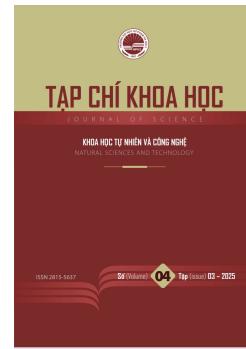


HPU2 Journal of Sciences: Natural Sciences and Technology

Journal homepage: <https://sj.hpu2.edu.vn>



Article type: Research article

An identification problem governed by nonlinear fractional mobile-immobile equation, Part II: Stability and Regularity

Van-Dac Nguyen^a, Thi-Thu Tran^b, Van-Tuan Tran^{b*}

^aThuyloi University, Hanoi, Vietnam

^bHanoi Pedagogical University 2, Phu Tho, Vietnam

Abstract

This paper continues our recent work in [1], in which we investigated the existence and uniqueness of solutions for the inverse problem (IP): *Seek the unknown term z , along with the state u obeying the system*

$$v_1 \partial_t u + v_2 \partial_t^\alpha u - \Delta u = z(x)h(t) + f(t, u), \text{ in } \Omega, t \in (0, T], \quad (1)$$

$$u = 0 \text{ on } \partial\Omega, t \geq 0, \quad (2)$$

$$u(\cdot, 0) = \xi \text{ in } \Omega, \quad (3)$$

and the terminal measurement

(4)

$$u(x, T) = \varphi(u)(x), x \in \Omega.$$

In this setting, $\Omega \subset \mathbb{R}^d$ with $d \geq 1$ denotes a bounded domain whose boundary $\partial\Omega$ is smooth. Motivated by considerations arising from numerical analysis, the primary aim of this work is to establish a set of sufficient conditions on the functions h , f , and φ that guarantee both the continuous dependence of solutions on the data and the regularity in time of the solution pair (u, z) for the inverse problem (IP).

Keywords: Mobile-immobile equation, stability, parameter identification, strong solution

* Corresponding author, E-mail: travantuan@hpu2.edu.vn

<https://doi.org/10.56764/hpu2.jos.2025.4.3.42-50>

Received date: 09-4-2025 ; Revised date: 12-6-2025 ; Accepted date: 20-11-2025

This is licensed under the CC BY-NC 4.0

1. Introduction and main results

Before presenting our results, we recall, for the reader's convenience, some notations, conventions, and facts related to the problem **(IP)**, as introduced in [1].

Let $L^2(\Omega)$ denote the space of Lebesgue square-integrable measurable functions on Ω . The inner product and standard norm on $L^2(\Omega)$ are denoted by (\cdot, \cdot) and $\|\cdot\|$, respectively. For $\gamma \geq 0$, the space \mathbb{V}_γ represents the domain of the fractional power of the Laplacian with homogeneous Dirichlet boundary conditions, defined as

$$\mathbb{V}_\gamma = D((-\Delta)^\gamma) = \left\{ v \in L^2(\Omega) : \sum_{n=1}^{\infty} \lambda_n^{2\gamma} (v, e_n)^2 < \infty \right\},$$

where $\{e_n\}_{n=1}^{\infty}$ is an orthonormal basis of $L^2(\Omega)$ consisting of eigenfunctions of the Laplacian $-\Delta$ subject to homogeneous Dirichlet boundary conditions, satisfying

$$-\Delta e_n = \lambda_n e_n, \quad e_n|_{\partial\Omega} = 0,$$

with $\{\lambda_n\}_{n=1}^{\infty}$ forming an increasing sequence such that $\lambda_n > 0$ and $\lambda_n \rightarrow \infty$ as $n \rightarrow \infty$. For a normed linear space X , we denote by $C([0, T]; X)$ the Banach space of all continuous functions from $[0, T]$ to X . The supremum norm on $C([0, T]; L^2(\Omega))$ and $C([0, T])$ is denoted by $\|\cdot\|_\infty$.

