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Abstract 

This paper examines the Dirichlet problem for augmented k -Hessian equations in exterior domains. 

Building upon our previous results on the viscosity solutions to the Dirichlet problems for augmented 

k -Hessian equations in the bounded domain, and L. Dai, J. Bao's method to the k -Hessian equations 

in exterior domains, a sufficient condition for the existence and uniqueness of viscosity solutions to the 

Dirichlet problem for the augmented k -Hessian equations in exterior domains have been proven. 

During the process, a slight adjustment to the result on the existence and uniqueness of viscosity 

solutions to the problem in the bounded domains has been made for use in the present situation.  

Keywords: Augmented k-Hessian equations, viscosity solutions, subsolution, ( , )A k -convex function, 

exterior domain 

1. Introduction 

The viscosity solution of partial differential equations was first introduced for the first-order 

Hamilton-Jacobi equations in the early 1980s. This generalized solution concept has been extended to 

second-order nonlinear elliptic partial differential equations and has many applications, see [1]–[5] and 

references therein. 
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Let 
nD  be a domain, {1,2, , }, nk n   the set of all n n  positive definite symmetric 

matrices with the norm of the matrix [ ]ijX x  given by max | |ijX x . For ,nX   we denote 

1( ) ( , , )nX    the vector of n  eigenvalues of X ,   

1

1

1 1

1

( ) ( , , ) , ( , , )
k

k

n

k k n i i n

i i n

         
   

      

the basic symmetric polynomial of degree k . We consider the augmented k -Hessian equation 

2 1/[ ( ( ( ) ( , ( ), ( ))))] ( ), ,k

k D v x A x v x Dv x f x x    D       (1) 

subject to 

( ) ( ), ,v x x x D       (2) 

where : ,n nA   D  : ,f D  and :  D  are given continuous mappings, 

0f   in .D  

When 0,A   Equation (1) is often called k -Hessian equation. It is well-known that the k -Hessian 

equation is second-order nonlinear, and is elliptic only for k -convex functions (X. J. Wang [6]). The 

k -Hessian equation class includes the Monge-Ampere equations (when k n ) and the Poisson 

equations (when 1k  ). It has many important applications, especially in conformal mapping problems, 

and curvature theory [6]–[8]. 

The augmented k -Hessian equations appear when studying the optimal transport problems. When 

the domain D  is bounded, some properties of classical solutions to the Dirichlet problem (1), (2) 

have been studied [9], [10], and some sufficient conditions for the existence and uniqueness of viscosity 

solutions to that problem were proved in [11] when the data of the problem are not smooth enough. In 

the case \n D  is an exterior domain, where 
n  is a bounded domain, and contains origin, 

the existence of solution with prescribed asymptotic behavior to the problem (1), (2) has studied in [7] 

and [8] (for 0,A k n  ), in [12] and [13] (for 0, 1A f  ), in [14] and [15] (for 0,A   f is 

unbounded and has a special growth).    

In this paper, we establish a sufficient condition for the existence, uniqueness of viscosity solution 

with prescribed asymptotic behavior to the problem (1), (2) on the exterior \ ,n D  in the case 

( , , ) 0A x z p   and ( )f x  is bounded.   

2. Research content   

From now on, we always assume that {1,2, , },k n   \n D  is an exterior domain, where 

n  is a bounded domain, and contains origin 0, : ,n n nA     : nf   are given 

continuous mappings, ( ) 0,f x   and 

: { : ( ) 0, 1,2, , }.n

k j j k         

It is well-known that 

{ : 0, 1,2, , }, , .n

n j i jj n i j             
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For convenience, we will recall the concept of ( , )A k -convex function and the concept of viscosity 

solution to Problem (1), (2). 

 

Definition 2.1. ([11]). Given a pair ( , ).A k  A function ( )v C D  is said to be ( , )A k convex  

on D  iff for any 
2( ),C D    touches v  from below at 0x D  we have  

2

0 0 0 0( ( ) ( , ( ), ( ))) .kD x A x x D x      

Remark 2.2. It is clear that if 
2 ( )v C D  and v  is ( , )A k -convex on D  then,  

2( ( ) ( , ( ), ( ))) , ,kD v x A x v x Dv x x    D  

and for 
2C -functions, the (0, )n -convexity is exactly the usual convexity. 

