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Abstract 

In this paper, we focus on the second-order optimality conditions for infinite-dimensional optimization 
problems constrained by generalized polyhedral convex sets. Our aim is to further explore the role of 
the generalized polyhedral convex property, which is inspired by the findings of other authors. To this 
end, we employ the concept of Fréchet second-order subdifferential, a tool in variational analysis, to 
establish optimality conditions. Furthermore, by applying this concept to the Lagrangian function 
associated with the problem, we are able to derive refined optimality conditions that surpass existing 
results. The unique properties of generalized polyhedral convex sets play a crucial role in enabling these 
improvements.  

Keywords: Constrained optimization problem, Second-order necessary condition, Second-order 
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1. Introduction 

First- and second-order optimality conditions are fundamental and intriguing topics in both finite-
dimensional and infinite-dimensional mathematical programming. Due to their critical role in both 
theoretical developments and practical applications, these conditions have attracted significant research 
interest [1]–[8]. Many researchers have sought to extend these conditions to more general settings, as 
seen in [9]–[13] and the references therein. It is recognized that first-order and second-order optimality 
conditions are essential tools for solving optimization problems. In addition, the theory of optimality 

conditions, especially second-order conditions, is closely linked with sensitivity analysis, see, e.g., [3] 
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and [8]. In other words, various results concerning optimality conditions were obtained as products of 
research on sensitivity analysis. Moreover, second-order analysis is crucial in studying the convergence 
properties of algorithms for solving optimization problems. 

Bonnans and Shapiro [3] first introduced the concept of generalized polyhedral convex sets. In a 
topological vector space X, a set Ω is considered a generalized polyhedral convex set if it can be 
expressed as the intersection of a finite collection of closed half-spaces and a closed affine subspace. 
When the affine subspace encompasses the entire space, the set is specifically termed a polyhedral 

convex set. While these two concepts are identical in finite-dimensional spaces, they exhibit distinct 
characteristics in infinite-dimensional spaces, where generalized polyhedral convex sets do not reduce 

to the standard polyhedral convex sets. Several applications of generalized polyhedral convex sets in 
Banach space settings can be found in the works by Ban et al. [14] and [15]. The theories of generalized 

linear programming along with quadratic programming in [3], [16]–[17] are mainly based on this 
concept. The optimization problems discussed in this paper involving generalized polyhedral convex 
constraint sets are important in optimization theory (see, for example, [18], where full stability of the 
local minimizers of such problems was characterized). For further information on the properties of 
generalized polyhedral convex sets and generalized polyhedral convex functions (the functions whose 

epigraphs are generalized polyhedral convex sets), we refer the interested reader to [19] and [20].  

The main goal of this paper is to investigate second-order optimality conditions for infinite-
dimensional optimization problems, where the constraint set is generalized polyhedral convex. Our aim 
to explore more about the role of the generalized polyhedral convex property is inspired by the findings 

presented in the paper [1]. In addition, Lagrange multipliers have been widely used to establish 
optimality conditions in problems with constraints, making it interesting to explore how their application 

and significance have been understood from various perspectives.  

The paper is organized as follows: Section 2 provides the foundational groundwork by introducing 

essential definitions and auxiliary results. Section 3 delves into the core results of the paper, and the 
concluding section summarizes the key findings.  

2. Preliminaries 

Let 𝑿 and 𝒀 be Banach spaces over the field of real numbers. The corresponding duals of 𝑿 and 𝒀 

are denoted by 𝑿∗ and 𝒀∗. Let 𝑨 be a nonempty subset of 𝑿.  The set 𝑨 is said to be  a cone if 𝜶𝑨 ⊂ 𝑨 

for any 𝜶 > 𝟎. Here, we abbreviate conv 𝑨 for the convex hull of 𝑨. In the notation of [21], we write 

the smallest convex cone containing 𝑨 to cone 𝑨. Then, cone 𝑨 = {𝒕𝒙 ∣ 𝒕 > 𝟎, 𝒙 ∈ conv 𝑨}. Let ℕ 

denote the set of positive integers. Given a linear operator 𝑻 between Banach spaces, the notation ker 𝑻 

and rge 𝑻 represent the kernel and the range of 𝑻, respectively. 

Firstly, we recall the concept of contingent cone which our second-order optimality conditions are 

based on. 

Definition 2.1. (See [8]) Let 𝑨 ⊂ 𝑿 and 𝒙 ∈ 𝑨. A direction 𝒗 is called tangent to 𝑨 at 𝒙 if there 

exist sequences of points 𝒙𝒌 ∈ 𝑨 and scalars 𝒕𝒌, 𝒕𝒌 ≥ 𝟎, 𝒌 ∈ ℕ, such that 𝒕𝒌 → 𝟎ାand 𝒗 =

𝐥𝐢𝐦𝒌→ஶ  ൣ𝒕𝒌
ି𝟏(𝒙𝒌 − 𝒙)൧. 

The set of all tangent directions to 𝐴 at 𝑥, denoted by 𝑇(𝐴, 𝑥), is called the contingent cone (or the 

Bouligand-Severi tangent cone, see [22]) to 𝐴 at 𝑥. 



HPU2. Nat. Sci. Tech. 2025, 4(1), 20-30 

https://sj.hpu2.edu.vn 22   

Remark 2.1. From the definition, it is not hard to show that a vector 𝑣 ∈ 𝑇(𝐴, 𝑥) if and only if we 

can find a sequence {𝑡௞} of positive scalars and a sequence of vectors {𝑣௞} with 𝑡௞ → 0ାand 𝑣௞ → 𝑣 as 

𝑘 → ∞ such that 𝑥௞: = 𝑥 + 𝑡௞𝑣௞ belongs to 𝐴 for all 𝑘 ∈ ℕ. 

