11, Theorem 2.2], every viscosity subsolution and viscosity supersolution to the equation (1) is (A, k)-convex on \mathfrak{D} .

Lemma 2.5. Let $\mathfrak{D} \subset \mathbb{R}^n$ be an arbitrary domain, $f \in C(\mathbb{R}^n)$ be nonnegative. Suppose that (A,k)-convex functions $u_1 \in C(\overline{\mathfrak{D}}), u_2 \in C(\mathbb{R}^n)$ are viscosity subsolutions to the equation (1) respectively in \mathfrak{D} and \mathbb{R}^n . Moreover,

$$u_2 \le u_1, \quad x \in \mathfrak{D}; \quad u_1 = u_2, \quad x \in \partial \mathfrak{D}.$$
 (3)

Set

$$v(x) = \begin{cases} u_1(x), & x \in \mathfrak{D}, \\ u_2(x), & x \in \mathbb{R}^n \setminus \mathfrak{D}. \end{cases}$$

Then v is a viscosity subsolution of the equation (1) in \mathbb{R}^n .

Proof. Given $y \in \mathbb{R}^n$, $\xi \in C^2(\mathbb{R}^n)$ be an (A, k)-convex function satisfying $v(y) = \xi(y)$,

$$v(x) \le \xi(x), \quad x \in \mathbb{R}^n. \tag{4}$$

If $y \in \mathfrak{D}$, then we get

$$u_1(y) = v(y) = \xi(y), \quad u_1(x) = v(x) \le \xi(x), \quad x \in \mathfrak{P}.$$

Hence,

$$\sigma_j(\mu(D^2\xi(y) - A(y,\xi(y),D\xi(y)))) \ge 0, \quad 1 \le j \le k,$$

$$\sigma_k(\mu(D^2\xi(y) - A(y,\xi(y),D\xi(y)))) \ge f(y).$$

If $y \notin \mathfrak{D}$, then we obtain

$$u_2(y) = v(y) = \xi(y), \quad u_2(x) = v(x) \le \xi(x), \quad x \in \mathfrak{D}.$$

From (3), (4), $u_2(x) \le \xi(x)$ for all $x \in \mathbb{R}^n$. Therefore,

$$\begin{aligned} &\sigma_{j}(\mu(D^{2}\xi(y) - A(y,\xi(y),D\xi(y)))) \geq 0, \quad 1 \leq j \leq k, \\ &\sigma_{k}(\mu(D^{2}\xi(y) - A(y,\xi(y),D\xi(y)))) \geq f(y). \end{aligned}$$

The proof is complete.

Now we introduce some assumptions for A(x, z, p) and f(x).

 (AF_1) : For each t > 0, there exists a locally continuous module $\eta_{A,t}$ on $[0,\infty)$ satisfies

$$A(x, z, p) - A(y, z, p) \le \eta_{A, t}(|x - y| (1 + |p|))I, \quad \forall x, y \in \mathbb{R}^{n}, |z| \le t, p \in \mathbb{R}^{n};$$

$$(AF_2): D_z A(x, z, p) \ge 0; \forall (x, z, p) \in \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^n;$$

$$(AF_3)$$
: det $(-A(x,z,p)) \ge [f(x)]^k$, $(x,z,p) \in \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^n$;

 (AF_4) : For each t > 0, there exists a positive constant $C_{f,t}$ and a locally continuous module $\eta_{f,t}$ such that

$$|f(x) - f(y)| \le \eta_{f,t}(|x - y|), \forall x, y \in \mathbb{R}^n, |z| \le t, p \in \mathbb{R}^n.$$

 (AF_5) : Let Ω be a C^2 , bounded, and strictly convex domain in \mathbb{R}^n ; $\psi \in C(\partial \Omega)$. The Dirichlet problem

$$\begin{cases} \Delta v(x) = \operatorname{Tr}(A(x, v(x), Dv(x))), & x \in \Omega, \\ v(x) = \psi(x), & x \in \partial \Omega \end{cases}$$

has a classical solution, where TrA stands for the trace of matrix A.

Remark 2.6. Some sufficient conditions for assumption (AF_5) have been established in some documents, for instance: in [16] for TrA(x, v, Dv) = f(x), in [17] for $\text{Tr}A(x, v, Dv) = f(v), \psi = 0$, in [18] for $\psi = 0$, and in [19], Theorem 15.10 for the general case.

