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Abstract 

This paper continues our recent work in [1], in which we investigated the existence and uniqueness of 
solutions for the inverse problem (IP): Seek the unknown term z , along with the state u  obeying the 
system 

    1 2 ( ) ( ) ( , ),  in , (0, ],t tu u u z x h t f t u t T           (1) 

0 on , 0,u t    (2) 

                                                        ( ,0) =  in ,u    (3) 

and the terminal measurement 

        

 ( , ) ( )( ), .u x T u x x   

(4) 

In this setting, d   with 1d  denotes a bounded domain whose boundary  is smooth. Motivated 
by considerations arising from numerical analysis, the primary aim of this work is to establish a set of 
sufficient conditions on the functions h , ,f  and   that guarantee both the continuous dependence of 

solutions on the data and the regularity in time of the solution pair  ,u z  for the inverse problem (IP). 
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1. Introduction and main results 

Before presenting our results, we recall, for the reader's convenience, some notations, conventions, 
and facts related to the problem (IP), as introduced in [1].  

Let 2 ( )L   denote the space of Lebesgue square-integrable measurable functions on  . The inner 

product and standard norm on 2 ( )L   are denoted by ( , )   and ‖‖, respectively. For 0  , the space   

represents the domain of the fractional power of the Laplacian with homogeneous Dirichlet boundary 
conditions, defined as 

2 2 2

1

(( ) ) ( ) : ( , ) ,n n
n

D v L v e 
 





       
 


 

where 1{ }n ne 
  is an orthonormal basis of 2 ( )L   consisting of eigenfunctions of the Laplacian   subject 

to homogeneous Dirichlet boundary conditions, satisfying 

, | 0,n n n ne e e     

with 1{ }n n 
  forming an increasing sequence such that 0n   and n   as n . For a normed 

linear space X , we denote by ([0, ]; )C T X  the Banach space of all continuous functions from [0, ]T  to 

X . The supremum norm on 2([0, ]; ( ))C T L   and ([0, ])C T  is denoted by ‖‖ .  

As established in [1, Theorem 3.1], if the following hypotheses hold: 

(H1) The real function h  is continuous on  0,T  and satisfies 
[0, ]

: inf ( ) 0;
T

m h t   

(H2) The nonlinearity 2 2:[0, ] ( ) ( )f T L L     satisfies ( ,0) 0f   , and is locally Lipschitz with 

respect to the second variable, that is, for each 0r  , there exists ( ) 0fL r   such that 

1 2 1 2 1 2( , ) ( , ) ( ) , [0, ], , ;ff t v f t v L r v v t T v v r     ‖ ‖ ‖ ‖ ‖ ‖‖ ‖
 

(H3) The function 2
1/2: ([0, ]; ( ))C T L    satisfies (0) 0   and is locally Lipschitz continuous, 

that is, for each 0r  , there exists ( ) 0L r   such that 

1/21 2 1 2 1 2( ) ( ) ( ) , , ;L r r             ‖ ‖ ‖ ‖ ‖ ‖‖ ‖  

(H4) The following inequality holds:  
1 1/2 1

1 1
0 0

limsup ( ) ( 1)limsup ( ,)T T f
r r

h m L r h m L r  
 

 
  ‖‖ ‖‖

 

where Tm  is defined in [1, Lemma 2.2]; 

then there exists 0   such that the inverse source problem (IP) admits a unique solution, provided that 

 ‖‖ . 

We now consider the special case where the final data does not depend on the state. In this case, we 
have the following result concerning the Lipschitz type stability of the solution map.  

Theorem 1.1. Assume that (H1), (H2), (H4) hold, with f  being globally Lipschitz continuous with 

constant .fL  Additionally, suppose that: 
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(H3) The function 2
1/2: ([0, ]; ( ))C T L    is a constant mapping, that is, ( ) g    for some 

1/2g  and all 2([0, ]; ( )).C T L   

Then the solution map ( , ) ( , )g u z   is Lipschitz continuous as a mapping from 2
1/2( )L    to 

2
1/2([0, ]; ( ))C T L   , provided that 

 1
11 .f TL h m 

  ‖‖
 

Our next goal is to deal with the regularity of solutions to the problem (IP). With this goal in mind, 

we will show that under additional hypotheses ,h f  and   take more regular values, the obtained 

solution to the problem (IP) is strong in the sense of the following definition. 

Definition 1.1. A pair 2 2( , ) ([0, ]; ( )) ( )u z C T L L     is said to be a strong solution to the 

problem (IP) iff (1), (3), and (4) hold as equations in 2 ( )L  . 