Secondly, we show the concept of the generalized polyhedral convex set which is the main 
objective to study in this paper. 

Definition 2.2. (See [3] and [21]) A subset 𝐴 ⊂ 𝑋 is called a generalized polyhedral convex set if 

there exist 𝑢௜
∗ ∈ 𝑋∗, real numbers 𝛽௜ , 𝑖 = 1,2, … , 𝑝, and a closed affine subspace 𝐿 ⊆ 𝑋, such that 

𝐴 = {𝑢 ∈ 𝑋 ∣ 𝑢 ∈ 𝐿, ⟨𝑢௜
∗, 𝑢⟩ ≤ 𝛽௜ , 𝑖 = 1,2, … , 𝑝}. (1) 

In the case 𝐿 = 𝑋, one says that 𝐴 is a polyhedral convex set. 

Remark 2.2. (i) Every generalized polyhedral convex set is closed. 

(ii) If 𝑋 is finite-dimensional, it has been shown in [21] that a subset 𝐴 ⊂ 𝑋 is generalized 

polyhedral convex if and only if it is polyhedral convex. 

Let the generalized polyhedral convex set 𝐴 be given in (1). By [3], there exist a continuous 

surjective linear mapping 𝑇 from 𝑋 to a Banach space 𝑌 and a vector 𝑣 ∈ 𝑌 such that 𝐿 = {𝑢 ∈ 𝑋 ∣ 𝑇𝑢 =

𝑣}. So, 

𝐴 = {𝑢 ∈ 𝑋 ∣ 𝑇𝑢 = 𝑣, ⟨𝑢௜
∗, 𝑢⟩ ≤ 𝛽௜ , 𝑖 = 1,2, … , 𝑝}. (2) 

Set 𝐼 = {1,2, . . , 𝑝} and 𝐼(𝑢): = {𝑖 ∈ 𝐼 ∣ ⟨𝑢௜
∗, 𝑢⟩ = 𝛽௜} for any 𝑢 ∈ 𝐴. From now on, our work will 

focus on the generalized polyhedral convex set 𝐴 which has the form as in (2). 

Given a point 𝑢‾ ∈ 𝐴, the following proposition gives the formula for computing the tangent cone 

to the generalized polyhedral convex set 𝐴 at 𝑢‾ . 

Proposition 2.1. (See, e.g., [1], [14]) Let 𝑋 be a Banach space, 𝐴 be a generalized polyhedral 

convex set in 𝑋. Given 𝑢‾ ∈ 𝐴. The tangent cone to 𝐴 at 𝑢‾  is 

𝑇(𝐴, 𝑢‾) = {𝑣 ∈ 𝑋 ∣ 𝑇𝑣 = 0, ⟨𝑢௜
∗, 𝑣⟩ ≤ 0, 𝑖 ∈ 𝐼(𝑢‾)}. 

Lastly, we recall the Fréchet second-order subdifferential concept and some related constructions 
from the book [22]. 

Definition 2.3. (See [22]) Let 𝐴 be a nonempty subset of 𝑋. For any 𝑢‾ ∈ 𝐴, the Fréchet normal 

cone of 𝐴 at 𝑢‾  is defined by 

𝑁(𝐴, 𝑢‾): = ൝𝑢∗ ∈ 𝑋∗ อ lim sup
௨→

ಈ 
௨‾

 
⟨𝑢∗, 𝑢 − 𝑢‾⟩

‖𝑢 − 𝑢‾‖
≤ 0ൡ, 

where 𝑢→
஺ 

𝑢‾  means that 𝑢 → 𝑢‾  and 𝑢 ∈ 𝐴. If 𝑢‾ ∉ 𝐴, one says that the set 𝑁(𝐴, 𝑢‾) is an empty set.  

If 𝐴 is a convex set in 𝑋, then by [22, Proposition 1.5], one has 

𝑁(𝐴, 𝑢‾): = {𝑢∗ ∈ 𝑋∗ ∣ ⟨𝑢∗, 𝑢 − 𝑢‾⟩ ≤ 0, ∀𝑢 ∈ 𝐴}, 

that is the Fréchet normal cone of 𝐴 at 𝑢‾  coincides with the normal cone in the sense of convex 

analysis. 

Let 𝐺: 𝑋 ⇉ 𝑌 be a set-valued map with the graph 

gph𝐺 = { (𝑢, 𝑣) ∈ 𝑋 × 𝑌 ∣ 𝑣 ∈ 𝐺(𝑢) }. 

The product space 𝑋 × 𝑌 is equipped with the norm ‖(𝑢, 𝑣)‖: = ‖𝑢‖ + ‖𝑣‖. 
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Definition 2.4. (See [22]) Given (𝑢, 𝑣) ∈ gph𝐺. The Fréchet coderivative of 𝐺 at (𝑢, 𝑣) is a 

multifunction 𝐷∗𝐺(𝑢, 𝑣): 𝑌∗ ⇉ 𝑋∗ given by 

𝐷∗𝐺(𝑢, 𝑣)(𝑣∗): = ൛𝑢∗ ∈ 𝑋∗ ∣ (𝑢∗, −𝑣∗) ∈ 𝑁൫gph𝐺, (𝑢, 𝑣)൯ൟ, ∀𝑣∗ ∈ 𝑌∗. 

If (𝑢, 𝑣) ∉ gph𝐺 then one puts 𝐷∗𝐺(𝑢, 𝑣)(𝑣∗) = ∅ for any 𝑣∗ ∈ 𝑌∗. 

