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Abstract

The study of second-order optimality conditions is one of the most important topics in optimization
theory and attracting the attention and interest of many authors. In this paper, we introduce a novel
solution concept called “essential local efficient solutions of second-order” for nonconvex constrained
multiobjective optimization problems. We then show that the new solution concept is stronger than the
quadratic growth condition and under a mild constraint qualification, these solution concepts are
equivalent. By using the second subderivative, we derive a sufficient optimality condition for a
feasible solution to become an essential local efficient solution of second-order for the considered
problem. Examples are provided to illustrate the obtained results.

Keywords: Essential local efficient solutions of second-order, second subderivative, second-order
sufficient optimality condition

1. Introduction

Second-order optimality conditions have long been recognized as an important tool in
optimization theory and, in recent years, have been developed rapidly, see, for example [1]-[16]. It is
well known that first-order optimality conditions are usually not sufficient for optimality except in the
case of convex optimization problems. Second-order optimality conditions not only complement first-
order ones in eliminating non-optimal solutions, but they also provide criteria for recognizing the
optimality at a given feasible solution.
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In this paper, we will focus on second-order sufficient optimality conditions for the following
constrained multiobjective optimization problem

Min,, {f(x) cg(x)e C}, (MP)

where f:R" > R" and g:R" — R’ are twice continuously differentiable mappings, and C c R"is a
nonempty and closed set. When m =1, the above problem is called a mathematical program problem
and is denoted by (P).

The study of second-order optimality conditions for (P), when C is convex, has been completely
developed by Bonnas and Shapiro [1], Cominetti [2], Rockafellar and Wets [12], Mohammadi et al.
[10], etc. More precisely, if C is convex polyhedral, second-order optimality conditions can be
expressed in term of second derivative of the Lagrangian, see, for example [1], [12]. If C lacks the
polyhedrality, then an additional term is needed to capture the curvature of C and there are various
tools that can be utilized for such purpose, see [2], [10].

Recently, several important problem classes which can be reformulated in the form of problem
(P) with non-convex C, such as, the mathematical program with complementarity constraints, the
mathematical program with semi-definite cone complementarity constraints, etc. have attracted
significant attention from the optimization community, see [17]-[20]. In these papers, the authors use
the so-called lower generalized support function and the second subderivative to derive necessary and
sufficient optimality conditions for (P) with C nonconvex. However, to the best of our knowledge, no
papers have yet investigated second-order optimality conditions for multiobjective optimization
problems of the form (MP). Motivated by the works reported in [11], [17], [18], in this paper, we
introduce a new solution concept called “essential local efficient solutions of second-order” for the
problem (MP) and study the sufficient optimality condition for the proposed solution.

We organize the paper as follows. Section 2 contains the preliminaries and auxiliary results. In
Section 3, we present a second-order sufficient optimality condition for a feasible solution to be an
essential local efficient solution of second-order to (MP). Section 4 provides some concluding
remarks.

2. Preliminaries

Throughout this work we deal with the Euclidean space R" equipped with the usual scalar

product (-,-) and the corresponding norm || . || We denote by B, (x) the open ball centered at x with

radius r. The set of all positive integer numbers is denoted by N. Let O be a nonempty subset in R".
The closure, interior, convex hull, and conic hull of Q are denoted, respectively, by clQQ, intQ, conv
Q, and cone Q. The distance dist(x, Q) from a point x e R" to Q is defined by

dist(x,Q) = inf{"y -x|:ye Q} vxeR".
The indicator function J,, and the support function o, of Q are defined, respectively, by

JQ(Z*) =sup{<z*,z>: ze Q},

5=

Definition 2.1. Let Qc R", zeQ,and u e R".

0 if xeQ,

oo otherwise.
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(1) The set tangent/contingent cone to Q at z is defined by
T,(z2) :={u eR":3t, 4 0,u, >u with z+tu, €Q Vke N}.

(i1) The second-order tangent set to Q at z with respect to the direction u is defined by
T (z,u) = {v eR":31, 40,3 > v,z+1tu +%t,ka eQ, Vke N}.

Remark 2.2. It is well-known that T, (z) is a nonempty closed cone. For each u € R",the set

T;(z,u)is closed and T, (z,u)=@ if ueT,(z). However, we see that the set T, (z,0)=T,(z) is

always nonempty. If Q is convex, then we have
T,(z)=cl {d:d = f(x—z), er,ﬂZO},

and for each u € T;,(z) one has

T (z,u)  cl cone[ cone(Q —z) —ul.
Moreover, if Q is a polyhedral convex set, then we have
Ty (z,u) =Ty, ) (u).
Definition 2.3. Let we R". For &, p >0,
Vo (w)i={w' € B (0): Jlwllw'= (1w [ w] < pl 1wl wll}
is called a directional neighborhood of direction w.

