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Abstract 

Ultrasound tomography is crucial due to its capability to deliver detailed, real-time, and non-invasive 
imaging. This is essential for early diagnosis, treatment planning, and guiding medical procedures. Its 
affordability, portability, and safety make it a versatile tool in medical and non-medical fields alike, 
driving ongoing advancements in technology and applications. The Distorted Born Iterative Method 
(DBIM) is an advanced technique used in ultrasound tomography to iteratively restore images, 
improving upon the standard Born approximation by addressing some of its limitations. However, the 
DBIM also has its own set of disadvantages when used for iterative image restoration, resulting in 
computational complexity, noise sensitivity, convergence issues, etc. In this paper, we introduce a new 
method for image reconstruction in ultrasound tomography by using the algebraic method. The 
numerical results indicate that this method has a shorter computational time and achieves high-
resolution reconstructions and accurate solutions.     

Keywords: Algebraic method, ultrasonic tomography, image reconstruction, incident pressure, 
scattering pressure 

1. Introduction 

Ultrasound tomography (UT) [1] is a medical imaging technique that uses sound waves to create 
three-dimensional (3D) images of internal organs, tissues, and blood flow. It's similar to the more 
common CT scan (computed tomography) but uses sound waves instead of X-rays. Unlike traditional 
ultrasound which provides 2D slices, UT builds a 3D image similar to a CT scan. It achieves this by 
using sound waves instead of X-rays. During a UT exam, a probe emits high-frequency sound waves 
that travel through the body. The interaction of these waves with tissues – reflection, refraction, 
scattering and absorption – is measured by multiple detectors positioned around the target area. 
Powerful computers then process this complex data to create a detailed 3D image. In the case of 
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interaction with objects with size in order to wavelength, the ultrasound will be scattered. For detecting 
small cancer at the beginning of the period, this technique only focuses on the scattering of ultrasound. 
The advantages of UT are significant. Unlike X-rays, ultrasound is safe for repeated use, making it ideal 

for monitoring conditions or following up on treatment. Additionally, UT offers superior contrast for 
soft tissues, potentially improving the detection of tumors or abnormalities compared to traditional 

ultrasound. 

Based on the first-order Born approximation [2], ultrasonic tomography is one of these strategies 

[3], which is known to be a potentially valuable method of imaging objects with a similar acoustical 
impedance to that of the surrounding homogeneous medium such as in soft tissue characterization [4] 

and underwater acoustics [5]. But difficulties arise when it is proposed to obtain quantitative tomograms 
using acoustical parameters such as the velocity or the attenuation of the wave or tomograms of more 

highly contrasted media such as in the case of hard tissues [6], industrial process tomography [7], [8], 
etc. Finding solutions here involves either using iterative schemes [9] and/or performing extensive 
studies on the limitation of the first-order Born approximation [10]. A high-order Born tomographic 
method named distorted Born diffraction tomography is also studied in [11], [12].  

The theoretical development of the first-order Born tomographic method is asymptotic, as 
described using Green's function in the case of a homogeneous medium. The unknown object function, 
which has been extended to the case of weakly contrasted and weakly heterogeneous media, is linearly 
related to the measured field via a Fourier transform, and the inverse problem is related to the filtered 
back-projections algorithm [13]. In the case of more highly contrasted media, this strategy was adapted 

experimentally to take into account physical phenomena such as wave refraction, where the problem can 
be reduced to the study of a fluid-like cavity buried in an elastic cylinder surrounded by water. Since 

this iterative experimental method, which is known as compound ultrasonic tomography, gives excellent 
results, the only limitations here are the heavy data processing required and the complex acoustical 
signals resulting from the multiple physical effects involved.   

Nonlinear inversion methods with higher-order levels of approximation have therefore been 

investigated, including the distorted Born iterative method [14], [15], which is generally applied to 
solving electromagnetic [16]–[18] and optical [19] inverse scattering problems. However, very few 

ultrasonic experimental reconstructions are available in the literature [20]. The ultrasonic distorted Born 
diffraction tomography approach based on this iterative method makes it possible to obtain quantitative 
images.  
         However, UT is still under development. Challenges include complex calculations and the bending 
of sound waves within the body. Advancements in computing power and new UT designs are paving the 
way for wider clinical applications. While not yet a replacement for established techniques, UT holds 
promise for a future where safe, detailed imaging of soft tissues is readily available. There are a couple 
of methods used for reconstructing ultrasonic tomography images as filtered back projection, distorted 

Born iterative method (DBIM), etc. where DBIM is one approach for reconstruction in UT. It can 
handle objects with large variations in sound speed, which is important for biological tissues and 

achieves high-resolution reconstructions compared to some simpler methods. Due to DBIM is being an 
iterative method, it can be computationally expensive, especially for complex objects and, in some 
cases, the iterative process might not converge to an accurate solution. Our algebraic methods are a 
powerful tool for reconstructing these images from the collected data. Where the object is discretized 
into a grid of pixels. Ultrasound waves travel through the object along specific paths. In each pixel, the 
ultrasound may be scattered. The travel time or intensity of the waves is measured for each path. This 
data is used to create a system of equations that relates the pixel values to the measured data. The 
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algebraic methods then solve this system of equations to estimate the value of each pixel, building the 
final image. This method can handle complex acquisition geometries where the sound source and 
receiver may not follow a simple path. Solving large systems of equations can be computationally 

expensive and gets singulars. 

2. Algebraic Reconstruction Techniques 

This method involves creating a mathematical model of the object and iteratively refining it based 
on the acquired ultrasound data. This allows for more complex image reconstruction, especially when 

dealing with uneven material properties or curved surfaces. For collecting scattered data of UT in the 
breast, we set up a configuration as Figure 1. 