As established in [1, Theorem 3.1], if the following hypotheses hold:

(H1) The real function h is continuous on $[0, T]$ and satisfies $m := \inf_{[0, T]} h(t) > 0$;

(H2) The nonlinearity $f : [0, T] \times L^2(\Omega) \rightarrow L^2(\Omega)$ satisfies $f(\cdot, 0) = 0$, and is locally Lipschitz with respect to the second variable, that is, for each $r > 0$, there exists $L_f(r) > 0$ such that

$$\|f(t, v_1) - f(t, v_2)\| \leq L_f(r) \|v_1 - v_2\|, \forall t \in [0, T], \|v_1\|, \|v_2\| \leq r;$$

(H3) The function $\varphi : C([0, T]; L^2(\Omega)) \rightarrow \mathbb{V}_{1/2}$ satisfies $\varphi(0) = 0$ and is locally Lipschitz continuous, that is, for each $r > 0$, there exists $L_\varphi(r) > 0$ such that

$$\|\varphi(\omega_1) - \varphi(\omega_2)\|_{\mathbb{V}_{1/2}} \leq L_\varphi(r) \|\omega_1 - \omega_2\|_\infty, \forall \|\omega_1\|_\infty, \|\omega_2\|_\infty \leq r;$$

(H4) The following inequality holds:

$$\|h\|_\infty m_T^{-1} \lambda_1^{1/2} \limsup_{r \rightarrow 0} L_\varphi(r) + (\|h\|_\infty m_T^{-1} + 1) \limsup_{r \rightarrow 0} L_f(r) < \lambda_1,$$

where m_T is defined in [1, Lemma 2.2];

then there exists $\rho > 0$ such that the inverse source problem **(IP)** admits a unique solution, provided that $\|\xi\| \leq \rho$.

We now consider the special case where the final data does not depend on the state. In this case, we have the following result concerning the Lipschitz type stability of the solution map.

Theorem 1.1. Assume that (H1), (H2), (H4) hold, with f being globally Lipschitz continuous with constant L_f . Additionally, suppose that:

(H3) The function $\varphi: C([0, T]; L^2(\Omega)) \rightarrow \mathbb{V}_{1/2}$ is a constant mapping, that is, $\varphi(\omega) = g$ for some $g \in \mathbb{V}_{1/2}$ and all $\omega \in C([0, T]; L^2(\Omega))$.

Then the solution map $(\xi, g) \mapsto (u, z)$ is Lipschitz continuous as a mapping from $L^2(\Omega) \times \mathbb{V}_{1/2}$ to $C([0, T]; L^2(\Omega)) \times \mathbb{V}_{-1/2}$, provided that

$$L_f(\|h\|_\infty m_T^{-1} + 1) < \lambda_1.$$

Our next goal is to deal with the regularity of solutions to the problem **(IP)**. With this goal in mind, we will show that under additional hypotheses h, f and φ take more regular values, the obtained solution to the problem **(IP)** is strong in the sense of the following definition.

Definition 1.1. A pair $(u, z) \in C([0, T]; L^2(\Omega)) \times L^2(\Omega)$ is said to be a strong solution to the problem **(IP)** iff (1), (3), and (4) hold as equations in $L^2(\Omega)$.

Let $\beta = \max \left\{ \frac{\alpha}{2}, \frac{1-\alpha}{2} \right\}$. In order to deal with strong solution, we further require that

(\tilde{H} 1) The real function h satisfies (H1) with $h \in C^\beta[0, T]$;

(\tilde{H} 2) The nonlinear function $f: [0, T] \times L^2(\Omega) \rightarrow L^2(\Omega)$ satisfies $f(\cdot, 0) = 0$, and is locally Lipschitz-Hölder, that is, for each $r > 0$, there exists $L_f(r) > 0$ such that

$$\|f(t_1, v_1) - f(t_2, v_2)\| \leq L_f(r) [|t_1 - t_2|^\beta + \|v_1 - v_2\|],$$

for all $t_i \in [0, T], \|v_i\| \leq r, i \in \{1, 2\}$;

(\tilde{H} 3) The function φ satisfies (H3) with values in \mathbb{V}_1 .

Having these assumptions in hand, we can prove the regularity of the solution for the problem **(IP)** which reads as follows:

Theorem 1.2. Let (\tilde{H} 1)-(\tilde{H} 3), and (H4) hold. Then there exists $\rho > 0$ such that the identification problem **(IP)** has a unique strong solution on $[0, T]$, provided that $\|\xi\| \leq \rho$.

2. Proof of the main results

This section is devoted to proving the main results stated in Sect. 1. We first show the proof of continuous dependence result for our problem.

Proof of Theorem 1.1.