Definition 2.4. Let Qc R", zeQ,and weT, (z).The proximal prenormal cone //\\/'g (z,w) and

the proximal normal cone No(z,w) to Q at zin the direction w are defined, respectively, by
Na(z.w)={z €R":38,p.7>0 such that (z",2'~z) <y || 2/~ 2|} ¥z'€ Q2+, , (w))}
Na(z,w)=Na(zw)nw'.
If weT,(z), wedefine No(z,w)=Na(z,w)=2.

Definition 2.5. Let ¢:R" > R = [—oo, oo] be an extended real-valued function and z eR" such

that |go(z)|<oo and z" eR".

(1) The subderivative of @ at z is defined by

dg(=)(w):= liminf 4Chs ’wt) —2() yyer

wow

(ii) The second subderivative of ¢ at z for z* is defined by

p(z+w')-p(z2) —t<z*, w’>

142
>t

d’p(z, z")(w):=liminf

wow

YweR".

Remark 2.6. (see [12]) (i) The second subderivative has the homogeneity property, i.e.,
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& (ap)(z 27)(w)= adz(p[z, Z;*](w) Va >0,
and
dp(z)(w)>(z",w) = d’p(z,2")(w)=o»,
do(z)(w)< <z*, w> = d2¢(z, z*)(w) = —00,
(ii) If ¢ is twice differentiable at z and z" = V¢(z), then we have
Eo(z, Vo(2))(w)=w'Vie(z)w VweR".
(iii) Let Qc R", zeQ,and z" € R". Then, by definition, we have

8o (z+')=6,(z)- t<z*,w'> liming —2<z*, w’>‘

142 0, w—w
2 t 2+ WeQ t

&5, (2 2")(w) = liminf

wow

We now summarize some properties of the second subderivative that will be used in the next
section.

Lemma 2.7. (see [17, Lemma 2.7]) Let ¢:R" —R be a lower semicontinuous function and
z eR" such that |go(z)| <o and z" € R".Then there exist sequences t, ¥ 0 and w, —w such that

dp() () = m 22+ ) =0 (2)

k—o tk

p(z+t,w)-p(z)-t, <z*, wk>.

142
Ztk

dz(p(z, z*)(w) =lim

k—o

Lemma 2.8. (see [18, Proposition 2.18]) Let QcR", zeQ,and z,weR". The following

statements hold:
(i) If weT,(z) or <Z*, w> <0, then d’6, (z; z*)(w) =,
(ii) For weT,(z), 4’5, (z; z*)(w) >—w iff z' e Nao (z,w).
(iii) If d*5, (z; z*)(w) is finite, then z" € Nao (z,w).

(iv) d°6, (z; z*)(w)ﬁ—a 2(Z’w)(z*) iff weT,(z) and <z*, w>20 or T, (z,w) =@.

Ta

3. Second-order sufficient optimality conditions
Consider the following constrained optimization problem
Min,, {f(x) cg(x)e C}, (MP)
where f:R" —>R" and g:R" —>R? are twice continuously differentiable mappings with

f(x)= (f1 (x),.... f,, (x)), g(x)= (gl (x),...8, (x)), and C cR"is a nonempty and closed set.
The feasible set of (MP) is denoted by
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S=g" (C) ={xe R": g(x) € C}.
We always assume that S is nonempty. We say that u is a critical direction of problem (MP) at
xed§ if
<Vg(3_c),u> eT, (g()_c)),

(Vi (%).u)<0, Viel:={1,...,m}.

The set of all critical directions of (MP) at X €S is denoted by K ()?) We say that the set-valued
mapping x = g(x) —C is metrically subregular at ()_c, 0) in direction ueR" if there exist

K, 0, p >0 such that
dist(x,8) < xdist(g(x, C)) Vxex+V, ,(u).
The generalized Lagrangian L:R" xR” xR?” — R with respect to the problem (MP) is given as

L(x, A, )= </1, f(x)>+<,u, g(x)).

We now introduce the concept of essential local efficient solutions of second-order for (MOP)
inspired by the work of Penot [11].

Definition 3.1. Let x € §. We say that:

(1) x is a local efficient solution of (MP) if there exists ¢ >0 such that there isno xS N B; ()?)
satisfying

F(x)e f(x)-R"\{o.

(i) x satisfies the quadratic growth condition if there exist two positive numbers £ >0 and

0 >0 such that

y(x)=max{f,(x)- £,(X)..... £, (x)- f(X)} > fllx -3 vxeSn B, ().