We omit 𝑣 = 𝑔(𝑢) in the above coderivative notion if 𝐺 = 𝑔: 𝑋 → 𝑌 is a single valued map, i.e., we 

will write 𝐷𝑔(𝑢)(𝑣∗) instead of 𝐷∗𝑔(𝑢, 𝑔(𝑢))(𝑣∗). If 𝑔: 𝑋 → 𝑌 is Fréchet differentiable at 𝑢. Then by 

[22] one has 𝐷𝑔(𝑢)(𝑣∗) = {∇𝑔(𝑢)∗𝑣∗} for every 𝑣∗ ∈ 𝑌∗, where ∇𝑔(𝑢)∗ is the adjoint operator of 

∇𝑔(𝑢). This formula shows that the coderivative under consideration is an appropriate extension of the 

adjoint derivative operator of the real-valued function to the case of the set-valued map. 

Consider a function ℎ: 𝑋 → ℝ, where ℝ = [−∞, +∞] is the extended-real line. The epigraph of ℎ 

is given by epi ℎ = {(𝑢, 𝑡) ∈ 𝑋 × ℝ ∣ 𝑡 ≥ ℎ(𝑢)}. 

Definition 2.5. (See, e.g., [22]) Let ℎ: 𝑋 → ℝ be finite at a point 𝑢. The Fréchet subdifferential of 

ℎ at 𝑢 is given by 

𝜕ℎ(𝑢): = {𝑢∗ ∈ 𝑋∗ ∣ (𝑢∗, −1) ∈ 𝑁(epiℎ, (𝑢, ℎ(𝑢)))}. 

If |ℎ(𝑢)| = ∞ then we put 𝜕ℎ(𝑢) = ∅. 

Throughout the paper, ℎ ∈ 𝒞ଵ is understood that it is continuously Fréchet differentiable and its 

gradient mapping ∇ℎ is continuous. Similarly, ℎ ∈ 𝒞ଶ means that ℎ is twice continuously differentiable. 

If ℎ is a 𝒞ଵ function, then for any 𝑢 with |ℎ(𝑢)| < ∞, the Fréchet subdifferential contains only the 

gradient {∇ℎ(𝑢)} (see [22]). 

One can use the notion of coderivative to define the second-order subdifferential of extended-real-
valued functions. 

Definition 2.6. (See [22]) Let ℎ: 𝑋 → ℝ be a function with a finite value at 𝑢. For any 𝑣 ∈ 𝜕ℎ(𝑢), 

the mapping 𝜕ଶℎ(𝑢, 𝑣): 𝑋∗∗ ⇉ 𝑋∗ with the values 

𝜕ଶℎ(𝑢, 𝑣)(𝑣∗): = (𝐷∗𝜕ℎ)(𝑢, 𝑣)(𝑣∗) = {𝑢∗ ∈ 𝑋∗ ∣ (𝑢∗, −𝑣∗) ∈ 𝑁(gph𝜕ℎ, (𝑢, 𝑣))} 

is called the Fréchet second-order subdifferential of ℎ at 𝑢 relative to 𝑣. 

The symbol 𝑣 in the notation 𝜕ଶℎ(𝑢, 𝑣)(𝑣∗) will be omitted if 𝜕ℎ(𝑢) is a singleton. Moreover, if ℎ 

is Fréchet differentiable at 𝑢, then 𝐷ℎ(𝑢)(𝑣) = {∇ℎ(𝑢)∗𝑣} for every 𝑣 ∈ 𝑋 as was mentioned after the 

definition of coderivative. In addition, if ℎ ∈ 𝒞ଶ around 𝑢, i.e. ℎ is twice continuously differentiable in 

an open neighborhood of 𝑢, then from the above fact and Definition 2.6, one has 

𝜕ଶℎ(𝑢)(𝑣∗) = {∇ଶℎ(𝑢)∗𝑣∗} ∀𝑣∗ ∈ 𝑋∗∗ 

where ∇ଶℎ(𝑢)∗ is the adjoint operator of the second-order derivative ∇ଶℎ(𝑢) of ℎ at 𝑢. In particular, 

when 𝑋 is finite-dimensional, ∇ℎ(𝑢) reduces to the classical Hessian matrix for which ∇ଶℎ(𝑢)∗ =

∇ଶℎ(𝑢). 

3. Main results 

In this paper, we consider the optimization problem 

min{𝑓(𝑥) ∣ 𝑥 ∈ 𝛺} (P) 

where 𝑓: 𝑋 → ℝ is a 𝒞ଵ function and Ω ⊂ 𝑋 is a generalized polyhedral convex set. 

The Lagrange function corresponding to problem (P) is 
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ℒ(𝑥, 𝑣∗, 𝜆) = 𝑓(𝑥) + ⟨𝑣∗, 𝑇𝑥 − 𝑦⟩ + ෍  

௣

௜ୀଵ

𝜆௜(⟨𝑢௜
∗, 𝑥⟩ − 𝛽௜) 

where 𝜆ଵ, 𝜆ଶ, … , 𝜆௣ are real numbers and 𝑣∗ ∈ 𝑌∗. 

The first-order necessary optimality conditions have been previously studied. As the statement in 
the general setting is given in [23] without proof, we will present the proof for our case in detail for the 
reader’s convenience. 