According to the proof of Theorems 2.3, 2.4 in [11], but using the assumption (AF_5) instead of using the sufficient conditions for (AF_5) , we have the following result on the existence and uniqueness to the Dirichlet problem for the augmented k -Hessian equation in bounded domains:

Theorem 2.7. Let Ω be a C^2 , bounded, and strictly convex domain in \mathbb{R}^n ; $\psi \in C(\partial \Omega)$; $f \in C(\Omega)$, f(x) > 0. Moreover, suppose that the assumptions (AF_1) - (AF_5) are satisfied. Then the following problem has a unique viscosity solution:

$$\begin{cases} \left[\sigma_k(\mu(D^2u(x) - A(x, u(x), Du(x))))\right]^{1/k} = f(x), & x \in \Omega, \\ u(x) = \psi(x), & x \in \partial\Omega. \end{cases} \end{cases}$$

Now, we are ready to establish the existence and uniqueness for the considering problem in exterior domains.

Theorem 2.8. Let $\Omega \subset \mathbb{R}^n$, $(n \ge 3)$ be a bounded, strictly convex, C^2 domain, which contains 0, $\mathfrak{P} = \mathbb{R}^n \setminus \overline{\Omega}$; $\psi \in C^2(\partial \Omega)$; $f \in C(\mathbb{R}^n)$, $0 < \inf_{\mathbb{R}^n} f \le \sup_{\mathbb{R}^n} f < \infty$. Moreover, we assume that $A(x, z, p) \le 0$, and satisfies the assumptions (AF_1) - (AF_5) . Then there exists γ_0 such that for any $\gamma > \gamma_0$, there exists a unique viscosity solution to the problem in exterior domains (1), (2) such that

$$\limsup_{x \to \infty} \left(|x|^{n-2} \left| u(x) - \left(\frac{\gamma_*}{2} |x|^2 + \gamma \right) \right| \right) < \infty,$$
(5)

where $\gamma_* = \left(\frac{1}{C_n^k}\right)^{1/k} \sup_{\mathbb{R}^n} f$.

Proof. We first construct a viscosity subsolution v_t to the problem (1), (2). For each t > -1, let

$$v_t(x) = \min_{\partial \Omega} \psi - \int_{\sqrt{\gamma_*}|x|}^{\overline{r}} (r^n + t)^{1/n} dr, \, x \in \mathbb{R}^n,$$

where $\overline{r} = 2\sqrt{\gamma_*} \operatorname{diam}\Omega$. We have $v_t \in C(\mathbb{R}^n)$, and $v_t \leq \psi$ on $\partial \mathfrak{B}$. Set

$$\rho(t) = \min_{\partial\Omega} \psi + \int_{\overline{r}}^{\infty} r \left[\left(1 + \frac{t}{r^n} \right)^{1/n} - 1 \right] dr - \frac{1}{2} \overline{r}^2.$$

Then

$$v_{t}(x) = \frac{\gamma_{*}}{2} |x|^{2} + \rho(t) - \int_{\sqrt{\gamma_{*}|x|}}^{\infty} r \left[\left(1 + \frac{t}{r^{n}} \right)^{1/n} - 1 \right] dr, x \in \mathbb{R}^{n}.$$
(6)

By direct calculation, we have

$$D_{ij}v_t(x) = \left(|z|^n + t\right)^{\frac{1}{n}} \gamma_* \left[\left(|z|^{n-1} + \frac{t}{|z|}\right) \delta_{ij} - \frac{tz_i z_j}{|z|^3} \right], \quad |x| > 0$$

here $z = \sqrt{\gamma_*} x$. By rotating the coordinates, we may assume that $z = (R, 0, \dots, 0)^T$, and therefore

$$D^2 v_t = \left(R^n + t\right)^{\frac{1}{n-1}} \gamma_* \operatorname{diag}\left(R^{n-1}, R^{n-1} + \frac{t}{R}, \cdots, R^{n-1} + \frac{t}{R}\right),$$

where R = |z|. From this and the fact that $A(x, z, p) \le 0$, we have

$$\sigma_j \Big(\mu(D^2 v_t(x) - A(x, v_t(x), Dv_t(x))) \Big) \ge \sigma_j \Big(\mu(D^2 v_t(x)) \Big) > 0, \forall j = 1, ..., k,$$

therefore,

$$\mu(D^2 v_t(x) - A(x, v_t(x), Dv_t(x))) \in \Gamma_k, \quad \forall \mid x \mid > 0.$$