(i) x 1is an essential local efficient solution of second-order for problem (MP) if there exist two

positive numbers y >0 and ¢ >0 such that

p(x)= max{f1 (x)=£,(X)sees £ (%)= f(X), dist(g(x), C)} > ;/”x—;?"2 Vx € B;(X).

The following result gives the relationships between above solution concepts.

Proposition 3.2. Consider the following statements:

(1) x is a local efficient solution of (MP).

(i) X satisfies the quadratic growth condition.

(iii) x is an essential local efficient solution of second-order for problem (MP).

Then the implications (iil)) = (i) and (i) =) always hold. Furthermore, if the mapping
x= g(x) —C is metrically subregular at ()T, 0) in every critical direction u e K(f) \ {O} , then the
implication (1) = (iil) is also valid.

Proof. (iii) = (ii): The proof follows immediately from the definitions.

(i1) =(i): Suppose, for the sake of contradiction that x satisfies the quadratic growth condition
but not is a local efficient solution of (MP). Then, by definition, there exist two positive numbers
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B>0, 6>0, and some x, € S N B;(x) such that

max{f,(x)= £, (%)s s £, (x) = f(Z)} 2 BJx-F] VxeSnB,(%). (1)
and
fi(x)< f(x) Viel @)

with at least one strict inequality. By (2), x, # X. This and (1) imply that

max { £} (x,) = £, (F). coes £, (30) =/ (%)} 2y = 5[ >0,
contrary to (2).
We now show that (ii) = (iii) under the metric subregularity of the mapping g(-)-C at (X, 0).

Suppose, for the sake of contradiction that x is not an essential local efficient solution of second-order
for (P). Then for any k €N, there exists x, € B, (x) such that

— =\ 4 1 -
o () =max{f; (%)= £i(%), s £ () = £ (%), dist(g (), €)} < =T (3)
It is clear that x, =X for all k€N and x, — X. Hence,

L0)0F) o vier

liminf >
(A

k—o

4)

X -X .
kT 5>u#0 as k —> . We first claim that

By passing to a subsequence we may assume that ” _”
X, - X

u € K (x).Indeed, for each keN, put ¢, :=||x, -X|| and w, := tl(xk -X). Then it follows from (3)
k

that dist(g(x, ), C)<%zk2, Hence, there exists y, €C such that ||g(xk)—yk||<%t,f. Put

Y _g(xk)
2

. . Then we see that ||| >0 as k > and y, =g(x,)+£7, €C forall keN. Since
k

o=

X, =X +tu,, by Taylor’s expansion, we have

g(x)=g(x)+1, <Vg()?),uk>+o(tk).
Hence,

Ve = g(u)+in—g(¥) _k (Ve (¥).1) +olt )+t =(Ve(%).u,)+ 1,1, +@—><Vg(f),u>

tk t/f k

as  k—oo.  Furthermore, g(X)+tv, =g(x)+t;r,=y,€C for all keN. Hence,
<Vg()_c),u> eT, (g()_c)) We deduce again from (3) that f;(x,)— f;(¥)< %tf forall keN and iel.
This and the Taylor’s expansion of f; at ¥, iel, imply that <Vfi (%), u>§0, Viel, and hence,
u e K(X), as required.

Now, by the assumption on the metric subregularity of the mapping g(-)-C at (X, 0) in the
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direction u € K ()T), there exists ¢ >0 such that for all k large enough we can find some %, € S with
. . L,
%, — x| < ¢dist(g(x,), C) <l

Clearly, X, >x as k—>oo and ||fck - X, || < o("xk -X ||2) Since X satisfies the quadratic growth

condition, there exist two positive numbers >0 and & >0 satisfying (1). Hence, for each k large
enough, there exists i, € I such that
A — A —|12
1, G)= 1, (%)= Blg - ®)

Let I, be the set of all indices i, €/ satisfying (5). Since /, =/ for all k,without any loss of

generality, we may assume that /, = I is constant for all k €N large enough. Fix i € I, then one has

£(2)-/(®)2 BlE -3

for all & large enough. Clearly, f, is locally Lipschitz around X with some constant /, > 0. Hence,

1

0< p<timint 2N I e ()=, (Y)f L]
o - R (R )

A AE o) ) ()

R S R A N A |
& —x +0<||xk — x| ) Fe ™M

>

contrary to (4). The proof is complete. O
Remark 3.3. The converse of Proposition 3.2 is not true in general. For example, let

f:IR—)RZ,xI—)(x3,—x3), g:R—)R,x—)—xz,and C=-R,. Clearly, S=R and Xx=0 is an

efficient solution of (MP). We claim that X is not an essential local efficient solution of second-order.
Indeed, if otherwise, there exist y >0 and 6 >0 such that

max{f,(x)~ £ (%), £, (x) - £, (%), dist(g (x), C)} 2 y|x—%[  VxeB, (%),

or, equivalently, max{x3, —x3} > 7/|x|2 Vx e (—5,5). This implies that |x| >y Vxe (—5, 5), a
contradiction.