Theorem 3.1. Let 𝛺 be a generalized polyhedral convex set given by (2) and 𝑥‾ be a local solution 

of (𝑃). Then there exist multipliers 𝜆‾ = ൫𝜆‾ଵ, 𝜆‾ଶ, … , 𝜆‾௣൯ ∈ ℝ௣, 𝜆‾௜ ≥ 0 and 𝑣‾∗ ∈ 𝑌∗ such that 

൞
ℒ௫൫𝑥‾, 𝑣‾∗, 𝜆‾൯ = 𝛻𝑓(𝑥‾) + 𝑇∗𝑣‾∗ + ෍  

௣

௜ୀଵ

 𝜆‾௜𝑢௜
∗ = 0,

𝜆‾௜[⟨𝑢௜
∗, 𝑥‾⟩ − 𝛽௜] = 0, 𝑖 ∈ 𝐼,

 (3) 

where ℒ௫ denotes the partial derivative of ℒ with respect to the variable 𝑥. 

Proof. Let 𝑥‾ be a local solution of (P) and Ω be given by (2). Noting that Ω is convex, by Proposition 
5.1 in [24], we have 

−∇𝑓(𝑥‾) ∈ 𝑁(Ω, 𝑥‾). (4) 

Since Ω is generalized polyhedral, it follows that its normal cone is generalized polyhedral as well. 
Thanks to [21], one gets 

𝑁(Ω, 𝑥‾) = cone{𝑢௜
∗ ∣ 𝑖 ∈ 𝐼(𝑥‾)} + (ker𝑇)ୄ (5) 

with (ker𝑇)ୄ being the annihilator of the linear subspace ker𝑇, i.e., 

(ker𝑇)ୄ = {𝑥∗ ∈ 𝑋∗ ∣ ⟨𝑥∗, 𝑣⟩ = 0, ∀𝑣 ∈ ker𝑇}. 

Combining (4) with (5) implies that there exist multipliers ൫𝜆‾ଵ, 𝜆‾ଶ, … , 𝜆‾௣൯ ∈ ℝ௣, 𝜆‾௜ ≥ 0, 𝑖 ∈ 𝐼(𝑥‾) 

satisfying 

∇𝑓(𝑥‾) + ෍  

௣

௜ୀଵ

 𝜆‾௜𝑢௜
∗ ∈ −(ker𝑇)ୄ. (6) 

Moreover, since 𝑇 is surjective, by invoking the lemma on the annihilator [23] (see also [25]), one 

has (ker𝑇)ୄ = rge𝑇∗. Hence, 𝑥∗ ∈ −(ker𝑇)ୄ if and only if we can find 𝑣‾∗ ∈ 𝑌∗ satisfying 𝑥∗ =

−𝑇∗𝑣‾∗. Thus (6) yields the existence of a vector 𝑣‾∗ ∈ 𝑌∗ such that 

∇𝑓(𝑥‾) + 𝑇∗𝑣‾∗ + ෍  

௣

௜ୀଵ

𝜆‾௜𝑢௜
∗ = 0, ∀𝑖 ∈ 𝐼(𝑥‾). 

Consequently, by choosing 𝜆‾௜ = 0 for all 𝑖 ∈ 𝐼 ∖ 𝐼(𝑥‾), we obtain a multiplier set 𝜆‾௜ ≥ 0, 𝑖 =

1,2, … , 𝑝 and 𝑣‾∗ ∈ 𝑌∗ such that (3) holds for every 𝑖 ∈ 𝐼.                                                                           

Remark 3.1. The multipliers 𝜆‾ and functional 𝑣‾∗ in Theorem 3.1 are referred to as the Lagrange 

multipliers. If 𝑥‾ is a feasible point of (P) and there exists (𝑣∗, 𝜆) ∈ 𝑌∗ × ℝ௣ satisfying (3), then 𝑥‾ is 

called a stationary point of (P). The set of Lagrange multipliers of (P) at 𝑥‾ ∈ Ω is denoted by Λ(𝑥‾). 
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The following theorem provides the second-order necessary optimality condition for the problem 
(P). This optimality condition is formulated using the second-order Fréchet subdifferential of the 
Lagrange function. 

Theorem 3.2. (Second-order necessary optimality conditions) Let 𝑋 be a Banach space. Suppose 

that 𝑥‾ is a local solution of (𝑃), 𝜆‾ = ൫𝜆‾ଵ, 𝜆‾ଶ, … , 𝜆‾௣൯ ∈ ℝ௣, 𝜆‾ ≥ 0 and 𝑣‾∗ is the Lagrange multiplier 

corresponding to 𝑥‾, that is (3) holds. Assume further that there is a constant 𝑙 > 0 satisfying 

‖𝛻𝑓(𝑥) − 𝛻𝑓(𝑥‾)‖ ≤ 𝑙‖𝑥 − 𝑥‾‖ (7) 

for every 𝑥 in a neighborhood 𝑈 of 𝑥‾. Then, for any 𝑢 ∈ 𝑇(𝛺, 𝑥‾) such that −𝑢 ∈ 𝑇(𝛺, 𝑥‾), and 

⟨𝛻𝑓(𝑥‾), 𝑢⟩ = 0, the inclusion 

𝑧 ∈ 𝜕ଶℒ൫⋅, 𝑣‾∗, 𝜆 ‾ ൯ ቀ𝑥‾, ℒ௫൫𝑥‾, 𝑣‾∗, 𝜆‾ ൯ቁ (𝑢) (8) 

implies that 

⟨𝑧, 𝑢⟩ ≥ 0. (9) 

Proof. Suppose that 𝑥‾ is a local solution of (P) and (7) holds for all 𝑥 in a neighborhood 𝑈 of 𝑥‾, 

with 𝑙 > 0. Let 𝑢 ∈ 𝑇(Ω, 𝑥‾) be such that −𝑢 ∈ 𝑇(Ω, 𝑥‾) and ⟨∇𝑓(𝑥‾), 𝑢⟩ = 0. To obtain a contradiction, 

assume that there exists 𝑧 ∈ 𝑋∗ satisfying (8) such that ⟨𝑧, 𝑢⟩ < 0. We first observe from (3) that 