Let 
1

max ,
2 2

     
 

. In order to deal with strong solution, we further require that 

( H 1) The real function h  satisfies (H1) with [0, ]h C T ; 

( H 2) The nonlinear function 2 2:[0, ] ( ) ( )f T L L     satisfies ( ,0) 0f   , and is locally 

Lipschitz-Hölder, that is, for each 0r  , there exists ( ) 0fL r   such that 

1 1 2 2 1 2 1 2( , ) ( , ) ( ) | | ,ff t v f t v L r t t v v      ‖ ‖ ‖ ‖
 

for all [0, ], , , {1,2};i it T v r i  ‖ ‖  

( H 3) The function   satisfies (H3) with values in 1 . 

Having these assumptions in hand, we can prove the regularity of the solution for the problem (IP) 

which reads as follows: 

Theorem 1.2. Let ( H 1)-( H 3), and (H4) hold. Then there exists 0   such that the identification 

problem (IP) has a unique strong solution on[0, ]T , provided that . ‖‖  

2. Proof of the main results  

This section is devoted to proving the main results stated in Sect. 1.  We first show the proof of 
continuous dependence result for our problem.  

Proof of Theorem 1.1.   

Note that, by Corollary 3.1 in [1], for each for each 2
1/2( , ) ( )g L    , the problem (IP) has a 

unique solution ( , )u z , where the representations of ,u z  are given by 

0
( ) ( ) ( ) ( ) ( , ( )) , [0, ],( )t

u t t t zh f u d t T           
 

(5) 

                            0
( ) ( ) ( , ( )) .[ ]T

z g T T f u d          
 

(6) 

See Eqs. (31), (32) in [1].  
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Now let ( , )i iu z  be two solutions of the problem (IP) with respect to ( , )i ig , {1, 2}i . Then, in 

view of the representation (6), we find that 

1/2

1/2 1/2

1/2

1/2

1 2

1 2 1 2

1 2

1 1 1/2 1 1 1/2
1 2 1 1 2 1 1 2

( ) ( )( )

( , ( )) ( , ( )) ( )

(1 )( ) .

( )

T T T f

z z

g g T

f u f u T

m g g m T m L u u





 

   



 



     




   

      

      

 







 









‖ ‖
‖ ‖ ‖ ‖
‖ ‖

‖ ‖ ‖ ‖ ‖ ‖
 

Additionally, by the formulation (5) and Lemma 2.1 in [1], one has  

1/2

1/2

1/2

1 2

1/2
1 1 2 1 1 2 1 1 20

1/2 1
1 2 1 1 2 1 1 2

1 1 1 1/2
1 2 1 1 2 1 1 2

1
1

( ) ( )

( , ) ( , ) ( ) ( )

( 1)

t

f

f

T T

f T

u t u t

s t h z z r t L u u d

h z z L u u

h m h m g g

L h m

         

   

     










 
 

   
 






      

     

     

 







‖ ‖
‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖

‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖
‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖

‖ ‖ 1
1 2 , [0, ].u u t T

  ‖ ‖
 

Consequently, we arrive at 

1/2

1 1 1 1/2
1 1

1 2 1 2 1 2

1
,

1 1
T Th m h m

u u g g
 

 
 

   
 




    

  
‖ ‖ ‖ ‖‖ ‖ ‖ ‖ ‖ ‖

 

where 1 1
1: 1 ( 1)f TL h m  

  ‖ ‖ .  The proof of Theorem 1.1 is therefore complete.                              ◻ 

We finally prove the regularity of solutions to the problem (IP).  

Proof of Theorem 1.2.  Note that the existence result is ensured by Theorem 3.1 in [1]. Denote 

( ) ( , ( )), ( ) ( ) ( ), [0, ],f t f t u t h t zh t f t t T     
 

where ( , )u z  be the solution to the problem (IP) whose representations are given in Eqs. (5), (6).  

Let us first show that the solution u  is Hölder continuous on (0, ]T . Indeed, fix , , R  as in the 

proof of Theorem 3.1 in [1]. For (0, ]t T , (0, ]T t   , we have 

0

0

1 2 3 4 5

( ) ( ) [ ( ) ( )] [ ( ) ( )] ( )

( ) ( ) ( ) ( )

[ ( ) ( )] ( )

: .

t

t t

t t

t

u t u t t t t t zh d

t zh d t f d

t t f d

J J J J J

   

 

 

 

       

       

    

 

         

     

    

    


 






‖ ‖ ‖ ‖ ‖ ‖

‖ ‖ ‖

‖ ‖

   

 

 

 (7) 

We now wish to estimate the five terms in (7) term by term. For 1J , with the aid of the mean value 

formula [2, Theorem 3.2.6, p. 119] and Lemma 2.1(i) in [1], we have 
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1 1 1

1 0 0 0

1

( ) ( )

ln 1 ,( )

d
J t d t d

t

t
t

 

 

         


   

 

 

    


  

  ‖ ‖ ‖ ‖ ‖ ‖

‖ ‖ ‖ ‖

 

 (9) 

thanks to the basic inequality 1ln(1 )r r    for any 0r  .  