By Newton-Maclaurin inequality ([19], p. 7),

$$\begin{bmatrix} \sigma_k \left(\mu (D^2 v_t - A(x, v_t, Dv_t)) \right) \end{bmatrix}^{1/k} \ge \begin{bmatrix} \sigma_k \left(\mu (D^2 v_t) \right) \end{bmatrix}^{1/k} \ge \left(C_n^k \right)^{1/k} \left(\sigma_n \left(\mu (D^2 v_t) \right) \right)^{1/n} \\ = \left(C_n^k \right)^{1/k} \gamma_* = \sup_{\mathbb{R}^n} f \ge f, |x| > 0.$$

Fix $t_0 > -1$ such that $\gamma_0 := \rho(t_0) \ge \gamma_1$. For any $\gamma > \gamma_0$ and $x \in \mathfrak{B}$, let $S_{\gamma,x}$ be the set of (A,k) -convex functions $v \in C(\mathfrak{B})$ which is the viscosity subsolution to the problem

$$\begin{cases} \left[\sigma_k\left(\mu(D^2v(y) - A(y, v(y), Dv(y))\right)\right]^{1/k} = f(y), & y \in \mathfrak{B}, \\ v(y) = \psi(y), & y \in \partial \mathfrak{B} \end{cases} \end{cases}$$

and for any $y \in \mathfrak{D}$, $|y - x| \le 2 \operatorname{diam} \Omega$,

$$v(y) \leq \frac{\gamma_*}{2} |y|^2 + \gamma.$$

Then, for all $\rho^{-1}(\gamma_0) < t < \rho^{-1}(\gamma)$, it is clear that the function v_t shown above satisfies $v_t \in S_{\gamma,x}$, or $S_{\gamma,x} \neq \emptyset$.

We define the function

$$u_{\gamma}(x) = \sup\{w(x) : w \in S_{\gamma,x}\}, x \in \mathfrak{D}.$$

We prove that u_{γ} can be extended continuously to $\overline{\mathfrak{D}}$ and $u_{\gamma} = \psi$ on $\partial \mathfrak{D}$. Indeed, by the Lemma 1 in [13], after extending $\psi \in C^2(\partial \mathfrak{D})$ to $\psi \in C^2(\overline{\Omega})$, there exists a constant $\gamma = \gamma(n, \psi, \Omega)$ such that for any $\eta \in \partial \mathfrak{D}$, there exists $\overline{x}(\eta) \in \mathbb{R}^n$, $|\overline{x}(\eta)| \leq \gamma$, for which function

$$w_{\eta}(x) \coloneqq \psi(\eta) + \frac{1}{2} \left(|x - \overline{x}(\eta)|^2 - |\eta - \overline{x}(\eta)|^2 \right)$$

satisfying $w_{\eta} < \psi$ in $\overline{\Omega} \setminus \{\eta\}$. Therefore, we can fix some constant γ_1 such that for any $\eta \in \partial \mathfrak{B}$,

$$w_{\eta}(x) \leq \frac{\gamma_{*}}{2} |x|^{2} + \gamma_{1}, \quad \operatorname{dist}(x, \partial \mathfrak{P}) \leq 1, \quad x \in \overline{\mathfrak{P}}.$$
 (7)

By (7), for $\eta \in \partial \mathfrak{P}$ and x sufficiently close to η , $x \in \mathfrak{P}$, we have $w_{\eta} \in S_{\gamma,x}$. Therefore, $u_{\gamma}(x) \ge w_{\eta}(x)$ for x sufficiently close to η . Thus,

$$\liminf_{x \to \eta} u_{\gamma}(x) \ge \liminf_{x \to \eta} w_{\overline{\eta}}(x) = \psi(\eta).$$

From the definition of u_{γ} we have

$$\limsup_{x\to\bar{\eta}}u_{\gamma}(x)\leqslant\psi(\eta),$$

therefore $\lim_{x \to \bar{\eta}} u_{\gamma}(x) = \psi(\bar{\eta}).$

We now prove u_{γ} satisfies (1) in the viscosity sense. By the definition, u_{γ} is a viscosity subsolution to (1). We only need to prove that u_{γ} is a viscosity supersolution to (1).