ℒ௫൫𝑥‾, 𝑣‾∗, 𝜆‾ ൯ = 0. Consequently, (8) means that 𝑧 ∈ 𝜕ଶℒ൫⋅, 𝑣‾∗, 𝜆‾ ൯((𝑥‾, 0))(𝑢). By the definition of the 

Fréchet second-order subdifferential, the latter is equivalent to 𝑧 ∈ 𝐷∗ℒ௫൫⋅, 𝑣‾∗, 𝜆‾ ൯((𝑥‾, 0))(𝑢), or, 

equivalently, (𝑧, −𝑢) ∈ 𝑁൫gphℒ௫൫⋅, 𝑣‾∗, 𝜆‾ ൯, (𝑥‾, 0)൯. Therefore, one has 

lim sup
௫→௫‾

 
ർ(𝑧, −𝑢), ቀ𝑥, ℒ௫൫𝑥, 𝑣‾∗, 𝜆 ‾ ൯ቁ − (𝑥‾, 0)඀

‖𝑥 − 𝑥‾‖ + ฮℒ௫൫𝑥, 𝑣‾∗, 𝜆‾ ൯ฮ
≤ 0. (10) 

We recall that every vector 𝑣 ∈ 𝑋 can be regarded as an element of 𝑥∗∗ by setting ⟨𝑣, 𝑥∗⟩ = ⟨𝑥∗, 𝑣⟩ 

for all 𝑥∗ ∈ 𝑋∗. Hence ൻ𝑢, ℒ௫൫𝑥, 𝑣‾∗, 𝜆‾ ൯ൿ = ൻℒ௫൫𝑥, 𝑣‾∗, 𝜆‾ ൯, 𝑢ൿ for every 𝑢, 𝑥 ∈ 𝑋. So, by rearranging (10) 

one obtains 

lim sup
௫→௫‾

 
⟨𝑧, 𝑥 − 𝑥‾⟩ − ൻℒ௫൫𝑥, 𝑣‾∗, 𝜆 ‾ ൯, 𝑢ൿ

‖𝑥 − 𝑥‾‖ + ฮℒ௫൫𝑥, 𝑣‾∗, 𝜆 ‾ ൯ฮ
≤ 0. (11) 

By our assumptions, both vector 𝑢 and −𝑢 belong to the tangent cone 𝑇(Ω, 𝑥‾). Moreover, since Ω 

is generalized polyhedral convex, one can find 𝑘‾ ∈ ℕ such that 𝑥௞: = 𝑥‾ −
ଵ

௞
𝑢 belongs to Ω for every 

𝑘 ≥ 𝑘‾ . By applying the classical mean value theorem (see [26]) for the real continuous function 

Φ(𝜇): = ℒ൫(1 − 𝜇)𝑥‾ + 𝜇𝑥௞ , 𝑣‾∗, 𝜆‾ ൯ 

where 𝜇 ∈ [0,1] on the interval [0,1] and using the chain rule (see [27]), we find 𝜉௞ ∈ (𝑥‾, 𝑥௞): =

{(1 − 𝜇)𝑥‾ + 𝜇𝑥௞ ∣ 𝜇 ∈ (0,1)} such that 

ℒ൫𝑥௞ , 𝑣‾∗, 𝜆 ‾ ൯ − ℒ൫𝑥‾, 𝑣‾∗, 𝜆‾ ൯ = ൻℒ௫൫𝜉௞ , 𝑣‾∗, 𝜆‾ ൯, 𝑥௞ − 𝑥‾ൿ. (12) 

On one hand, by the first equality in (3), for each 𝑢 ∈ 𝑇(Ω, 𝑥‾) we have 

0 = ൻℒ௫൫𝑥‾, 𝑣‾∗, 𝜆 ‾ ൯, 𝑢ൿ 
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= ൾ∇𝑓(𝑥‾) + 𝑇∗𝑣‾∗ + ෍  

௣

௜ୀଵ

 𝜆‾௜𝑢௜
∗, 𝑢ං 

= ⟨∇𝑓(𝑥‾), 𝑢⟩ + ⟨𝑇∗𝑣‾∗, 𝑢⟩ + ൾ෍  

௣

௜ୀଵ

  𝜆‾௜𝑢௜
∗, 𝑢ං 

= ⟨∇𝑓(𝑥‾), 𝑢⟩ + ⟨𝑣‾∗, 𝑇𝑢⟩ + ൾ෍  

௣

௜ୀଵ

 𝜆‾௜𝑢௜
∗, 𝑢ං. 

As 𝑢 ∈ 𝑇(Ω, 𝑥‾) and ⟨∇𝑓(𝑥‾), 𝑢⟩ = 0, the latter implies 

ൽ෍  

௡

௜ୀଵ

 𝜆‾௜𝑢௜
∗, 𝑢ඁ = 0. (13) 

On the other hand, thanks to (3) and the fact that both 𝑥௞ and 𝑥‾ belong to Ω, one has 

ℒ൫𝑥௞ , 𝑣‾∗, 𝜆‾ ൯ − ℒ൫𝑥‾, 𝑣‾∗, 𝜆 ‾ ൯ = 𝑓(𝑥௞) + ⟨𝑣‾∗, 𝑇𝑥௞ − 𝑦⟩ + ෍  

௣

௜ୀଵ

𝜆‾௜(⟨𝑢௜
∗, 𝑥௞⟩ − 𝛽௜) 

 − 𝑓(𝑥‾) − ⟨𝑣‾∗, 𝑇𝑥‾ − 𝑦⟩ − ෍  

௣

௜ୀଵ

 𝜆‾௜(⟨𝑢௜
∗, 𝑥‾⟩ − 𝛽௜)

=𝑓(𝑥௞) − 𝑓(𝑥‾) + ෍  

௣

௜ୀଵ

  𝜆‾௜(⟨𝑢௜
∗, 𝑥௞⟩ − 𝛽௜).

