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Abstract 

We investigate the existence of a mild solution to the final value problem for a class of fractional reaction-
subdiffusion nonlinear equations, where the nonlinearity may take weak values. We want to demonstrate 
the unique existence of a mild solution by using the Banach fixed-point theorem. In order to do this, we 
construct some new estimates for the resolvent function and the resolvent operator, based on the existing 
resolvent theory. From our point of view, the nonlinearity, which takes values in Hilbert scales, presents 
some technical difficulties but allows us to examine broader classes of problems, since by which it can 
contain a polynomial or gradient term arising from various physical circumstances. 

Keywords: Reaction-subdiffusion equations, nonlocal PDE, final value problem, resolvent theory, Hilbert 
scales 

1. Introduction 

Given a domain 𝛺 ⊂ ℝௗ, assume that 𝛺 is a bounded domain whose the boundary ∂𝛺 is smooth. 

Our problem has the following form: 

∂௧𝑢 − ∂௧
ଵିఈ(𝜈ଵ𝛥𝑢 − 𝜈ଶ𝑢) = 𝑓(𝑢) in 𝛺,  𝑡 ∈ (0, 𝑇),                            (1) 

    u = 0 on ∂𝛺,  𝑡 > 0,           (2) 

                                  𝑢(𝑇,⋅) = 𝜉 in 𝛺,           (3) 

here 𝑢(𝑡, 𝑥) is a function defined on (0, 𝑇] × 𝛺, the function 𝑓 can be chosen willingly, 𝜈ଵ, 𝜈ଶ are positive 

parameters, ∂௧ =
ப

ப௧
, ∂௧

ଵିఈ is the nonlocal derivative operator of Riemann-Liouville type, that means  
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∂௧
ଵିఈ𝑣(𝑡) =

𝑑

𝑑𝑡
න 𝑔ఈ

௧

଴

(𝑡 − 𝑠)𝑣(𝑠)𝑑𝑠 = ∂௧൫𝑔ఈ ∗ 𝑣(𝑡)൯, 𝑡 > 0 

here 𝑔ఈ(𝑡) =
௧ഀషభ

௰(ఈ)
∈ 𝐿௟௢௖

ଵ (ℝା), and the symbol "∗" is used to denote the Laplace convolution. 

In recent years, nonlocal partial differential equations, in particular, fractional partial differential 
equations have received attention from mathematicians, thanks to the application of these equations in 
modeling real-life processes. Among many branches of this research area, we focus on studying the 

reaction-subdiffusion equations (see [1][3] for additional information of reaction-subdiffusion equations 

in physics and chemistry). The subdiffusion process is a special case of anomalous diffusion, 

characterized by a nonlinear relationship between the mean squared displacement and time. Anomalous 
diffusion plays a crucial role in physics, such as the diffusion of proteins within cells or diffusion through 

porous materials, where conventional diffusion equations are ineffective for modeling these phenomena. 
Many studies have demonstrated the advantages of fractional models over classical models in describing 
anomalous diffusion processes, where the fractional derivative can be considered with respect to both 
time and space variables. The fractional derivative with respect to the spatial variable can be used to 
describe the spreading of particles with a rate which is inconsistent compared to classical Brownian 
motion, this diffusive motion is known as Lévy walk and can be simulated using the Riesz-Feller 
fractional derivative with respect to the spatial variable, as specifically addressed in the work [4]. In the 
paper [5], the authors study the long and short time behavior of the solutions to a class of non-local in 
time subdiffusion equations, using tools of the theory of Volterra equations. When examining ecological 
models in biology, the problem of determining the population density of a certain species is posed in [6], 

with a non-local diffusion component and a nonlinear reaction component. Some works on numerical 

solutions for the reaction-subdiffusion equation can be found in the literature [7][10]. 

One efficient tool used to describe anomalous diffusion processes is fractional calculus. We consider 
a class of reaction-diffusion equations as follows  

𝜕௧𝑢(𝑡, 𝑥) − 𝜕௧ ∫ 𝑔ఈ(𝑡 − 𝑠)𝐴𝑢(𝑠, 𝑥)𝑑𝑠
௧

଴
= 𝑓, 𝑡 > 0, 𝑥 ∈ Ω, (R-D) 

where 𝑔ఈ(𝑡) =
௧ഀషభ

୻(ఈ)
, 𝛼 ∈ (0,1), 𝑡 > 0 and 𝐴 is an elliptic operator.  