For any $x \in \mathfrak{B}$, fix $0 < \delta < 2$ diam Ω such that

$$B = B_{\delta}(x) \subset \mathfrak{D}.$$

From Theorem 2.7, the Dirichlet problem

$$\begin{cases} \left[\sigma_{k}\left(\mu\left(D^{2}\tilde{u}(y)-A(y,\tilde{u}(y),D\tilde{u}(y))\right)\right)\right]^{1/k}=f(y), & y \in B, \\ \tilde{u}(y)=u_{\gamma}(y), & y \in \partial B \end{cases}$$

$$\tag{8}$$

has a unique (A, k)-convexity viscosity solution $\tilde{u} \in C^0(\overline{B})$. By the comparison principle, $u_{\gamma} \leq \tilde{u}$ in *B* Define

$$\widetilde{w}(y) = \begin{cases} \widetilde{u}(y), & y \in B \\ u_{\gamma}(y), & y \in (\mathbb{R}^n \setminus \Omega) \setminus B, \end{cases}$$

then $\tilde{w} \in S_{\gamma,x}$. Indeed, by the definition of u_{γ} ,

$$u_{\gamma}(y) \leqslant \frac{\gamma_{*}}{2} |y|^{2} + \gamma, \quad y \in B.$$

Let

$$\tilde{v}(y) = \frac{\gamma_*}{2} |y|^2 + \gamma.$$

Then, for all $y \in B$,

$$\begin{bmatrix} \sigma_k \left(\lambda \left(\mathsf{D}^2 \tilde{v}(y) - A(y, \tilde{v}(y), D\tilde{v}(y)) \right) \right) \end{bmatrix}^{1/k} \ge \begin{bmatrix} \sigma_k \left(\lambda \left(\mathsf{D}^2 \tilde{v}(y) \right) \right) \end{bmatrix}^{1/k} = \sup_{\mathbb{R}^n} f(y) \ge f(y), \\ \tilde{u}(y) = u_y(y) \leqslant \tilde{v}(y), \quad y \in \partial B. \end{bmatrix}$$

From the comparison principle, for any $y \in B$, $\tilde{u} \leq \tilde{v}$ i.e., $\tilde{u}(y) \leq \frac{\gamma_*}{2} |y|^2 + \gamma$.

By Lemma 2.5,

$$\left[\sigma_{k}\left(\mu\left(\mathsf{D}^{2}\tilde{w}(y)-A(y,\tilde{w}(y),D\tilde{w}(y))\right)\right)\right]^{1/k} \geq f(y), \quad y \in \mathfrak{B}.$$

Therefore, $\tilde{w} \in S_{\gamma,x}$. And thus, by the definition of $u_{\gamma}, u_{\gamma} \ge \tilde{w}$ in \mathfrak{B} and $u_{\gamma} \ge \tilde{u}$ in B. Hence,

$$u_{\gamma} \equiv \tilde{u}, \quad y \in B. \tag{9}$$

However, \tilde{u} satisfies (8), we have, in the viscosity sense,

$$\left[\sigma_k\left(\mu\left(D^2u_{\gamma}(y)-A(y,u_{\gamma}(y),Du_{\gamma}(y))\right)\right)\right]^{1/k}=f(y), \quad y\in B.$$

Because x is arbitrary, we know that u_{γ} is a viscosity supersolution of (1).

We prove that u_{γ} satisfies (5). By the definition of u_{γ} , $u_{\gamma}(x) \leq \frac{\gamma_*}{2} |x|^2 + \gamma$, $x \in \mathfrak{D}$. Then

$$u_{\gamma}(x) - \frac{\gamma_{*}}{2} |x|^{2} - \gamma \leqslant 0 \leqslant \frac{1}{|x|^{n-2}}, \quad x \in \mathfrak{D}.$$
 (10)

Moreover, from (6), we have $w_t(x) = \frac{\gamma_*}{2} |x|^2 + \rho(t) - O(|x|^{2-n})$ as $|x| \to \infty$. Since $w_t \in S_{\gamma,x}$,

$$u_{\gamma}(x) - \frac{\gamma_*}{2} |x|^2 - \rho(t) \ge -O(|x|^{2-n}), \text{ as } |x| \to \infty.$$