By employing a similar argument to that we have used in the proof of Theorem 3.1 and Proposition 
2.1(i) in [1], we have 

1 10 0

1 1 1 /2 /2
1 1

4 ( ) ( , ) ( ) ( , ) ( ) ( )

( ) ( ) .

t

f f ft

f f

J

R

R r t d R r d R d

R T

  

 

 

           

     



  

       

   

     

 
 (10) 

Using the Hölder inequality and Proposition 2.1(i) in [1], one has 

2 2 2

1 1

2 2 2 1 2

0
1 1

2
1

2
3 ( , ) ( ) ( , ) ( , ) ( )

( , ) ( , ) ( , )

( ,

( )t t t

n n n n nt t t
n n

t t t

n n n n n nt t
n n

t

t

J r t z h d r t d r t z h d

h r t d r t z d h r t z d

h r t

  

  

  

  





             

            

  

   

 

    
 

 





      

       

 





   

   



‖ ‖ ‖ ‖

‖ ‖
1/2 1/2

1/2

2 2 1 2
1

2 1 2 1
1

)

.

t

t
z d h z d

h z T



 

  

 
 



 


 






 



‖ ‖ ‖ ‖ ‖ ‖
‖ ‖ ‖ ‖

 

Therefore 

1/2

1/2 (1 )/2 /2
3 1 .J h z T   



 
 ‖ ‖ ‖ ‖

 (11) 

Concerning 2J , note that 

 2
2
2 0

1

[ ( , ) ( , )] ( )
t

n n n
n

J r t r t z f d       




    
.  

Denote ( , ) ( , ) ( , ), 1,2,n n nt r t r t n               Due to the differentiability of 

( , )nr    (see [3, Lemma 2.4(b)]), we get  

1 1
2 1

1 1 1 1
2 1

1 1 1
2 1

|

,

( , ) | | ( ) | ( )

(1 )(1 ) ( ) ( )

2(1 )(1 )

( )

t t

n t t
t r d d

t t

    
 

 



        

     

   

      

 

   

  

  

      

  

 

 

thanks to the fundamental inequality | | | |a b a b      for all , 0a b  . On the other hand, since the 

function ( , )nr   is nonincreasing, we also have 

| ( , ) | ( , ) ( , ) 2 ( , ).n n n nt r t r t r t                  

Therefore 



HPU2. Nat. Sci. Tech. 2025, 4(3), 42-50 

https://sj.hpu2.edu.vn 47   

2 2 2

0 0 0

1 1 1 2 2
2 1 0 0

1 1 1 1 2 2
2 1

( , ) ( ) | ( , ) | | ( , ) | ( )

4(1 )(1 ) ( , ) ( )

4 (1 )(1 ) .

( )t t t

n n n n n

t t

n n

n n

t z h d t d t z h d

d r t z h d

T z h






          

        

    

  

   




   

  

  
 

‖ ‖
 

By this, we obtain 

1/2

1/2 1 1/2 1/2 (1 )/2
2 2 12 (1 ) (1 ) .J T z h   



  
   ‖ ‖ ‖ ‖

 (12) 

With respect to 5J , observe that 

1

0

1 1 1 2 1
1 1 20

1 2 1 1 1 1
1 1 2

1 1
1

( ) ( ) ( )

( ) ( )

( ) ( ) (1 ) ( )

( ) ln 1 (1 ) (1 ) ( ) ( )

( ) ( )

[ ]

[ ]

[ ( ) ( )]

[

f

f

f

t t f

t f d

R t t d

R t t
t

R t

 





 

 

   

    

          

        


     



    

     

  

   

  

        

          


   







 









‖ ‖

‖ ‖

2 1 1 1
1 2 (1 ) (1 ) ,]        

 

thanks to the regularity of ( )   obtained in Lemma 2.1(ii) in [1]. Integrating the last inequality on 

[0, ]t , we find that 

1 1 1 1 1 1 1
5 1 1 2

1 1 1 1 1 1 1
1 1 2

(1 ) ( ) (1 )

(1 ) ( ) (1 ) .