Definition 2.3. ([15]). A function ( )u C D  is called a viscosity subsolution to Equation (1) if for 

any ,yD  any ( , )A k -convex function 
2( )C  D  satisfying  

( ) ( ), ; ( ) ( ),u x x x u y y   D  

we have  

2 1/[ ( ( ( ) ( , ( ), ( ))))] ( ),k

k D y A y y D y f y       

A function ( )u C D  is called a viscosity supersolution to Equation (1) if for any ,yD  any 

( , )A k -convex function 
2( )C  D  satisfying  

( ) ( ), ; ( ) ( ),u x x x u y y   D  

we have  

2 1/[ ( ( ( ) ( , ( ), ( ))))] ( ).k

k D y A y y D y f y       

A function ( )u C D  is called a viscosity solution to Equation (1) if u  is both a viscosity 

subsolution and a viscosity supersolution to (1). 

A function ( )u C D  is called a viscosity subsolution (resp. viscosity supersolution, viscosity 

solution) to the problem (1), (2) if u  is a viscosity subsolution (resp. viscosity supersolution, viscosity 

solution) to Equation (1) and u   (resp. , )   on .D     

Remark 2.4. By [11, Theorem 2.2], every viscosity subsolution and viscosity supersolution to the 

equation (1) is ( , )A k -convex on .D  

Lemma 2.5. Let 
nD  be an arbitrary domain, ( )nf C  be nonnegative. Suppose that 

( , )A k -convex functions 1 2( ), ( )nu C u C D  are viscosity subsolutions to the equation (1) 

respectively in D  and .n
 Moreover, 

2 1 1 2, ; , .u u x u u x   D D     

(3) 

Set 
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1

2

( ), ,
( )

( ), .n

u x x
v x

u x x


 



D

D
 

Then v  is a viscosity subsolution of the equation (1) in .n
 

Proof. Given ,ny  
2( )nC   be an ( , )A k -convex function satisfying ( ) ( ),v y y  

( ) ( ), .nv x x x   (4) 

If ,yD  then we get  

1 1( ) ( ) ( ), ( ) ( ) ( ),u y v y y u x v x x x     D.  

Hence, 

 
2( ( ( ) ( , ( ), ( )))) 0, 1 ,j D y A y y D y j k         

 
2( ( ( ) ( , ( ), ( )))) ( ).k D y A y y D y f y       

If ,yD  then we obtain  

 2 2( ) ( ) ( ), ( ) ( ) ( ), .u y v y y u x v x x x     D  

From (3), (4), 2( ) ( )u x x  for all .nx  Therefore, 

 
2( ( ( ) ( , ( ), ( )))) 0, 1 ,j D y A y y D y j k         

 
2( ( ( ) ( , ( ), ( )))) ( ).k D y A y y D y f y       

The proof is complete. 

Now we introduce some assumptions for ( , , )A x z p  and ( ).f x   

( 1AF ): For each 0,t   there exists a locally continuous module ,A t  on [0, )  satisfies  

 ,( , , ) ( , , ) (| | (1 | |)) , , ,| | , ;n n

A tA x z p A y z p x y p I x y z t p         

( 2AF ): ( , , ) 0; ( , , ) ;n n

zD A x z p x z p       

( 3AF ): det( ( , , )) [ ( )] , ( , , ) ;k n nA x z p f x x z p      

( 4AF ): For each 0,t   there exists a positive constant ,f tC  and a locally continuous module ,f t  

such that  

 ,| ( ) ( ) | (| |), , ,| | , .n n

f tf x f y x y x y z t p        

( 5AF ): Let   be a 
2 ,C  bounded, and strictly convex domain in ; ( ).n C    The Dirichlet 

problem   

( ) Tr( ( , ( ), ( )), ,

( ) ( ),

v x A x v x Dv x x

v x x x

  


 
 

has a classical solution, where TrA  stands for the trace of matrix .A  
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Remark 2.6. Some sufficient conditions for assumption ( 5AF ) have been established in some 

documents, for instance: in [16] for Tr ( , , ) ( ),A x v Dv f x  in [17] for Tr ( , , ) ( ), 0,A x v Dv f v    in 

[18] for 0,   and in [19], Theorem 15.10 for the general case.  

According to the proof of Theorems 2.3, 2.4 in [11], but using the assumption ( 5AF ) instead of 

using the sufficient conditions for ( 5AF ), we have the following result on the existence and uniqueness 

to the Dirichlet problem for the augmented k -Hessian equation in bounded domains: 

Theorem 2.7. Let   be a 
2 ,C  bounded, and strictly convex domain in ; ( );n C    

( ), ( ) 0.f C f x    Moreover, suppose that the assumptions ( 1AF )-( 5AF ) are satisfied. Then the 

following problem has a unique viscosity solution:  

2 1/[ ( ( ( ) ( , ( ), ( ))))] ( ), ,

( ) ( ), .

k

k D u x A x u x Du x f x x

u x x x

 



   


 
 

Now, we are ready to establish the existence and uniqueness for the considering problem in exterior 

domains. 