The existence and finite-time blow-up of solutions for the class of equations (R-D) have been studied 
in [11], [12]. The existence, uniqueness of solutions, and stability, as well as the regularity of solutions 
for the parameter identification problem with the reaction-diffusion equation of the form (R-D), where 

𝐴 = 𝜈ଵΔ − 𝜈ଶ , 𝜈ଵ > 0, 𝜈ଶ > 0, have been studied in the paper [13].  

For a class of reaction-diffusion equations of the form (R-D) considered above, the external force 𝑓 

can be considered either linear or nonlinear. In the case where 𝑓 = 𝑓(𝑢) is a nonlinear function, it is often 

assumed to take values in the space 𝐿ଶ(Ω) with Ω ⊂ ℝௗ in order to utilize many useful tools. However, 

this assumption has its limitations, since 𝑓 may be difficult to express in polynomial form such as 𝑓(𝑢) =

|𝑢|௣, 𝑝 > 1 or to include gradient components such as 𝑓(𝑢) = ℎ(𝑥) ⋅ ∇𝑢, where ℎ is a function of the 

spatial variable 𝑥 ∈ Ω. To overcome this limitations, one can assume that 𝑓(𝑢) belongs to Hilbert scales 

of nonpositive order and make use of the relationship between Hilbert scales and fractional Sobolev spaces 

(see [14][16], [19][20]). On the other hand, the final value problem arises when there are no 
observations at the initial time, and in that case, we need current observations to detect the previous states 

of the system. This problem emerges from many practical applications in signal processing, image 
restoration, medical diagnosis, etc (see [17], [19], [20]).  
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In this paper, we study the existence of a mild solution to the final value problem for a class of 
fractional reaction-subdiffusion nonlinear equations, where the nonlinearity may take values in Hilbert 
scales of nonpositive order. We first establish some estimates for the resolvent operator in Hilbert scales 

and this enables us to demonstrate that the solution operator admits a unique fixed point in a suitable space 
by using the Banach fixed point theorem. Additional information of the techniques used in this paper can 

be found in [18][20]. 

2. Estimates for resolvent operator 

We want to emphasize that the nonlinearity 𝑓 can take weak values, in other words, 𝑓 belongs to a 
Hilbert scale of nonpositive order. To recall the notion of Hilbert scales, we consider the Laplace operator 

subject to the homogeneous Dirichlet boundary condition denoted by the symbol −𝛥. Then −𝛥 can be 
represented as follows:  

−𝛥 = ෍ 𝜆௡

ାஶ

௡ୀଵ

(⋅, 𝑒௡)𝑒௡, 

where {(𝑒௡, 𝜆௡)} is the eigensystem of −𝛥 satisfying that 0 < 𝜆ଵ ≤ 𝜆ଶ ≤ ⋯ ≤ 𝜆௡ → +∞ as 𝑛 → +∞, 

and we also recall that {𝑒௡} is an orthonormal basis of 𝐿ଶ(𝛺). Here the notation (⋅,⋅) stands for the scalar 

product in 𝐿ଶ(𝛺). 

For 𝜚 ≥ 0, consider the function space 

ℍద : = ൝𝜑 ∈ 𝐿ଶ(𝛺) |  ∥ 𝜑 ∥ద
ଶ : = ෍ 𝜆௡

ద

ାஶ

௡ୀଵ

(𝜑, 𝑒௡)ଶ < +∞ൡ 

and its dual space ℍିద and the duality pairing ⟨⋅,⋅⟩ିద,ద on ℍିద × ℍద. The space ℍିద can be equipped 

with the norm 

∥ 𝜑 ∥ିద
ଶ : = ෍ ቤ𝜆௡

ି
ద
ଶ⟨𝜑, 𝑒௡⟩ିద,దቤ

ଶାஶ

௡ୀଵ

< +∞. 

We can see that ℍదమ ↪ ℍదభ  and ℍିదభ ↪ ℍିదమ when 𝜚ଶ ≥ 𝜚ଵ ≥ 0. The set of all Hilbert space ℍద, 

𝜚 ∈ ℝ is called the Hilbert scales. So if 𝑓 belongs to a Hilbert scale of nonpositive order then 𝑓 can be 

chosen in a space which can be larger than 𝐿ଶ(𝛺). 