Note that, by Corollary 3.1 in [1], for each for each $(\xi, g) \in L^2(\Omega) \times \mathbb{V}_{1/2}$, the problem **(IP)** has a unique solution (u, z) , where the representations of u, z are given by

$$u(t) = \mathcal{S}_\alpha(t)\xi + \int_0^t \mathcal{R}_\alpha(t-\tau)(zh(\tau) + f(\tau, u(\tau)))d\tau, t \in [0, T], \quad (5)$$

$$z = \mathbb{Q} \left[g - \mathcal{S}_\alpha(T)\xi - \int_0^T \mathcal{R}_\alpha(T-\tau)f(\tau, u(\tau))d\tau \right]. \quad (6)$$

See Eqs. (31), (32) in [1].

Now let (u_i, z_i) be two solutions of the problem (IP) with respect to (ξ_i, g_i) , $i \in \{1, 2\}$. Then, in view of the representation (6), we find that

$$\begin{aligned} & \|z_1 - z_2\|_{\mathbb{V}_{-1/2}} \\ & \leq \|\mathbb{Q}(g_1 - g_2)\|_{\mathbb{V}_{-1/2}} + \|\mathbb{Q}\mathcal{S}_\alpha(T)(\xi_1 - \xi_2)\|_{\mathbb{V}_{-1/2}} \\ & \quad + \|\mathbb{Q}\mathcal{R}_\alpha * (f(\cdot, u_1(\cdot)) - f(\cdot, u_2(\cdot)))(T)\|_{\mathbb{V}_{-1/2}} \\ & \leq m_T^{-1} \|g_1 - g_2\|_{\mathbb{V}_{1/2}} + m_T^{-1} \lambda_1^{-1/2} (1 * \ell)(T)^{-1} \|\xi_1 - \xi_2\| + m_T^{-1} \lambda_1^{-1/2} L_f \|u_1 - u_2\|_\infty. \end{aligned}$$

Additionally, by the formulation (5) and Lemma 2.1 in [1], one has

$$\begin{aligned} & \|u_1(t) - u_2(t)\| \\ & \leq s_\alpha(t, \lambda_1) \|\xi_1 - \xi_2\| + \|h\|_\infty \lambda_1^{-1/2} \|z_1 - z_2\|_{\mathbb{V}_{-1/2}} + \int_0^t r_\alpha(t - \tau, \lambda_1) L_f \|u_1(\tau) - u_2(\tau)\| d\tau \\ & \leq \|\xi_1 - \xi_2\| + \|h\|_\infty \lambda_1^{-1/2} \|z_1 - z_2\|_{\mathbb{V}_{-1/2}} + \lambda_1^{-1} L_f \|u_1 - u_2\|_\infty \\ & \leq \|\xi_1 - \xi_2\| + \|h\|_\infty m_T^{-1} \lambda_1^{-1} \|\xi_1 - \xi_2\| + \|h\|_\infty m_T^{-1} \lambda_1^{-1/2} \|g_1 - g_2\|_{\mathbb{V}_{1/2}} \\ & \quad + L_f (\|h\|_\infty m_T^{-1} + 1) \lambda_1^{-1} \|u_1 - u_2\|_\infty, \forall t \in [0, T]. \end{aligned}$$

Consequently, we arrive at

$$\|u_1 - u_2\|_\infty \leq \frac{1 + \|h\|_\infty m_T^{-1} \lambda_1^{-1}}{1 - \kappa} \|\xi_1 - \xi_2\| + \frac{\|h\|_\infty m_T^{-1} \lambda_1^{-1/2}}{1 - \kappa} \|g_1 - g_2\|_{\mathbb{V}_{1/2}},$$

where $\kappa := 1 - L_f (\|h\|_\infty m_T^{-1} + 1) \lambda_1^{-1}$. The proof of Theorem 1.1 is therefore complete. \square

We finally prove the regularity of solutions to the problem (IP).

Proof of Theorem 1.2. Note that the existence result is ensured by Theorem 3.1 in [1]. Denote

$$\tilde{f}(t) = f(t, u(t)), \quad \tilde{h}(t) = zh(t) + \tilde{f}(t), \quad t \in [0, T],$$

where (u, z) be the solution to the problem (IP) whose representations are given in Eqs. (5), (6).