Theorem 2.8. Let , ( 3)n n   be a bounded, strictly convex, 
2C  domain, which contains 0, 

\n D ;
2( );C    ( ),0 sup .inf n n

nf C f f      Moreover, we assume that 

( , , ) 0,A x z p   and satisfies the assumptions ( 1AF )-( 5AF ). Then there exists 0  such that for any 

0 ,   there exists a unique viscosity solution to the problem in exterior domains (1), (2) such that  

2 2*sup | | ( ) | | ,
2

lim n

x

x u x x






  
     
  

               (5) 

where 

1/

*

1
.sup n

k

k

n

f
C


 

  
 

 

Proof. We first construct a viscosity subsolution tv  to the problem (1), (2). For each 1,t    let 

*

1/

| |
( ) min ( ) , ,n n

x
t

r
nv x r t dr x





     

where *2 diam .r    We have ( ),n

tv C  and tv   on .D  Set  

1/

2.
1

( ) min 1 1
2

n

nr
r d

t
t r r

r
 





  
      

   
  

Then 

*

1/

2*

| |
( ) | | ( ) 1 1 , .

2

n

n

nx
t

t
v x x t r dr x

r




   
       

   
       (6) 

By direct calculation, we have 
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 
1

1
1

* 3
| | | | , | | 0,

| | | |
( )

i jn n

t
n

ij ij

tz
D v z t z x

z z

zt
x  




  
      

  
 

here * .z x  By rotating the coordinates, we may assume that ( ,0, ,0) ,Tz R  and therefore 

 
1

1
2 1 1 1

* , , , ,diag n

t

n n nn
t

D v R t
t

R R R
R R




   
    

 
 

where | | .R z  From this and the fact that ( , , ) 0,A x z p   we have  

2 2( ( ) ( , ( ), ( ))) ( ( )) 0, 1, , ,( ) ( )jt tj t tD v x A x v x Dv x D v x j k          

therefore,  

2( ( ) ( , ( ), ( ))) , | | 0.t t t kD v x A x v x Dv x x      

By Newton-Maclaurin inequality ([19], p. 7), 

        

 

1/1/ 1/ 1/
2 2 2

1/

*

( ( , , )) ( ) ( )

sup , | | 0.
n

nk k

t t t t

k
k

k k n n t

k
k

n

D v A x v Dv D v C D v

C f f x

     



     
   

   
 

Fix 0 1t    such that 0 0 1: ( ) .t     For any 0   and ,xD  let ,xS  be the set of  

( , )A k  -convex functions ( )v C D  which is the viscosity subsolution to the problem 

 
 

1/
2( ( ) ( , ( ), ( ))) ( ), ,

( ) ( ), ,

k

k D v y A y v y Dv y f y y

v y y y

 



    
  

D

D

 

and for any ,| | 2diam ,y y x   D  

2*( ) | | .
2

v y y


   

Then, for all 
1 1

0( ) ( ),t       it is clear that the function tv  shown above satisfies , ,xtv S  or 

, .xS   

We define the function 

,( ) sup{ ( ) : }, .xu x w x w S x   D  

We prove that u  can be extended continuously to D  and u   on .D  Indeed, by the Lemma 1 

in [13], after extending 
2( )C  D  to 

2( ),C    there exists a constant ( , , )n     such that 

for any ,D  there exists ( ) ,| ( ) | ,nx x     for which function 

  2 21
( ) : ( ) | ( ) | | ( ) |

2
w x x x x           

satisfying w   in \{ }.  Therefore, we can fix some constant 1  such that for any ,D  
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2*
1 . ( ) | | , ( , )i 1,

2
d stw x x x x


    D D       (7) 

By (7), for D  and x  sufficiently close to ,  ,xD we have 
, .xw S

  Therefore, 

( ) ( )u x w x 
 for x  sufficiently close to .  Thus, 

.l minf ( ) iim l nf ( ) ( )i
x x

u x w x  
 

 
  

From the definition of u  we have 

,l (imsup ) ( )
x

u x


 


 

therefore lim ( ) ( ).
x

u x


 


  

We now prove u  satisfies (1) in the viscosity sense. By the definition, u  is a viscosity subsolution 

to (1). We only need to prove that u  is a viscosity supersolution to (1). 