For the formulation of mild solution, we consider the following relaxation problem: 

𝜔′(𝑡) + (𝜈ଵ𝜆 + 𝜈ଶ)(𝑔ఈ ∗ 𝜔)′(𝑡) = 0, 𝑡 > 0         (4) 

𝜔(0) = 1,           (5) 

where 𝜔 is a scalar function (we call it resolvent function), 𝜆, 𝜈ଵ, 𝜈ଶ are positive parameters. Integrating 

both sides of (4) we have 

     𝜔(𝑡) + (𝜈ଵ𝜆 + 𝜈ଶ)(𝑔ఈ ∗ 𝜔)(𝑡) = 1.                                               (6) 

We now find the representations and estimates of the resolvent function by using the properties of 

the Mittag-Leffler functions. The Mittag-Leffler function 𝐸ఈ,ఉ is given by: 

𝐸ఈ,ఉ(𝑧) = ෍
𝑧௡

𝛤(𝛼𝑛 + 𝛽)

ஶ

௡ୀ଴

, 𝑧 ∈ ℂ, 𝛼, 𝛽 > 0. 

By using the Laplace transform, one has:             

      𝑠(𝑡, 𝜆) : = 𝐸ఈ,ଵ(−𝜆𝑡ఈ); 𝑟(𝑡, 𝜆) : = 𝑡ఈିଵ𝐸ఈ,ఈ(−𝜆𝑡ఈ)                                   (7) 
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where 𝜆 is positive parameter, are solutions of the following Volterra integral equations  

𝑠(𝑡, 𝜆) + 𝜆 ∫ 𝑔ఈ
௧

଴
(𝑡 − 𝜏)𝑠(𝑡, 𝜏)𝑑𝜏 = 1,  𝑡 ≥ 0,           (8) 

𝑟(𝑡, 𝜆) + 𝜆 ∫ 𝑔ఈ
௧

଴
(𝑡 − 𝜏)𝑟(𝑡, 𝜏)𝑑𝜏 = 𝑔ఈ(𝑡),  𝑡 > 0.          (9) 

We can easily see that (6) is identical to (8) with 𝜔(𝑡) is replaced by 𝑠(𝑡, 𝜆), 𝜆 is replaced by 𝜈ଵ𝜆 +

𝜈ଶ, and the Laplace convolution is written in integral form. Note that when 𝜆 > 0 then the function 𝑠(𝑡, 𝜆) 

is completely monotonic on (0, ∞), that means (−1)௡ ப೙

ப௧೙ 𝑠(𝑡, 𝜆) ≥ 0 for all 𝑛 = 0,1,2, ⋯ and 𝑡 > 0. 

Some properties of 𝑠(𝑡, 𝜆) are listed in the following proposition (see [13]): 

Proposition 2.1.  Suppose that 𝑠(𝑡, 𝜆) is a solution of (8). Then 

(a) We have the lower and upper bound for 𝑠(𝑡, 𝜆) as follows:  

1

1 + 𝜆𝛤(1 − 𝛼)𝑡ఈ
≤ 𝑠(𝑡, 𝜆) ≤

1

1 +
𝜆𝑡ఈ

𝛤(1 + 𝛼)

, ∀𝑡 ≥ 0,  𝜆 > 0. 

(b) For each 𝑡 > 0, the function 𝜆 ↦ 𝑠(𝑡, 𝜆) and the function 𝑡 ↦ 𝑠(𝑡, 𝜆) are nonincreasing. 

(c) The function 𝑣(𝑡) = 𝑠(𝑡, 𝜆)𝑣଴ + ∫ 𝑠
௧

଴
(𝑡 − 𝜏, 𝜆)ℎ(𝜏)𝑑𝜏 is the solution of    

𝑣′(𝑡) + 𝜆(𝑔ఈ ∗ 𝑣)′(𝑡) = ℎ(𝑡),

𝑣(0) = 𝑣଴.
 