 

Keeping in mind that 𝑥௞ = 𝑥‾ −
ଵ

௞
𝑢, by (13) we can assert that 

෍  

௣

௜ୀଵ

𝜆‾௜(⟨𝑢௜
∗, 𝑥௞⟩ − 𝛽௜) = ෍  

௣

௜ୀଵ

𝜆‾௜(⟨𝑢௜
∗, 𝑥‾⟩ − 𝛽௜) −

1

𝑘
෍  

௣

௜ୀଵ

𝜆‾௜⟨𝑢௜
∗, 𝑢⟩ = 0. 

Consequently, ℒ൫𝑥௞ , 𝑣‾∗, 𝜆‾ ൯ − ℒ൫𝑥‾, 𝑣‾∗, 𝜆‾ ൯ = 𝑓(𝑥௞) − 𝑓(𝑥‾) ≥ 0, because 𝑥‾ is a local minimum 

point of (P). Combining the latter with (12) and noting that 𝑥௞ = 𝑥‾ −
ଵ

௞
𝑢 we arrive at 

ൻℒ௫൫𝜉௞ , 𝑣‾∗, 𝜆‾ ൯, 𝑢ൿ ≤ 0. (14) 

By (11) and the fact that 𝜉௞ → 𝑥‾ as 𝑘 → ∞, one gets 

lim sup
௫→௫‾

 
⟨𝑧, 𝜉௞ − 𝑥‾⟩ − ൻℒ௫൫𝜉௞ , 𝑣‾∗, 𝜆‾ ൯, 𝑢ൿ

‖𝜉௞ − 𝑥‾‖ + ฮℒ௫൫𝜉௞ , 𝑣‾∗, 𝜆‾ ൯ฮ
≤ 0. (15) 

Put 

Δ௞: =
⟨𝑧, 𝜉௞ − 𝑥‾⟩ − ൻℒ௫൫𝜉௞ , 𝑣‾∗, 𝜆‾ ൯, 𝑢ൿ

‖𝜉௞ − 𝑥‾‖ + ฮℒ௫൫𝜉௞ , 𝑣‾∗, 𝜆‾ ൯ฮ
. 

By (14), we get the following estimate for Δ௞ 

Δ௞ ≥
⟨𝑧, 𝜉௞ − 𝑥‾⟩

‖𝜉௞ − 𝑥‾‖ + ฮℒ௫൫𝜉௞ , 𝑣‾∗, 𝜆‾൯ฮ
. 
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Observing that 𝜉௞ = 𝑥‾ − 𝑡௞𝑢, for some 𝑡௞ ∈ ቀ0,
ଵ

௞
ቁ, the latter implies that 

Δ௞ ≥
−𝑡௞⟨𝑧, 𝑢⟩

‖𝑡௞𝑢‖ + ฮℒ௫൫𝜉௞ , 𝑣‾∗, 𝜆 ‾ ൯ฮ

 =
−⟨𝑧, 𝑢⟩

‖𝑢‖ + 𝑡௞
ିଵฮℒ௫൫𝜉௞ , 𝑣‾∗, 𝜆 ‾ ൯ฮ

.

 

On one hand, by virtue of (3), we have 

ฮℒ௫൫𝜉௞ , 𝑣‾∗, 𝜆 ‾ ൯ฮ = ቯ∇𝑓(𝜉௞) + 𝑇∗𝑣‾∗ + ෍  

௣

௜ୀଵ

 𝜆‾௜𝑢௜
∗ − ∇𝑓(𝑥‾) − 𝑇∗𝑣‾∗ − ෍  

௣

௜ୀଵ

 𝜆‾௜𝑢௜
∗ቯ

 = ‖∇𝑓(𝜉௞) − ∇𝑓(𝑥‾)‖.

 

Hence, by (7), we get 

ฮℒ௫൫𝜉௞ , 𝑣‾∗, 𝜆‾ ൯ฮ ≤ 𝑙‖𝜉௞ − 𝑥‾‖ = 𝑙𝑡௞‖𝑢‖. 

Therefore, 

Δ௞ ≥
−⟨𝑧, 𝑢⟩

‖𝑢‖ + 𝑙‖𝑢‖
. 

Consequently, lim sup௞→ஶ  Δ௞ > 0. This contradicts to (15). The proof is complete.                     

 

We are now in a position to establish second-order sufficient optimality conditions for problem (P). 

Theorem 3.3. (Second-order sufficient optimality conditions) Let 𝑋 be a reflexive Banach space. 

Assume that 𝑥‾ is a stationary point of (𝑃), ൫𝑣‾∗, 𝜆‾ ൯ is the unique Lagrange multiplier from 𝛬(𝑥‾). If there 

exists a constant 𝛿 > 0 such that for every 𝑥 ∈ 𝐵(𝑥‾, 𝛿) one has 

⟨𝑧, 𝑢⟩ ≥ 0 for all 𝑢 ∈ 𝑋 and 𝑧 ∈ 𝜕ଶℒ൫𝑥, 𝑣‾∗, 𝜆 ‾ ൯(𝑢) (16) 

then 𝑥‾ is a local solution of (𝑃). 