For any ,xD  fix  0 d m2 ia    such that 

( ) .B B x D  

From Theorem 2.7, the Dirichlet problem 

  
1/

2 ( ) ( , ( ), ( )) ( ), ,

( ) ( ),

k

k D u y A y u y Du y f y y B

u y u y y B

 
    
  

      (8) 

has a unique  ,A k  convexity viscosity solution 
0( ).u C B  By the comparison principle, u u  in 

B  Define 

 

( ),
( )

( ), \ \ ,n

u y y B
w y

u y y B


 

 

 

then , .xw S  Indeed, by the definition of ,u   

2*( ) | | , .
2

u y y y B


   

Let 

2*( ) | | .
2

v y y


   

Then, for all ,y B   

     
1/ 1/

2 2D ( ) ( , ( ), ( )) D ( ) sup ( ) ( ),

( ) ( ) ( ), .

n

k k

k kv y A y v y Dv y v y f y f y

u y u y v y y B

         
   

 
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From the comparison principle, for any ,y B   u v i.e., 
2*( ) | | .

2
u y y


  

By Lemma 2.5, 

  
1/

2D ( ) ( , ( ), ( )) ( ), .
k

k w y A y w y Dw y f y y   
 

D  

Therefore, , .xw S  And thus, by the definition of ,  u u w   in D  and u u  in B . Hence, 

, .u u y B         (9) 

However, u  satisfies (8), we have, in the viscosity sense, 

  
1/

2 ( ) ( , ( ), ( )) ( ), .
k

k D u y A y u y Du y f y y B      
 

 

Because x  is arbitrary, we know that u  is a viscosity supersolution of (1). 

We prove that u  satisfies (5). By the definition of ,u  
2*( ) | | , .

2
u x x x


 D  Then 

2*

2

1
( ) | | 0 , .

2 | |n
u x x x

x






  D     (10) 

Moreover, from (6), we have  2 2*( ) | | ( ) | |
2

t

nw x x t O x


     as | | .x   Since , ,xtw S   

 2 2*( ) | | ( ) | | ,
2

nu x x t O x


     as | | .x   

Let 
1( ),t    we obtain 

 2 2*( ) | | | | .
2

nu x x O x


        (11) 

Hence, from (15) and (16), we have 

2*

2
( ) | | ,

2 | |n
C

u x x
x








 
  
 

 

for some constant .C  Thus, 

2 2*sup | | ( ) | | . 
2

lim n

x

x u x x






  
     
  

 

Next, we show the uniqueness. Assume that u  and v  satisfy (1), (2) and (5). From the comparison 

principle of viscosity solutions to Hessian equations and 

lim( ( ) ( )) 0
x

u x v x


   

we know u v  in .D  This completes the proof. 
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Example 2.9. Let 
1(0)B B    be the unit ball in , ( 1)n A I      

1/2( ) (| | 1) ,f x x    
2 ( ).C B    Then, all the assumptions of Theorem 2.8 are satisfied. 

Therefore, there exists 0  such that for any 0 ,   the problem  

2 1/ 1/2[ ( ( ( ) ))] (| | 1) , \ ,

( ) ( ),

k n

k D u x x x B

u x x x B

  



     


 
 

has a unique viscosity solution such that 

2 2*sup | | ( ) | | ,
2

lim n

x

x u x x






  
     
  

  

where 

1/

*

1
.

k

k

nC


 
  
 

 

Indeed, it is sufficient to verify the assumptions (AF3), (AF4) and (AF5).  

First, we have det( ( , , )) 1 [ ( )]n kA x z p f x    , or (AF3) is satisfied. Next,  

1 1
( ) ( )

| | 1 | | 1

| | | | 1
| |,

2| | 1 | | 1( | | 1 | | 1)

f x f y
x y

y x
x y

x y x y

  
 


  

    

 

so (AF4) is satisfied. Moreover, the Dirichlet problem 

( ) Tr( ( , ( ), ( )) , ,

( ) ,

v x A x v x Dv x n x B

v x b x B

    


 
 

has a classical solution, or (AF5) holds.   

Conclusions 

In this paper, we have proved the uniqueness of the solution viscosity solutions in exterior domains 

of the k -Hessian equations. Our results are significantly extended compared with the findings of the 

previous studies [8], [12]–[14], [20]. Specifically, we have broadened the class of equations by adding 

the function A  and considering the right-hand side with the bounded function f  instead of the constant 

function 1. 
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