By applying Proposition 2.1 for 𝜔, we obtain the following estimate: 
ଵ

ଵା(ఔభఒାఔమ)௰(ଵିఈ)௧ഀ  ≤  𝜔(𝑡, 𝜈ଵ𝜆 + 𝜈ଶ)  ≤  
ଵ

ଵା
(ഌభഊశഌమ)೟ഀ

೨(భశഀ)

,  ∀𝑡 > 0,  𝜆 > 0.                     (10) 

In the next step, we will find the solution representation for the linear initial value problem (consider 

𝐹 = 𝐹(𝑡, 𝑥) for simplification): 

  ∂௧𝑢 − ∂௧
ଵିఈ(𝜈ଵ𝛥𝑢 − 𝜈ଶ𝑢) = 𝐹  in 𝛺, 𝑡 ∈ (0, 𝑇],                                           (11) 

                   𝑢 = 0  on ∂𝛺,  𝑡 ∈ [0, 𝑇],                                                             (12) 

                     𝑢(0) = 𝜂  in 𝛺,                                                           (13) 

where 𝐹 ∈ 𝐶൫[0, 𝑇]; 𝐿ଶ(𝛺)൯.  

Since {𝑒௡} is an orthonormal basis of 𝐿ଶ(𝛺) (we have mentioned above), we can assume that  

𝑢(𝑡) = ෍ 𝑢௡

ஶ

௡ୀଵ

(𝑡)𝑒௡ ,  𝐹(𝑡) = ෍ 𝐹௡

ஶ

௡ୀଵ

(𝑡)𝑒௡. 

Putting that into (11), one gets 

𝑢௡ ′(𝑡) + (𝜈ଵ𝜆௡ + 𝜈ଶ)(𝑔ఈ ∗ 𝑢௡)′(𝑡) = 𝐹௡(𝑡),

𝑢௡(0) = 𝜂௡ : = (𝜂, 𝑒௡).
 

Using the Proposition 2.1(c), we have 

𝑢௡(𝑡) = 𝜔(𝑡, 𝜈ଵ𝜆௡ + 𝜈ଶ)𝜂௡ + 𝜔(⋅, 𝜈ଵ𝜆௡ + 𝜈ଶ) ∗ 𝐹௡(𝑡). 

Therefore 

    𝑢(𝑡) = 𝑆(𝑡)𝜂 + 𝑆 ∗ 𝐹(𝑡),                     (14) 

where 𝑆(𝑡) is the resolvent operator given by 

 𝑆(𝑡)𝜂 = ∑ 𝜔ஶ
௡ୀଵ (𝑡, 𝜈ଵ𝜆௡ + 𝜈ଶ)𝜂௡𝑒௡,  𝜂 ∈ 𝐿ଶ(𝛺).                     (15) 
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We can see that 𝑆(𝑡) is a bounded linear operator on 𝐿ଶ(𝛺) for all 𝑡 ≥ 0. Finally, we construct the 

solution formula for the final value problem in the linear case: 

   ∂௧𝑢 − ∂௧
ଵିఈ(𝜈ଵ𝛥𝑢 − 𝜈ଶ𝑢) = 𝐹  in 𝛺, 𝑡 ∈ (0, 𝑇],                               (16) 

  𝑢 = 0  on ∂𝛺,  𝑡 ∈ (0, 𝑇],         (17) 

       𝑢(𝑇,⋅) = 𝜉  in 𝛺,          (18) 

here 𝐹 ∈ 𝐶൫[0, 𝑇]; 𝐿ଶ(𝛺)൯. From (13), let 𝑡 = 𝑇 we have: 

𝜉 = 𝑆(𝑇)𝜂 + න 𝑆
்

଴

(𝑇 − 𝜏)𝐹(𝜏)𝑑𝜏. 

Then 

𝜂 = 𝑆(𝑇)ିଵ ቈ𝜉 − න 𝑆
்

଴

(𝑇 − 𝜏)𝐹(𝜏)𝑑𝜏቉. 

Therefore, the solution of (16)-(18) is given by 

𝑢(𝑡) = 𝑃(𝑡)[𝜉 − 𝑆 ∗ 𝐹(𝑇)] + 𝑆 ∗ 𝐹(𝑡),                                (19) 

here 

     𝑃(𝑡) = 𝑆(𝑡)𝑆(𝑇)ିଵ = ∑
ఠ(௧,ఔభఒ೙ାఔమ)

ఠ(்,ఔభఒ೙ାఔమ)
ஶ
௡ୀଵ (⋅, 𝑒௡)𝑒௡.       (20) 

The properties of 𝑆 and 𝑃 can be shown in the following lemmas.  