Proof. Since 𝑋 is a reflexive Banach space, it follows that 𝑋 is an Asplund space. Moreover, one 

has 𝑋∗∗ = 𝑋. As  

𝑥 ↦ ℒ൫𝑥, 𝑣∗, 𝜆 ‾ ൯ = 𝑓(𝑥) + ⟨𝑣∗, 𝑇𝑥 − 𝑦⟩ + ∑௜ୀଵ
௣

 𝜆௜(⟨𝑢௜
∗, 𝑥⟩ − 𝛽௜), 

is a 𝒞ଵ function on 𝑋, it yields from (16) and [28], whose proof can be applied to any open convex 

subset of the space in question, that ℒ൫. , 𝑣‾∗, 𝜆 ‾ ൯ is convex on 𝐵(𝑥‾, 𝛿). As 𝑣‾∗, 𝜆‾ ∈ Λ(𝑥‾), one has 

ℒ௫൫𝑥‾, 𝑣‾∗, 𝜆‾ ൯ = 0. Combining this with the convexity of ℒ൫. , 𝑣‾∗, 𝜆‾ ൯ on 𝐵(𝑥‾, 𝛿) yields 

ℒ൫𝑥, 𝑣‾∗, 𝜆‾ ൯ − ℒ൫𝑥‾, 𝑣‾∗, 𝜆 ‾ ൯ ≥ ൻℒ௫൫𝑥‾, 𝑣‾∗, 𝜆‾ ൯, 𝑥 − 𝑥‾ൿ = 0,  ∀𝑥 ∈ 𝐵(𝑥‾, 𝛿). 

So 

𝑓(𝑥) + ⟨𝑣∗, 𝑇𝑥 − 𝑦⟩ + ෍  

௣

௜ୀଵ

 𝜆‾௜(⟨𝑢௜
∗, 𝑥⟩ − 𝛽௜) − 𝑓(𝑥‾) 

−⟨𝑣∗, 𝑇𝑥‾ − 𝑦⟩ − ෍  

௣

௜ୀଵ

  𝜆‾௜(⟨𝑢௜
∗, 𝑥‾⟩ − 𝛽௜) ≥ 0, ∀𝑥 ∈ 𝐵(𝑥‾, 𝛿). 

(17) 

On one hand, 𝑥‾ ∈ 𝐶, one gets ⟨𝑣∗, 𝑇𝑥‾ − 𝑦⟩ = 0 and −∑௜ୀଵ
௣

 𝜆‾௜(⟨𝑢௜
∗, 𝑥‾⟩ − 𝛽௜) = 0 because of (3). On 

the other hand, one has 
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ℒ൫𝑥, 𝑣‾∗, 𝜆‾ ൯ = 𝑓(𝑥) + ෍  

௣

௜ୀଵ

𝜆‾௜(⟨𝑢௜
∗, 𝑥⟩ − 𝛽௜),  ∀𝑥 ∈ Ω. 

Consequently, from (17) we arrive at 

𝑓(𝑥) + ∑  
௣
௜ୀଵ 𝜆‾௜(⟨𝑢௜

∗, 𝑥⟩ − 𝛽௜) − 𝑓(𝑥‾) ≥ 0, ∀𝑥 ∈ Ω ∩ 𝐵(𝑥‾, 𝛿), 

or, equivalently, 

𝑓(𝑥) − 𝑓(𝑥‾) ≥ − ෍  

௣

௜ୀଵ

  𝜆‾௜(⟨𝑢௜
∗, 𝑥⟩ − 𝛽௜) ≥ 0, ∀𝑥 ∈ Ω ∩ 𝐵(𝑥‾, 𝛿). (18) 

Therefore, (18) implies that 𝑓(𝑥) ≥ 𝑓(𝑥‾) for every 𝑥 ∈ Ω ∩ 𝐵(𝑥‾, 𝛿). In conclusion, 𝑥‾ is a local 

solution of (P).                                                                                                                                           

Let us consider examples to illustrate our results. 

Example 3.1. Let 𝑋 = ℝଶ. Consider problem (P) with 𝑓(𝑥) = 6𝑥ଵ + 𝑥ଵ
ଶ + 2𝑥ଶ + 𝑥ଶ

ଶ and Ω =

{𝑥 = (𝑥ଵ, 𝑥ଶ) ∈ ℝଶ ∣ 𝑥ଵ + 𝑥ଶ = 120, 𝑥ଵ ≥ 0, 𝑥ଶ ≥ 0}. The Lagrangian function is 

ℒ(𝑥, 𝑣∗, 𝜆) = 6𝑥ଵ + 𝑥ଵ
ଶ + 2𝑥ଶ + 𝑥ଶ

ଶ + 𝑣∗(𝑥ଵ + 𝑥ଶ − 120) − 𝜆ଵ𝑥ଵ − 𝜆ଶ𝑥ଶ, 

for 𝑥 = (𝑥ଵ, 𝑥ଶ) ∈ ℝଶ and 𝑣∗ ∈ ℝ, 𝜆ଵ, 𝜆ଶ ∈ ℝା.  

It is not hard to see that this problem has the stationary point 𝑥‾ = (59,61) with the Lagrange 

multiplier 𝜆ଵ = 𝜆ଶ = 0, 𝑣∗ = −124. 