Let us first show that the solution u is Hölder continuous on $(0, T]$. Indeed, fix ϵ, ρ, R as in the proof of Theorem 3.1 in [1]. For $t \in (0, T]$, $\theta \in (0, T - t]$, we have

$$\begin{aligned} \|u(t + \theta) - u(t)\| & \leq \|[\mathcal{S}_\alpha(t + \theta) - \mathcal{S}_\alpha(t)]\xi\| + \left\| \int_0^t [\mathcal{R}_\alpha(t + \theta - \tau) - \mathcal{R}_\alpha(t - \theta)]zh(\tau) d\tau \right\| \\ & \quad + \left\| \int_t^{t+\theta} \mathcal{R}_\alpha(t + \theta - \tau) zh(\tau) d\tau \right\| + \left\| \int_t^{t+\theta} \mathcal{R}_\alpha(t + \theta - \tau) \tilde{f}(\tau) d\tau \right\| \\ & \quad + \left\| \int_0^t [\mathcal{R}_\alpha(t + \theta - \tau) - \mathcal{R}_\alpha(t - \theta)] \tilde{f}(\tau) d\tau \right\| \\ & := J_1 + J_2 + J_3 + J_4 + J_5. \end{aligned} \tag{7}$$

We now wish to estimate the five terms in (7) term by term. For J_1 , with the aid of the mean value formula [2, Theorem 3.2.6, p. 119] and Lemma 2.1(i) in [1], we have

$$\begin{aligned}
 J_1 &= \left\| \int_0^1 \theta \mathcal{S}'_\alpha(t + \theta\tau) \xi d\tau \right\| \leq \theta \int_0^1 \left\| \mathcal{S}'_\alpha(t + \theta\tau) \xi \right\| d\tau \leq \theta \left\| \xi \right\| \int_0^1 \frac{d\tau}{t + \theta\tau} \\
 &= \left\| \xi \right\| \ln\left(1 + \frac{\theta}{t}\right) \leq \left\| \xi \right\| \alpha^{-1} t^{-\alpha} \theta^\alpha,
 \end{aligned} \tag{9}$$

thanks to the basic inequality $\ln(1 + r) \leq \alpha^{-1} r^\alpha$ for any $r > 0$.

By employing a similar argument to that we have used in the proof of Theorem 3.1 and Proposition 2.1(i) in [1], we have

$$\begin{aligned}
 J_4 &\leq (\alpha_f + \epsilon) R \int_t^{t+\theta} r_\alpha(t + \theta - \tau, \lambda_1) d\tau = (\alpha_f + \epsilon) R \int_0^\theta r_\alpha(\tau, \lambda_1) d\tau \leq (\alpha_f + \epsilon) R \int_0^\theta \ell(\tau) d\tau \\
 &\leq (\alpha_f + \epsilon) R V_1^{-1} \theta \leq (\alpha_f + \epsilon) R V_1^{-1} T^{1-\alpha/2} \theta^{\alpha/2}.
 \end{aligned} \tag{10}$$

Using the Hölder inequality and Proposition 2.1(i) in [1], one has

$$\begin{aligned}
 J_3^2 &= \sum_{n=1}^{\infty} \left(\int_t^{t+\theta} r_\alpha(t + \theta - \tau, \lambda_n) z_n h(\tau) d\tau \right)^2 \leq \sum_{n=1}^{\infty} \int_t^{t+\theta} r_\alpha(t + \theta - \tau, \lambda_n) d\tau \int_t^{t+\theta} r_\alpha(t + \theta - \tau, \lambda_n) z_n^2 h^2(\tau) d\tau \\
 &\leq \|h\|_\infty^2 \sum_{n=1}^{\infty} \int_0^{t+\theta} r_\alpha(t + \theta - \tau, \lambda_n) d\tau \int_t^{t+\theta} r_\alpha(t + \theta - \tau, \lambda_n) z_n^2 d\tau \leq \|h\|_\infty^2 \sum_{n=1}^{\infty} \int_{t-\theta}^{t+\theta} r_\alpha(t + \theta - \tau, \lambda_n) \lambda_n^{-1} z_n^2 d\tau \\
 &\leq \|h\|_\infty^2 \int_t^{t+\theta} r_\alpha(t + \theta - \tau, \lambda_1) \|z\|_{V_{-1/2}}^2 d\tau \leq \|h\|_\infty^2 \int_t^{t+\theta} V_1^{-1} \|z\|_{V_{-1/2}}^2 d\tau \\
 &\leq \|h\|_\infty^2 V_1^{-1} \|z\|_{V_{-1/2}}^2 T^{1-\alpha} \theta^\alpha.
 \end{aligned}$$