Lemma 2.1.  Suppose that {𝑆(𝑡)}௧ஹ଴ is a family of resolvent operators given by (15), 𝑣 ∈ 𝐿ଶ(𝛺)  

and 𝑇 > 0. Then for 𝛾, 𝛾′ ∈ (0,1), 𝜇 > 0 and 𝑔 ∈ 𝐶([0, 𝑇]; ℍఓିଶఊఊᇱ), we have  

∥ 𝑆 ∗ 𝑔(𝑡) ∥ఓ
ଶ  ≤ 𝑀ଵ

௧భషഀംᇲ

ଵିఈఊᇱ
∫ (𝑡 − 𝜏)ିఈఊᇱ௧

଴
∥ 𝑔(𝜏) ∥ఓିଶఊఊ

ଶ 𝑑𝜏, where 𝑀ଵ = ൫𝛤(1 + 𝛼)൯
ଶఊᇱ

𝜈ଶ
ଶఊ

𝜈ଵ
ିଶఊఊᇱ. 

Proof. Assume that 𝑔 ∈ 𝐶([0, 𝑇]; ℍఓିଶఊఊ ). Then 

∥ 𝑆 ∗ 𝑔(𝑡) ∥ఓ
ଶ  = ෍ 𝜆௡

ఓ

ஶ

௡ୀଵ

ቆන 𝜔
௧

଴

(𝑡 − 𝜏, 𝜈ଵ𝜆௡ + 𝜈ଶ)𝑔௡(𝜏)𝑑𝜏ቇ

ଶ

, 𝑔௡(𝜏) = (𝑔(𝜏), 𝑒௡). 

By using the Hölder inequality we have 

ቆන 𝜔
௧

଴

(𝑡 − 𝜏, 𝜈ଵ𝜆௡ + 𝜈ଶ)𝑔௡(𝜏)𝑑𝜏ቇ

ଶ

≤ ቆන 𝜔
௧

଴

(𝑡 − 𝜏, 𝜈ଵ𝜆௡ + 𝜈ଶ)𝑑𝜏ቇ ቆන 𝜔
௧

଴

(𝑡 − 𝜏, 𝜈ଵ𝜆௡ + 𝜈ଶ)|𝑔௡(𝜏)|ଶ𝑑𝜏ቇ .

 

From (10) we have the estimate: 
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𝜔(𝑡 − 𝜏, 𝜈ଵ𝜆௡ + 𝜈ଶ) ≤
1

1 +
𝜈ଶ ቀ

𝜈ଵ
𝜈ଶ

𝜆௡ + 1ቁ (𝑡 − 𝜏)ఈ

𝛤(1 + 𝛼)

≤
1

1 +

𝜈ଶ ቆ
𝜈ଵ

ఊ

𝜈ଶ
ఊ 𝜆௡

ఊ
ቇ (𝑡 − 𝜏)ఈ

𝛤(1 + 𝛼)

≤
൫𝛤(1 + 𝛼)൯

ఊᇱ

𝜈ଶ
ఊᇱ 𝜈ଵ

ఊఊᇱ

𝜈ଶ
ఊఊᇱ 𝜆௡

ఊఊᇱ(𝑡 − 𝜏)ఈఊᇱ

=
൫𝛤(1 + 𝛼)൯

ఊᇱ

𝜈ଶ
(ଵିఊ)ఊᇱ

𝜈ଵ
ఊఊ

𝜆௡
ఊఊᇱ(𝑡 − 𝜏)ఈఊᇱ

,

 

here we use the inequality 1 + 𝑏 ≥ 𝑏఑ with 𝑏 > 0, 𝜅 ∈ (0,1), and 𝜅 take values 𝛾, 𝛾′ ∈ (0,1). 