[ ]
[ ]

f

f

J R t t

R T T

  

  

        

        

      

      

     

     




 (13) 

Thus, we obtain from (8)–(12) and (7) the following bound 

( ) ( ) ,u t u t C 
   ‖ ‖

 

where 

1/2

1 1 /2 1 1 1 1 1
1 1 1 2

1/2 1/2 /2 1 1/2 1/2
1 2 1

(

.

) (1 ) (1 )

2(1 ) (1 )

[ ( )]
[ ]

fC t T T T T T R

h T T z

     




         

   


          

   


        

    

‖ ‖
‖ ‖ ‖ ‖

 

Therefore, due to the assumption ( H 2), it holds that 

( .

( ) ( ) ( , ( )) ( , ( ))

( ) [ ( ) ( )

)(1 )

f

f

f t f t f t u t f t u t

R u t u t

C R






  

  

 

     

    

  

 





‖ ‖ ‖ ‖
‖ ‖

 

Making use of this inequality and following the process of [3, Theorem 4.2], it implies that 
2( )( ) ( )f T L    . Thus, thanks to [3, Lemma 2.4(i)], 2( )( ) ( )f T L     . In addition, by our 

condition on  , one gets ( ) ( )u T   belonging to 1 , thanks to Lemma 2.2(i) in [1]. Based on the 

above considerations, Lemma 2.2(ii) in [1], and the decomposition 

[ ( ) ( ) ] ( )( ),z u T f T          
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it thus follows that 2 ( )z L  .  

Now denote hC  the Hölder constant of h . In order to finish the proof of this theorem, following [3, 

Theorem 4.2], it remains to show that the function f  is Hölder continuous. Indeed, from the estimates 

obtained above, we have that 

( ) ( ) | ( ) ( ) | ( ) ( )

( )(1 )

[ ( )(1 ) ] ,

h f

h f

h t h t z h t h t f t f t

C z C R

C z C R

 





  

  

 

       

   

   

   





‖ ‖ ‖ ‖ ‖ ‖
‖ ‖
‖ ‖

 

which completes the proof.                                                                                                                                              ◻ 

Before closing this section, let us mention that if two nonlinearity functions ,f   fulfill the global 

Lipschitz conditions (H2)  , (H3)  : 

(H2)  2 2:[0, ] ( ) ( )f T L L      is globally Lipschitz continuous, that is, there exists 0fL   such that  

2
1 2 1 2 1 2( , ) ( , ) , [0, ], , ( ),ff t v f t v L v v t T v v L      ‖ ‖ ‖ ‖

 

(H3)   2
1/2: ([0, ]; ( ))C T L    is globally Lipschitz continuous, that is, there exists 0L   such that 

1/2

2
1 2 1 2 1 2( ) ( ) , , ([0, ]; ( )),w w L w w w w C T L       ‖ ‖ ‖ ‖  

then the conclusion of Theorem 1.2 remains true. In this case, the existence of the solution for the problem 
(IP) and its regularity are proved by using the same arguments as done in the proof of Corollary 3.1 in 
[1], Theorem 1.2, respectively. To be more precise, we have the following corollary. 

Corollary 5. Let ( H 1), (H2)  , and (H3)   be satisfied. Then the problem (IP) has a unique strong 
solution. 

3. Conclusion and dicussion 

In this study, we investigate the source identification problem for recovering a spatially varying 
parameter in the right-hand side of a nonlinear fractional mobile-immobile equation. By imposing 
appropriate conditions on the model parameters, we establish the data dependence of solutions (Theorem 
1.1). Furthermore, under sufficient regularity assumptions on the final data and perturbation terms, we 

demonstrate that the obtained solution is strong (Theorem 1.2 and Corollary 5). 

Several meaningful questions of a similar nature arise, such as: 

(i) determining spatially varying parameters in anomalous diffusion equations [4]–[8], Rayleigh-

Stokes equations [9], [10], or sub-diffusion equations [7], [11], [12], and other fractional models [13]–

[21] using additional measurements; 

(ii) inferring the relationship between input data and the regularity of solutions. 

Below, we propose a partial list of open problems that can be formulated explicitly or implicitly for 

future research: 

  1. Investigate the existence, data dependence, and regularity of solutions for the inverse problem 
(IP) using nonlocal observations and perturbed nonlinearities of polynomial, gradient, or advective types. 

2. Derive sufficient conditions to ensure regularity in spatial variables under weaker assumptions. 
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3. Establish the existence, stability, and convergence of numerical solutions for such nonlinear 
fractional models. 
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