Therefore

$$J_3 \leq \|h\|_\infty V_1^{-1/2} \|z\|_{V_{-1/2}} T^{(1-\alpha)/2} \theta^{\alpha/2}. \tag{11}$$

Concerning J_2 , note that

$$J_2^2 = \sum_{n=1}^{\infty} \left(\int_0^t [r_\alpha(t + \theta - \tau, \lambda_n) - r_\alpha(t - \tau, \lambda_n)] z_n f(\tau) d\tau \right)^2.$$

Denote $\mu_n(t, \tau) = r_\alpha(t + \theta - \tau, \lambda_n) - r_\alpha(t - \tau, \lambda_n)$, $n = 1, 2, \dots$. Due to the differentiability of $r_\alpha(\cdot, \lambda_n)$ (see [3, Lemma 2.4(b)]), we get

$$\begin{aligned}
 |\mu_n(t, \tau)| &\leq \int_{t-\tau}^{t+\theta-\tau} |r'_\alpha(\zeta)| d\zeta \leq \int_{t-\tau}^{t+\theta-\tau} (\tau^{-1} + V_2 V_1^{-1} \tau^{-\alpha}) d\tau \\
 &= (1 + V_2 V_1^{-1})(1 - \alpha)^{-1} ((t + \theta - \tau)^{1-\alpha} - (t - \tau)^{1-\alpha}) \\
 &\leq 2(1 + V_2 V_1^{-1})(1 - \alpha)^{-1} \theta^{1-\alpha},
 \end{aligned}$$

thanks to the fundamental inequality $|a^\alpha - b^\alpha| \leq |a - b|^\alpha$ for all $a, b \geq 0$. On the other hand, since the function $r_\alpha(\cdot, \lambda_n)$ is nonincreasing, we also have

$$|\mu_n(t, \tau)| = r_\alpha(t - \tau, \lambda_n) - r_\alpha(t + \theta - \tau, \lambda_n) \leq 2r_\alpha(t - \tau, \lambda_n).$$

Therefore

$$\begin{aligned}
 \left(\int_0^t \mu_n(t, \tau) z_n h(\tau) d\tau \right)^2 &\leq \int_0^t |\mu_n(t, \tau)| d\tau \int_0^t |\mu_n(t, \tau)| z_n^2 h^2(\tau) d\tau \\
 &\leq 4(1 + \nu_2 \nu_1^{-1})(1 - \alpha)^{-1} \theta^{1-\alpha} \int_0^t d\tau \int_0^t r_\alpha(t - \tau, \lambda_n) z_n^2 h^2(\tau) d\tau \\
 &\leq 4T(1 + \nu_2 \nu_1^{-1})(1 - \alpha)^{-1} \theta^{1-\alpha} \lambda_n^{-1} z_n^2 \|h\|_\infty^2.
 \end{aligned}$$

By this, we obtain

$$J_2 \leq 2T^{1/2}(1 + \nu_2 \nu_1^{-1})^{1/2}(1 - \alpha)^{-1/2} \theta^{(1-\alpha)/2} \|z\|_{\mathbb{V}_{-1/2}} \|h\|_\infty. \quad (12)$$

With respect to J_5 , observe that

$$\begin{aligned}
 &\|[\mathcal{R}_\alpha(t + \theta - \tau) - \mathcal{R}_\alpha(t - \tau)]\tilde{f}(\tau)\| \\
 &= \theta \left\| \int_0^1 \mathcal{R}'_\alpha(t + \theta\zeta - \tau) \tilde{f}(\tau) d\zeta \right\| \\
 &\leq (\alpha_f + \epsilon) R \theta \int_0^1 \left[\nu_1^{-1} (t + \theta\zeta - \tau)^{-1} + \nu_1^{-2} \nu_2 \Gamma(1 - \alpha)^{-1} (t + \theta\zeta - \tau)^{-\alpha} \right] d\theta \\
 &= (\alpha_f + \epsilon) R \left[\nu_1^{-1} \ln \left(1 + \frac{\theta}{t - \tau} \right) + \nu_1^{-2} \nu_2 \Gamma(1 - \alpha)^{-1} (1 - \alpha)^{-1} \left((t + \theta - \tau)^{1-\alpha} - (t - \tau)^{1-\alpha} \right) \right] \\
 &\leq (\alpha_f + \epsilon) R \left[\nu_1^{-1} \alpha^{-1} (t - \tau)^{-\alpha} \theta^\alpha + \nu_1^{-2} \nu_2 \Gamma(1 - \alpha)^{-1} (1 - \alpha)^{-1} \theta^{1-\alpha} \right],
 \end{aligned}$$