 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. The configuration for ultrasonic computer tomography. 

In this configuration, for convenience, we use a transducer and a receiver. They move on an upper-

haft sphere with a radius of R. The distance between them is constant when they move on the sphere 
together. In the sphere coordinate system, the positions of the transducer are determined by the radius R

, angles  a 0 nd 0 . The positions of receivers are also determined by 1,R  and 1 .  

The UT image is considered as a matrix of N N  pixels. The element of the matrix is defined as 

the scattering coefficient of soft tissue. These coefficients are equal to zero for objects with sizes that are 
much greater than the wavelength of ultrasound. They are only different from zero for objects with size 
in the order of the wavelength of ultrasound. For convenience, the object is defined simply as  
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where, incp  is the incident sound directly from the transducer,  iO  is the scattering coefficient of the i-th 
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             .expinc
op d p d   (3) 

where, op  is the amplitude of sound,   is the attenuation coefficient and d is the distance from the 

transducer to the receivers. The scattered sound scr
ip is estimated 

 
    0 1

0.expscr
i i ip p r r      (4) 

where,  0
ir  is the distance from the transducer to the i-th pixel and  1

ir is the distance from the i-th pixel 
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ia p   and ,  i ix O . Rewriting (2) in the matrix form, we have 
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The elements of matrix b may be obtained from experiments (receivers) and elements of matrix a 
are obtained from the configuration of UT. Dividing matrix b by matrix a, we may obtain matrix x. The 
matrix of column x contains information on the UT image, therefore, it should be rearranged in the form 
of a square matrix 

 

11 12 1

21 22 2

1 2

...

...

... ... ... ...

...

N

N

N N NN

O

x x x

x x x

x x x

 
 
 
 
 
 

 (6) 

3. Computation 

To demonstrate our model, two problems are set up and solved as Figure 2. The first is the 
collection of data from receivers. In the experiment, data is the received pressure of scattering 

ultrasound on the detectors. In the simulation, we assume that the data is received from (2) via a simple 
algorithm.  

 
 
 
 
 
 
 
 
 
 
 

Figure 2. The follow chart of computation. 

The second problem is a reconstruction of UT. From (2), the total scattering pressure from pixels at 
one position of the receiver is given 
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where,  n
DataP  is the received data at position n, and  n

incP  is the incident wave pressure directly from the 

transducer. Since the distance between the transducer and the receiver is constant, therefore 
 n

incP const  can be calculated via equation (3). The  scr n
iP  is the scattering wave pressure from each 

pixel i-th at the position of the receiver n, they can be calculated via configuration of measurements. 

From (7), for  1  n N N   , we have a system of linear equation. 

4. Simulation and discussion 

The parameters of configuration are set up for detecting small cancers of the breast. The size of these 
cancers is in the order of sound wavelength. They usually are in the early stage of cancer and cannot be 
detected by typical ultrasonic images. The size of UT is   10 10L L cm cm   and the radius of sphere 

5R cm  (size of breast); the matrix of UT is set up as   8 8N N   and   13 13N N   pixel 

respectively. The breast may be considered as soft tissue; therefore, the attenuation coefficient of the 

breast is chosen as  = 1 in the range from 0.75 (soft tissue) to 1.3 (muscle). The original amplitude of the 

sound source 0 100%p  . The displacements of the transducer and receiver are set up by 
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The matrix of the UT is reconstructed as Figure 4  8N   and Figure 6  13N  , they are very fit 

in comparison with the idea target matrixes with the same size in Figure 3  8N   and Figure 5 
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Figure 3. The idea target matrix with 8N  . 

 

Figure 4. The reconstructed matrix by the algebraic 
method with 8.N   
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Figure 5. The idea target matrix with 13.N   

 

Figure 6. The reconstructed matrix by the algebraic 
method with 13.N   

For greater 13N  , our method gets some singulars, which may be due to the very small difference 

between positions of the transducer and receiver. The determinant of the matrix is close to zero and 
result may be inaccurate. It will be improved by increasing number of receivers. 

 

Figure 7. The matrix is close to singular with 14.N   

 

Figure 8. The matrix is close to singular with 15.N   
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we have reconstructed UT by the DBIM method with the same number of pixels of 8x8 and the same 
PC. The idea target matrix and the matrix are reconstructed by the DBIM method that are shown in 
Figures 9 and 10, respectively.  

 

Figure 9. The idea target matrix with 8.N   

 

Figure 10. The reconstructed matrix by the DBIM 
method with 8.N   
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For the same number of pixels of 8 8 and the same PC, the DBIM takes a computation period of 

1.421182 seconds and the Algebra takes a computation period of 0.046105 seconds. Reconstructing UT 
matrixes by both methods shows that the algebraic method has much shorter computational time and is 
more accurate. 

5. Conclusions 

We have set up completely a simply model for reconstructing UT with one transducer and one 
receiver. The configuration of the model is designed for detecting breast cancer at the early stage. At this 
stage, the cancers are very small (in the order of sound wavelength) and cannot be detected by typical 
ultrasonic scanners. In our model, parameters are close to biomedical parameters of organs in the body. By 
the algebraic method, the duration for computing is very short and the result of the UT image is very 
accurate in comparison with the DBIM. Since the number of the receivers is few (one), this method may 
get singulars for higher resolution. These issues will be improved by increasing number of the receivers. 
Our model has not considered noise yet. In the next research, we will consider noise in the signal 

processing for application in medicine. 
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