The following result gives a sufficient optimality condition for an an essential local efficient
solution of second-order of problem (MP).

Theorem 3.4. Let X be a feasible solution of (MP). Suppose that for every u e K(x)\ {0} there

exist AeR” and peR” not both zero such that the following conditions hold:
V.L(%, A,p1)=0, (6)
V2 L(%, A, 1) (u,u)+d*S, (g()?); ,u)(Vg()T)u) > 0. (7)
Then X is an essential local efficient solution of second-order of problem (MP).

Proof. The proof of the theorem follows some ideals of Benko et al. [18]. Suppose, for the sake of
contradiction that X is not an essential local efficient solution of second-order of problem (MP). Then
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for each k € N, there exists x, € B, (¥) such that
o) =max | (1)~ £, (%). o £, (5) = £, (). dist(g (). ©)} <o, ~ 5]
This implies that
£(5) = £(E) = -5 i, (8)
dist(g(x,), C)< %"xk - 9

Clearly, x, #X for all k€N and x, »>X as k—>oo. For each keN,put 7, =|x, —X| and
u, =t (xk —)?). Since ||uk || =1, by passing a subsequence if necessary we may assume that u, —u

with |u| =1 as k —oo. It follows from (8) that

(x, )= 1 (% V£ (X).t t
k k
and
1iminf—ﬁ(x”"”’f2)_ﬁ(x) > fim =0, i=1,...,m. (11)
k—w %tk k—>w f

By (9) and the closedness of C, for each k €N, there exists ¢, € C such that
. 1
"ck -g(x, )" =dist(g(x, ), C) S;tf,

g(x)-g(¥)

2
+1,7
. Then 7 —0 as k— o and

¢, —glx
RS . 2( ) and v, =

Put 7, =
tk
g(X)+tv, =g(x,)+tir,=c, eC forall keN.

Moreover, by the differentiability of g one has

limy, < lim SC) = EE 0Ll (Ve (F).tm) rolt)+tin =(Vg(¥).u).

k—o k—w tk k—o tk

Hence <Vg(>?),u>e T((g()_c)) This and (10) imply that u € K(x). By the assumption of the
theorem, there exist AeR” and peR’ satisfying (6) and (7). By definition of the second

subderivative and (11), we have

O (8(¥) +tw) - (g(¥)) ~t{u )

d’s, (g(;?); ,U)(Vg(f)u) = lirtri(i)nf T =
w—)Vg(Y)u 2
~ liming V) 1iminf_<”’—’;vk>
th,w—)Vg(x)u %t k—o0 %tk

g(¥)+tweC

=liminf
k—0

~(u.g(x,)-g(X)+1n)
A

1
2
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(1.g(x,)-g(X)+8n)

(4 /(%)= 1 (%))

<liminf—- > + liminf - >
k—0 %tk k—o %tk
<timinf— L0 ”?_ZL(X’J’ “)
ko 2k
V(XA p)(ta)+ S VAL(EL A p)(tay ta ) +o(1])
=liminf—— —
fo 24
=-V2L(X, A, u)(u,u),
contrary to (7). The proof is complete. o

The following result is a consequence of Theorem 3.4 and Proposition 3.2.

Corollary 3.5. Let X be a feasible solution of (MP). Suppose that for every u e K ()T) there exist
AeR” and peR’ not both zero such that conditions (6) and (7) hold. Then X satisfies the
quadratic growth condition.

We finish this section by presenting an example to illustrate Theorem 3.4.

Example 3.6. Let f:R—>R* x> (x2, —xz), g:R>R,x—>-x*,and C=-R,. Then,
S=g"! (C ) =R. We now show that x =0 is an essential local efficient solution of second-order of
problem (MP). It is easy to check that K(X)=R. Choose A=(1,0) and x=0. Then we have
V.L(x, A, 1)=0 and

ViL(%,A,u)+d°0, (g(X); 1)(Ve(X)u) =V L(X,A,1)+d*5.(0; 0)(0)=2>0.

Hence, by Theorem 3.4, X is an essential local efficient solution of second-order of problem
(MP).

4. Conclusions

In this paper, we have presented a second-order sufficient optimality condition for an essential
local efficient solution of second-order to nonconvex multiobjective optimization problems with
operator constraint. It is meaningful if we can establish a necessary optimality condition for this
problem that has no-gap between the proposed sufficient optimality condition. We aim to investigate
this problem in future work.
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