thanks to the regularity of $\mathcal{R}_\alpha(\cdot)$ obtained in Lemma 2.1(ii) in [1]. Integrating the last inequality on $[0, t]$, we find that

$$\begin{aligned}
 J_5 &\leq \nu_1^{-1} (1 - \alpha)^{-1} (\alpha_f + \epsilon) R \left[\alpha^{-1} t^{1-\alpha} \theta^\alpha + \nu_1^{-1} \nu_2 \Gamma(1 - \alpha)^{-1} \theta^{1-\alpha} t \right] \\
 &\leq \nu_1^{-1} (1 - \alpha)^{-1} (\alpha_f + \epsilon) R \left[\alpha^{-1} T^{1-\alpha} \theta^\alpha + \nu_1^{-1} \nu_2 \Gamma(1 - \alpha)^{-1} \theta^{1-\alpha} T \right].
 \end{aligned} \quad (13)$$

Thus, we obtain from (8)–(12) and (7) the following bound

$$\|u(t + \theta) - u(t)\| \leq C_\beta \theta^\beta,$$

where

$$\begin{aligned}
 C_\beta &= \|\xi\| \|\alpha^{-1} t^{-\alpha} T^\beta + (\alpha_f + \epsilon) T \left[\nu_1^{-1} T^{-\alpha/2} + \nu_1^{-1} (1 - \alpha)^{-1} (\alpha^{-1} T^{-\alpha+\beta} + \nu_1^{-1} \nu_2 \Gamma(1 - \alpha)^{-1} \times T^\beta) \right] R \\
 &\quad + \|h\|_\infty T^{1/2} \left[\nu_1^{-1/2} T^{-\alpha/2} + 2(1 + \nu_2 \nu_1^{-1})^{1/2} (1 - \alpha)^{-1/2} \right] \|z\|_{\mathbb{V}_{-1/2}}.
 \end{aligned}$$

Therefore, due to the assumption (\tilde{H} 2), it holds that

$$\begin{aligned}
 \|\tilde{f}(t + \theta) - \tilde{f}(t)\| &= \|f(t + \theta, u(t + \theta)) - f(t, u(t))\| \\
 &\leq (\alpha_f + \epsilon) R [\theta^\beta + \|u(t + \theta) - u(t)\|] \\
 &\leq (\alpha_f + \epsilon) (1 + C_\beta) R \theta^\beta.
 \end{aligned}$$

Making use of this inequality and following the process of [3, Theorem 4.2], it implies that $\Delta(\mathcal{R}_\alpha * \tilde{f})(T) \in L^2(\Omega)$. Thus, thanks to [3, Lemma 2.4(i)], $\mathbb{Q}(\mathcal{R}_\alpha * \tilde{f})(T) \in L^2(\Omega)$. In addition, by our condition on φ , one gets $\varphi(u) - \mathcal{S}_\alpha(T)\xi$ belonging to \mathbb{V}_1 , thanks to Lemma 2.2(i) in [1]. Based on the above considerations, Lemma 2.2(ii) in [1], and the decomposition

$$z = \mathbb{Q}[\varphi(u) - \mathcal{S}_\alpha(T)\xi] - \mathbb{Q}(\mathcal{R}_\alpha * \tilde{f})(T),$$

it thus follows that $z \in L^2(\Omega)$.