Then 

න 𝜔
௧

଴

(𝑡 − 𝜏, 𝜈ଵ𝜆௡ + 𝜈ଶ)𝑑𝜏 ≤  
൫𝛤(1 + 𝛼)൯

ఊᇱ

𝜈ଶ
(ଵିఊ)ఊᇱ

𝜈ଵ
ఊఊᇱ

𝜆௡
ఊఊᇱ

න
1

(𝑡 − 𝜏)ఈఊᇱ

௧

଴

𝑑𝜏

=  
൫𝛤(1 + 𝛼)൯

ఊᇱ

𝜈ଶ
(ଵିఊ)ఊᇱ

𝜈ଵ
ఊఊᇱ

𝜆௡
ఊఊᇱ

−(𝑡 − 𝜏)ଵିఈఊᇱ

1 − 𝛼𝛾′
|଴
௧

=  
൫𝛤(1 + 𝛼)൯

ఊᇱ

𝜈ଶ
(ଵିఊ)ఊᇱ

𝜈ଵ
ఊఊᇱ

𝜆௡
ఊఊᇱ

𝑡ଵିఈఊᇱ

1 − 𝛼𝛾′
.

 

In the other hand, we have 

න 𝜔
௧

଴

(𝑡 − 𝜏, 𝜈ଵ𝜆௡ + 𝜈ଶ)|𝑔௡(𝜏)|ଶ𝑑𝜏 ≤ න
|𝑔௡(𝜏)|ଶ൫𝛤(1 + 𝛼)൯

ఊᇱ

𝜈ଶ
(ଵିఊ)ఊᇱ

𝜈ଵ
ఊఊᇱ

𝜆௡
ఊఊᇱ(𝑡 − 𝜏)ఈఊᇱ

௧

଴

𝑑𝜏. 

So 

ቆන 𝜔
௧

଴

(𝑡 − 𝜏, 𝜈ଵ𝜆௡ + 𝜈ଶ)𝑔௡(𝜏)𝑑𝜏ቇ

ଶ

≤ 𝜆௡
ିଶఊఊᇱ

ቀ൫𝛤(1 + 𝛼)൯
ଶఊᇱ

𝜈ଶ
ଶ(ఊିଵ)ఊᇱ

𝜈ଵ
ିଶఊఊ

ቁ
𝑡ଵିఈఊᇱ

1 − 𝛼𝛾′
න

|𝑔௡(𝜏)|ଶ

(𝑡 − 𝜏)ఈఊᇱ

௧

଴

𝑑𝜏.

 

Set ൫𝛤(1 + 𝛼)൯
ଶఊᇱ

𝜈ଶ
ଶ(ఊିଵ)ఊᇱ

𝜈ଵ
ିଶఊఊᇱ

= 𝑀ଵ, we obtain 

∥ 𝑆 ∗ 𝑔(𝑡) ∥ఓ
ଶ ≤ ෍ 𝜆௡

ఓିଶఊఊᇱ

ஶ

௡ୀଵ

𝑀ଵ

𝑡ଵିఈఊᇱ

1 − 𝛼𝛾′
න

|𝑔௡(𝜏)|ଶ

(𝑡 − 𝜏)ఈఊ

௧

଴

𝑑𝜏

= 𝑀ଵ

𝑡ଵିఈఊᇱ

1 − 𝛼𝛾′
න (𝑡 − 𝜏)ିఈఊᇱ

௧

଴

∥ 𝑔(𝜏) ∥ఓିଶఊఊ
ଶ 𝑑𝜏.

 

The proof is complete.  

Lemma 2.2.  A family of operators {𝑃(𝑡)} given by (20) has the following properties: 

(a) If  𝛾, 𝛾′ ∈ (0,1), 𝜇 > 0 and 𝜉 ∈ ℍఓାଶ(ଵିఊఊᇱ) then ∥ 𝑃(𝑡)𝜉 ∥ఓ
ଶ  ≤ 𝑡ିଶఈఊᇱ𝑀଴ ∥ 𝜉 ∥ఓାଶ(ଵିఊఊᇱ)

ଶ . Here  
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𝑀଴ = ቆ൬
1

𝜆ଵ
+ ൬𝜈ଵ +

𝜈ଶ

𝜆ଵ
൰ 𝛤(1 − 𝛼)𝑇ఈ൰ ൫𝛤(1 + 𝛼)൯

ఊᇱ
𝜈ଶ

ఊ
𝜈ଵ

ିఊఊᇱ
ቇ

ଶ

. 