Since ℒ(. , 𝑣∗, 𝜆) is a 𝐶ଶ-function, it follows that 𝜕ଶℒ(𝑥, 𝑣∗, 𝜆) = ൛൫∇௫
ଶℒ(𝑥, 𝑣∗, 𝜆)൯

∗
ൟ = 

{∇௫
ଶℒ(𝑥, 𝑣∗, 𝜆)} for all 𝑥 ∈ 𝑋 and 𝑣∗ ∈ ℝ, 𝜆ଵ, 𝜆ଶ, ∈ ℝା. For every 𝑢 = (𝑢ଵ, 𝑢ଶ) ∈ ℝଶ, one has 

𝜕ଶℒ(𝑥, 𝑣∗, 𝜆)(𝑢) = ൜ቀ
2 0
0 2

ቁ ൬
𝑢ଵ

𝑢ଶ
൰ൠ = ൜൬

2𝑢ଵ

2𝑢ଶ
൰ൠ. 

We now check all the assumptions of Theorem 3.3 at 𝑥‾ = (59,61), 𝑣‾∗ = −124 and 𝜆‾ଵ = 𝜆‾ଶ = 0. 

Firstly, for all 𝑥 ∈ 𝑋, 𝑢 ∈ 𝑋 and 𝑧 ∈ 𝜕ଶℒ൫𝑥, 𝑣‾∗, 𝜆‾൯(𝑢), we see that 

⟨𝑧, 𝑢⟩ = ർ൬
2𝑢ଵ

2𝑢ଶ
൰ , ൬

𝑢ଵ

𝑢ଶ
൰඀ = 2𝑢ଵ

ଶ + 2𝑢ଶ
ଶ ≥ 0, 

hence condition (16) is fulfilled. So, 𝑥‾ is a local solution of (P) by Theorem 3.3. Secondly, by using the 

second-order necessary optimality conditions in Theorem 3.2, we can verify that the stationary point 

𝑥‾ = (59,61) is the local solution of (P). As 𝑓 is continuous and Ω is a nonempty compact set, it follows 

that (P) has the global solution by the Weierstrass theorem. 

We end this section with an example in an infinite-dimensional space. 

Example 3.2. Let ℓଶ denote the Hilbert space of all square summable real sequences, ℓଶ = {𝑥 =

(𝑥ଵ, 𝑥ଶ, … , 𝑥௡ , … )| ∑ 𝑥௡
ଶ < +∞, 𝑥௡ ∈ ℝ, 𝑛 = 1,2, … . }ାஶ

௡ୀଵ . The scalar product and the norm in ℓଶ are 

defined, respectively, by 

⟨𝑥, 𝑦⟩ = ෍ 𝑥௡𝑦௡

ାஶ

௡ୀଵ

,     ∥ 𝑥 ∥= ൭෍ 𝑥௡
ଶ

ାஶ

௡ୀଵ

൱

ଵ
ଶ

. 

Consider problem (P) with 𝑓(𝑥) =
ଵ

ଶ
⟨𝑥, 𝑄𝑥⟩ and Ω = {𝑥 = (𝑥ଵ, 𝑥ଶ, … , 𝑥௡, … ) ∈ ℓଶ| ⟨𝑢௜

∗, 𝑥⟩ ≤

0, 𝑖 = 1,2, … , 𝑝}, where 𝑄: ℓଶ → ℓଶ is defined by 𝑄𝑥 = (𝑥ଵ, 𝑥ଶ , 𝑥ଷ, … ) and 𝑢௜
∗ = (0,0, … , −1ด

௜

, 0, … ) ∈

ℓଶ,  𝑖 = 1,2, … , 𝑝. 
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The Lagrangian function is 

ℒ(𝑥, 𝜆) =
1

2
⟨𝑥, 𝑄𝑥⟩ + ෍  

௣

௜ୀଵ

𝜆௜⟨𝑢௜
∗, 𝑥⟩ 

for 𝑥 = (𝑥ଵ, 𝑥ଶ, 𝑥ଷ, … ) ∈ ℓଶ and 𝜆௜ ∈ ℝା, 𝑖 = 1,2, … , 𝑝. 

The problem has a stationary point 𝑥‾ = (0,0, … ,0, … ) with Lagrange multiplier 𝜆 = 0. Since 

ℒ(. , 𝜆) is a 𝐶ଶ-function, we have that  𝜕ଶℒ(𝑥, 𝜆) = ൛൫∇௫
ଶℒ(𝑥, 𝜆)൯

∗
ൟ = {∇௫

ଶℒ(𝑥, 𝜆)} for all 𝑥 ∈ 𝑋 and 𝜆௜ ∈

ℝା, 𝑖 = 1,2, … , 𝑝. For every 𝑢 = (𝑢ଵ, 𝑢ଶ, … ) ∈ ℓଶ, one has 

𝜕ଶℒ(𝑥, 𝜆)(𝑢) = 𝑄𝑢. 

Thus, for every  𝑧 ∈ 𝜕ଶℒ൫𝑥, 𝑣‾∗, 𝜆‾൯(𝑢), 

⟨𝑧, 𝑢⟩ = ⟨𝑄𝑢, 𝑢⟩ = 𝑢ଵ
ଶ + 𝑢ଶ

ଶ + 𝑢ଷ
ଶ + ⋯ ≥ 0, 

hence condition (16) is fulfilled. So, 𝑥‾ is a local solution of (P) by Theorem 3.3. 

4. Conclusion 

In this paper, second-order necessary and sufficient optimality conditions for infinite-dimensional 
optimization problems with generalized polyhedral convex constraints are derived. Second-order 

necessary optimality conditions are presented in Theorem 3.2 meanwhile second-order sufficient 
optimality conditions are given in Theorem 3.2. An example to illustrate the obtained results is included 
as well. 
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