Now denote C_h the Hölder constant of h . In order to finish the proof of this theorem, following [3, Theorem 4.2], it remains to show that the function \tilde{f} is Hölder continuous. Indeed, from the estimates obtained above, we have that

$$\begin{aligned} \|\tilde{h}(t+\theta) - \tilde{h}(t)\| &\leq \|z\| \|h(t+\theta) - h(t)\| + \|\tilde{f}(t+\theta) - \tilde{f}(t)\| \\ &\leq C_h \|z\| \theta^\beta + (\alpha_f + \epsilon)(1 + C_\beta) R \theta^\beta \\ &= [C_h \|z\| + (\alpha_f + \epsilon)(1 + C_\beta) R] \theta^\beta, \end{aligned}$$

which completes the proof. \square

Before closing this section, let us mention that if two nonlinearity functions f, φ fulfill the global Lipschitz conditions $(H2)', (H3)'$:

$(H2)' f : [0, T] \times L^2(\Omega) \rightarrow L^2(\Omega)$ is globally Lipschitz continuous, that is, there exists $L_f > 0$ such that

$$\|f(t, v_1) - f(t, v_2)\| \leq L_f \|v_1 - v_2\|, \forall t \in [0, T], v_1, v_2 \in L^2(\Omega),$$

$(H3)' \varphi : C([0, T]; L^2(\Omega)) \rightarrow \mathbb{V}_{1/2}$ is globally Lipschitz continuous, that is, there exists $L_\varphi > 0$ such that

$$\|\varphi(w_1) - \varphi(w_2)\|_{\mathbb{V}_{1/2}} \leq L_\varphi \|w_1 - w_2\|_\infty, \forall w_1, w_2 \in C([0, T]; L^2(\Omega)),$$

then the conclusion of Theorem 1.2 remains true. In this case, the existence of the solution for the problem **(IP)** and its regularity are proved by using the same arguments as done in the proof of Corollary 3.1 in [1], Theorem 1.2, respectively. To be more precise, we have the following corollary.

Corollary 5. Let $(\tilde{H} 1)$, $(H2)'$, and $(H3)'$ be satisfied. Then the problem **(IP)** has a unique strong solution.

3. Conclusion and dicussion

In this study, we investigate the source identification problem for recovering a spatially varying parameter in the right-hand side of a nonlinear fractional mobile-immobile equation. By imposing appropriate conditions on the model parameters, we establish the data dependence of solutions (Theorem 1.1). Furthermore, under sufficient regularity assumptions on the final data and perturbation terms, we demonstrate that the obtained solution is strong (Theorem 1.2 and Corollary 5).

Several meaningful questions of a similar nature arise, such as:

- (i) determining spatially varying parameters in anomalous diffusion equations [4]–[8], Rayleigh-Stokes equations [9], [10], or sub-diffusion equations [7], [11], [12], and other fractional models [13]–[21] using additional measurements;
- (ii) inferring the relationship between input data and the regularity of solutions.

Below, we propose a partial list of open problems that can be formulated explicitly or implicitly for future research:

1. Investigate the existence, data dependence, and regularity of solutions for the inverse problem **(IP)** using nonlocal observations and perturbed nonlinearities of polynomial, gradient, or advective types.
2. Derive sufficient conditions to ensure regularity in spatial variables under weaker assumptions.

3. Establish the existence, stability, and convergence of numerical solutions for such nonlinear fractional models.

Acknowledgements

This research is funded by the Vietnam Ministry of Education and Training under grant number B.2024-SP2-06. The authors would like to thank Thuyloi University and Hanoi Pedagogical University 2 for providing a fruitful working environment.