(b) For 𝛾, 𝛾′ ∈ (0,1), 𝜇 > 0 and 𝑔 ∈ 𝐶([0, 𝑇]; ℍఓାଶିସఊఊᇱ),  

∥ 𝑃(𝑡)[𝑆 ∗ 𝑔(𝑇)] ∥ఓ
ଶ ≤  𝑀଴𝑀ଵ𝑡ିଶఈఊᇱ

𝑇ଵିఈఊᇱ

1 − 𝛼𝛾′
න (𝑇 − 𝜏)ିఈఊᇱ

்

଴

∥ 𝑔(𝜏) ∥ఓାଶିସఊఊᇱ
ଶ 𝑑𝜏. 

Proof. (a) We consider  

∥ 𝑃(𝑡)𝜉 ∥ఓ
ଶ  = ∑ 𝜆௡

ఓஶ
௡ୀଵ ቀ

ఠ(௧,ఔభఒ೙ାఔమ)

ఠ(்,ఔభఒ೙ାఔమ)
ቁ

ଶ
𝜉௡

ଶ,  𝜉௡ = (𝜉, 𝑒௡).                   (21) 

We first obtain the following estimate: 

𝜔(𝑡, 𝜈ଵ𝜆௡ + 𝜈ଶ)

𝜔(𝑇, 𝜈ଵ𝜆௡ + 𝜈ଶ)
≤  

1 + (𝜈ଵ𝜆௡ + 𝜈ଶ)𝛤(1 − 𝛼)𝑇ఈ

1 +
(𝜈ଵ𝜆௡ + 𝜈ଶ)𝑡ఈ

𝛤(1 + 𝛼)

≤  𝜆௡

1
𝜆௡

+ ൬𝜈ଵ +
𝜈ଶ
𝜆௡

൰ 𝛤(1 − 𝛼)𝑇ఈ

(𝜈ଵ𝜆௡)ఊఊᇱ𝜈ଶ
ିఊ

𝑡ఈఊ

൫𝛤(1 + 𝛼)൯
ఊᇱ

≤  𝜆௡

1
𝜆ଵ

+ ቀ𝜈ଵ +
𝜈ଶ
𝜆ଵ

ቁ 𝛤(1 − 𝛼)𝑇ఈ

(𝜈ଵ𝜆௡)ఊఊᇱ𝜈ଶ
ିఊ

𝑡ఈఊᇱ

൫𝛤(1 + 𝛼)൯
ఊᇱ

=  𝜆௡
ଵିఊఊᇱ

൬
1

𝜆ଵ
+ ൬𝜈ଵ +

𝜈ଶ

𝜆ଵ
൰ 𝛤(1 − 𝛼)𝑇ఈ൰

 × ൫𝛤(1 + 𝛼)൯
ఊᇱ

𝜈ଶ
ఊ

𝜈ଵ
ିఊఊᇱ

𝑡ିఈఊᇱ,

 

here we use (10) and the inequality 1 + 𝑏 ≥ 𝑏఑ with 𝑏 > 0, 𝜅 ∈ (0,1). Set 

ቆ൬
1

𝜆ଵ
+ ൬𝜈ଵ +

𝜈ଶ

𝜆ଵ
൰ 𝛤(1 − 𝛼)𝑇ఈ൰ ൫𝛤(1 + 𝛼)൯

ఊᇱ
𝜈ଶ

ఊ
𝜈ଵ

ିఊఊᇱ
ቇ

ଶ

= 𝑀଴, 

substitute into (21), we get 

∥ 𝑃(𝑡)𝜉 ∥ఓ
ଶ ≤ 𝑡ିଶఈఊᇱ𝑀଴ ෍ 𝜆௡

ఓାଶ(ଵିఊఊᇱ)

ஶ

௡ୀଵ

𝜉௡
ଶ

= 𝑡ିଶఈఊᇱ𝑀଴ ∥ 𝜉 ∥ఓାଶ(ଵିఊఊᇱ)
ଶ .

 

(b) By applying the estimate in (a) and Lemma 2.1, we obtain 

∥ 𝑃(𝑡)[𝑆 ∗ 𝑔(𝑇)] ∥ఓ
ଶ ≤ 𝑡ିଶఈఊᇱ𝑀଴ ∥ 𝑆 ∗ 𝑔(𝑇) ∥ఓାଶ(ଵିఔ)

ଶ

≤ 𝑀଴𝑀ଵ𝑡ିଶఈఊᇱ
𝑇ଵିఈఊᇱ

1 − 𝛼𝛾′
න (𝑇 − 𝜏)ିఈఊᇱ

்

଴

∥ 𝑔(𝜏) ∥ఓାଶିସఊఊᇱ
ଶ 𝑑𝜏.