Let $t \to \mu^{-1}(\gamma)$, we obtain

$$u_{\gamma}(x) - \frac{\gamma_{*}}{2} |x|^{2} - \gamma \ge -O(|x|^{2-n}).$$
(11)

Hence, from (15) and (16), we have

$$\left|u_{\gamma}(x)-\left(\frac{\gamma_{*}}{2}|x|^{2}+\gamma\right)\right| \leqslant \frac{C}{|x|^{n-2}},$$

for some constant C. Thus,

$$\limsup_{x\to\infty}\left(|x|^{n-2}\left|u_{\gamma}(x)-\left(\frac{\gamma_{*}}{2}|x|^{2}+\gamma\right)\right|\right)<\infty.$$

Next, we show the uniqueness. Assume that u and v satisfy (1), (2) and (5). From the comparison principle of viscosity solutions to Hessian equations and

$$\lim_{x\to\infty}(u(x)-v(x))=0$$

we know $u \equiv v$ in \mathfrak{D} . This completes the proof.

Example 2.9. Let $\Omega = B = B_1(0)$ be the unit ball in \mathbb{R}^n , $A = -\alpha I$ ($\alpha \ge 1$), $f(x) = (|x|+1)^{-1/2}$, $\psi \in C^2(\partial B)$. Then, all the assumptions of Theorem 2.8 are satisfied. Therefore, there exists γ_0 such that for any $\gamma > \gamma_0$, the problem

$$\begin{cases} [\sigma_k(\mu(D^2u(x) - \alpha \mathbf{I}))]^{1/k} = (|x| + 1)^{-1/2}, & x \in \mathbb{R}^n \setminus \overline{B} \\ u(x) = \psi(x), & x \in \partial B \end{cases}$$

has a unique viscosity solution such that

$$\limsup_{x\to\infty}\left(|x|^{n-2}\left|u(x)-\left(\frac{\gamma_*}{2}|x|^2+\gamma\right)\right|\right)<\infty,$$

where $\gamma_* = \left(\frac{1}{C_n^k}\right)^{1/k}$.

Indeed, it is sufficient to verify the assumptions (AF₃), (AF₄) and (AF₅).

First, we have $det(-A(x, z, p)) = \alpha^n \ge 1 \ge [f(x)]^k$, or (AF₃) is satisfied. Next,

$$f(x) - f(y) = \frac{1}{\sqrt{|x| + 1}} - \frac{1}{\sqrt{|y| + 1}}$$
$$= \frac{|y| - |x|}{\sqrt{|x| + 1}\sqrt{|y| + 1}(\sqrt{|x| + 1} + \sqrt{|y| + 1})} \le \frac{1}{2} |x - y|,$$

so (AF₄) is satisfied. Moreover, the Dirichlet problem

$$\begin{cases} \Delta v(x) = \operatorname{Tr}(A(x, v(x), Dv(x))) = -n\alpha, & x \in B, \\ v(x) = b, & x \in \partial B \end{cases}$$

has a classical solution, or (AF₅) holds.

Conclusions

In this paper, we have proved the uniqueness of the solution viscosity solutions in exterior domains of the k-Hessian equations. Our results are significantly extended compared with the findings of the previous studies [8], [12]–[14], [20]. Specifically, we have broadened the class of equations by adding the function A and considering the right-hand side with the bounded function f instead of the constant function 1.

References

- [1] M. G. Crandall, H. Ishii, and P.-L. Lions, "User's guide to viscosity solutions of second order partial differential equations," *Bull. Am. Math. Soc.*, vol. 27, no. 1, pp. 1–67, 1992, doi: 10.1090/s0273-0979-1992-00266-5.
- [2] L. A. Caffarelli, L. Nirenberg, and J. Spruck, "The Dirichlet problem for nonlinear second order elliptic equations, III: Functions of the eigenvalues of the Hessian," *Acta Math.*, vol. 155, pp. 261–301, Jan. 1985, doi: 10.1007/bf02392544.
- [3] Y. Li, L. Nguyen, and B. Wang, "Comparison principles and Lipschitz regularity for some nonlinear degenerate elliptic equations," *Calc. Var. Partial Differ. Equ.*, vol. 57, no. 4, Jun. 2018, doi: 10.1007/s00526-018-1369-z.