References

- [1] N. V. Dac, T. T. Thu, T. V. Tuan, "An identification problem governed by nonlinear fractional mobile-immobile equation, Part I: Solvability," *HPU2 Journal of Science: Natural Sciences and Technology*, 4(02), 66–79, doi: 10.56764/hpu2.jos.2025.4.02.66-79.
- [2] P. Drábek and J. Milota, *Methods of Nonlinear Analysis*. Springer Basel, 2013. doi: 10.1007/978-3-0348-0387-8.
- [3] N. V. Dac, H. T. Tuan, and T. V. Tuan, "Regularity and large-time behavior of solutions for fractional semilinear mobile – immobile equations," *Mathematical Methods in the Applied Sciences*, vol. 46, no. 1, pp. 1005–1031, Jul. 2022, doi: 10.1002/mma.8563.
- [4] W. Li and A. J. Salgado, "Time fractional gradient flows: Theory and numerics," *Mathematical Models and Methods in Applied Sciences*, vol. 33, no. 02, pp. 377–453, Feb. 2023, doi: 10.1142/s0218202523500100.
- [5] L. Li and D. Wang, "Numerical stability of Grünwald–Letnikov method for time fractional delay differential equations," *BIT Numerical Mathematics*, vol. 62, no. 3, pp. 995–1027, Nov. 2021, doi: 10.1007/s10543-021-00900-0.
- [6] R. R. Nigmatullin, "The realization of the generalized transfer equation in a medium with fractal geometry," *physica status solidi (b)*, vol. 133, no. 1, pp. 425–430, Jan. 1986, doi: 10.1002/pssb.2221330150.
- [7] J. C. Pozo and V. Vergara, "Fundamental solutions and decay of fully non-local problems," *Discrete & Continuous Dynamical Systems - A*, vol. 39, no. 1, pp. 639–666, 2019, doi: 10.3934/dcds.2019026.
- [8] P. T. Tuan, T. D. Ke, and N. N. Thang, "Final value problem for Rayleigh–Stokes type equations involving weak-valued nonlinearities," *Fractional Calculus and Applied Analysis*, vol. 26, no. 2, pp. 694–717, Feb. 2023, doi: 10.1007/s13540-023-00133-8.
- [9] E. Bazhlekova, B. Jin, R. Lazarov, and Z. Zhou, "An analysis of the Rayleigh–Stokes problem for a generalized second-grade fluid," *Numerische Mathematik*, vol. 131, no. 1, pp. 1–31, Nov. 2014, doi: 10.1007/s00211-014-0685-2.
- [10] W. R. Schneider and W. Wyss, "Fractional diffusion and wave equations," *Journal of Mathematical Physics*, vol. 30, no. 1, pp. 134–144, Jan. 1989, doi: 10.1063/1.528578.
- [11] B. de Andrade, G. Siracusa, and A. Viana, "A nonlinear fractional diffusion equation: Well-posedness, comparison results, and blow-up," *Journal of Mathematical Analysis and Applications*, vol. 505, no. 2, p. 125524, Jan. 2022, doi: 10.1016/j.jmaa.2021.125524.
- [12] V. Vergara and R. Zacher, "Optimal Decay Estimates for Time-Fractional and Other NonLocal Subdiffusion Equations via Energy Methods," *SIAM Journal on Mathematical Analysis*, vol. 47, no. 1, pp. 210–239, Jan. 2015, doi: 10.1137/130941900.
- [13] G. Amendola, M. Fabrizio, and J. M. Golden, *Thermodynamics of Materials with Memory*. Springer International Publishing, 2021. doi: 10.1007/978-3-030-80534-0.
- [14] D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo, "Fractional Calculus," *Series on Complexity, Nonlinearity and Chaos*, 2012, doi: 10.1142/9789814355216.
- [15] M. Caputo, "Diffusion of fluids in porous media with memory," *Geothermics*, vol. 28, no. 1, pp. 113–130, Feb. 1999, doi: 10.1016/s0375-6505(98)00047-9.
- [16] M. Caputo and C. Cametti, "Diffusion with memory in two cases of biological interest," *Journal of Theoretical Biology*, vol. 254, no. 3, pp. 697–703, Oct. 2008, doi: 10.1016/j.jtbi.2008.06.021.
- [17] M. El-Shahed, "Fractional Calculus Model of the Semilunar Heart Valve Vibrations," *Volume 5: 19th Biennial Conference on Mechanical Vibration and Noise, Parts A, B, and C*, pp. 711–714, Jan. 2003, doi: 10.1115/detc2003/vib-48384.
- [18] L. R. Evangelista and E. K. Lenzi, "Fractional Diffusion Equations and Anomalous Diffusion," Jan. 2018, doi: 10.1017/9781316534649.

- [19] C. G. Gal and M. Warma, Fractional-in-Time Semilinear Parabolic Equations and Applications. Springer International Publishing, 2020. doi: 10.1007/978-3-030-45043-4.
- [20] G. Jumarie, “New stochastic fractional models for Malthusian growth, the Poissonian birth process and optimal management of populations,” Mathematical and Computer Modelling, vol. 44, no. 3–4, pp. 231–254, Aug. 2006, doi: 10.1016/j.mcm.2005.10.003.
- [21] B. Kaltenbacher and W. Rundell, “Inverse Problems for Fractional Partial Differential Equations,” Graduate Studies in Mathematics, 2023, doi: 10.1090/gsm/230.