- [4] Y. Li and B. Wang, "Strong comparison principles for some nonlinear degenerate elliptic equations," Acta Math. Sci., vol. 38, no. 5, pp. 1583–1590, Sep. 2018, doi: 10.1016/s0252-9602(18)30833-6.
- [5] A. Colesanti and P. Salani, "Hessian equations in non-smooth domains," *Nonlinear Anal. Theory Methods Appl.*, vol. 38, no. 6, pp. 803–812, Dec. 1999, doi: 10.1016/s0362-546x(98)00121-7.
- [6] X.-J. Wang, "The k-Hessian Equation," in *Lecture notes in mathematics*, Jan. 2009, pp. 177–252, doi: 10.1007/978-3-642-01674-5_5.
- [7] B. Wang and J. Bao, "Asymptotic behavior on a kind of parabolic Monge–Ampère equation," J. Differ. Equ., vol. 259, no. 1, pp. 344–370, Jul. 2015, doi: 10.1016/j.jde.2015.02.029.
- [8] J. Bao, H. Li, and L. Zhang, "Monge–Ampère equation on exterior domains," *Calc. Var. Partial Differ. Equ.*, vol. 52, no. 1, pp. 39–63, Dec. 2013, doi: 10.1007/s00526-013-0704-7.
- [9] F. Jiang, N. S. Trudinger, and X.-P. Yang, "On the Dirichlet problem for a class of augmented Hessian equations," J. Differ. Equ., vol. 258, no. 5, pp. 1548–1576, Mar. 2015, doi: 10.1016/j.jde.2014.11.005.
- [10] H. T. Ngoan and T. T. K. Chung, "Elliptic solutions to nonsymmetric Monge-Ampère type equations II. A priori estimates and the Dirichlet problem," *Acta math. Vietnam.*, vol. 44, no. 3, pp. 723–749, Jun. 2018, doi: 10.1007/s40306-018-0270-3.
- [11] Van, T.-N. Ha, H.-T. Nguyen, T.-T. Phan, and L.-H. Nguyen, "Viscosity solutions of the augmented K-Hessian equations," *HPU2. Nat. Sci. Tech.*, vol. 1, no. 1, pp. 3–9, Aug. 2022, doi: 10.56764/hpu2.jos.2022.1.1.3-9.
- [12] J. Bao, H. Li, and Y. Li, "On the exterior Dirichlet problem for Hessian equations," *Trans. Am. Math. Soc.*, vol. 366, no. 12, pp. 6183–6200, Jun. 2014, doi: 1090/s0002-9947-2014-05867-4.
- [13] L. Dai and J. Bao, "On uniqueness and existence of viscosity solutions to Hessian equations in exterior domains," *Front. Math. China*, vol. 6, no. 2, pp. 221–230, Mar. 2011, doi: 10.1007/s11464-011-0109-x.
- [14] X. Cao and J. Bao, "Hessian equations on exterior domain," J. Math. Anal. Appl., vol. 448, no. 1, pp. 22–43, Apr. 2017, doi: 10.1016/j.jmaa.2016.10.068.
- [15] H. Li and L. Dai, "The Dirichlet problem of Hessian equation in exterior domains," *Mathematics*, vol. 8, no. 5, pp. 666–666, Apr. 2020, doi: 10.3390/math8050666.
- [16] M. H. Nguyen, Eds. Partial differential equation (Part I), Hanoi, Vietnam: HNUE publishing house, 2006.
- [17] W. -M. Ni, "Uniqueness of solutions of nonlinear Dirichlet problems," J. Differ. Equ., vol. 50, no. 2, pp. 289– 304, Nov. 1983, doi: 10.1016/0022-0396(83)90079-7.
- [18] Y. Li and W. Ma, "Existence of classical solutions for nonlinear elliptic equations with gradient terms," *Entropy*, vol. 24, no. 12, p. 1829, Dec. 2022, doi: 10.3390/e24121829.
- [19] D. Gilbarg and N. S. Trudinger, Eds. *Elliptic partial differential equations of second order* (Classics in Mathematics). Heidelberg, Germany: Springer, 2001. doi: 10.1007/978-3-642-61798-0.
- [20] C. Wang and J. Bao, "Necessary and sufficient conditions on existence and convexity of solutions for Dirichlet problems of Hessian equations on exterior domains," *Proc. Am. Math. Soc.*, vol. 141, no. 4, pp. 1289–1296, Aug. 2012, doi: 10.1090/s0002-9939-2012-11738-1.