 

The proof is complete. 

3. Existence of mild solution 

To deal with (1)-(3), we need the following hypotheses (F) for the nonlinearity 𝑓: 

(F) The function 𝑓: ℍఓ → ℍିఏ  satisfies 𝑓(0) = 0 , here 𝜇 > 0  and 𝜃  is nonnegative. Moreover, 

there exist nonnegative functions 𝐿௙ and ℓ௙ such that for 𝑢, 𝑣 ∈ ℍఓ we have 
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∥ 𝑓(𝑢) − 𝑓(𝑣) ∥ିఏ  ≤  𝐿௙൫∥ 𝑢 ∥ఓ , ∥ 𝑣 ∥ఓ൯ ∥ 𝑢 − 𝑣 ∥ఓ 

and 

𝐿௙(𝜓𝜌, 𝜓𝜌′)  ≥  ℓ௙(𝜓)𝐿௙(𝜌, 𝜌′), for all 𝜓, 𝜌, 𝜌′ > 0. 

Based on (19), we deliver the definition of solution for (1)-(3) as follows: 

Definition 3.1.  Let 𝜇 > 0. A function 𝑢 ∈ 𝐶((0, 𝑇]; ℍఓ) is called a mild solution of (1)-(3) if 

 𝑢(𝑡) = 𝑃(𝑡)𝜉 − 𝑃(𝑡) ∫ 𝑆
்

଴
(𝑇 − 𝜏)𝑓൫𝑢(𝜏)൯𝑑𝜏 + ∫ 𝑆

௧

଴
(𝑡 − 𝜏)𝑓൫𝑢(𝜏)൯𝑑𝜏,  0 < 𝑡 ≤ 𝑇. 

We look for the solution of (1)-(3) in the function space 

𝕍ఓ,ఈఊᇱ = {𝑢 ∈ 𝐶((0, 𝑇]; ℍఓ): 𝑢(𝑇,∙) = 𝜉 𝑎𝑛𝑑 ∥ 𝑢 ∥ఓ,ఈఊᇱ: = sup 
௧வ଴

𝑡ఈఊ ∥ 𝑢(𝑡) ∥ఓ  < +∞}, 

here 𝜇, 𝛼, 𝛾′ are positive and 𝜉 is a given final data. 

Theorem 3.2.  Let 𝜇 ∈ (0,1], 0 < 𝛾, 𝛾′ < 1 such that 𝜇 ≤ 4𝛾𝛾′ − 2. Assume that (F) holds with 𝜃 =

4𝛾𝛾′ − 2 − 𝜇 . Then there exist 𝜌∗ > 0  and 𝛽 > 0  such that if ∥ 𝜉 ∥ఓାଶ(ଵିఊఊᇱ)≤ 𝛽  and 

6𝐿௙
∗ ଶ

ቈ𝑀଴𝑀ଵ
்భషഀംᇲ

ଵିఈఊᇱ
𝛬(𝑇) + 𝜆ଵ

ଶఊఊᇱି
𝑀ଵ

௧భషഀംᇲ

ଵିఈఊᇱ
sup

௧∈(଴,்]
𝑡ଶఈఊᇱ𝛬(𝑡)቉ < 1 here 

𝐿௙
∗ = limsup

ఘ,ఘᇱ→଴
 𝐿௙(𝜌, 𝜌′),

𝛬(𝑡) = ∫ (𝑡 − 𝜏)ିఈఊᇱ௧

଴
𝜏ିଶఈఊᇱℓ௙(𝜏ఈఊ )ିଶ𝑑𝜏,

 

then the problem (1)-(3) has a unique mild solution 𝑢 in 𝕍ఓ,ఈఊᇱ satisfying ∥ 𝑢 ∥ఓ,ఈఊᇱ≤ 𝜌∗. 

Proof. We consider the solution operator 

𝛷(𝑢)(𝑡) = 𝑃(𝑡)𝜉 − 𝑃(𝑡) න 𝑆
்

଴

(𝑇 − 𝜏)𝑓൫𝑢(𝜏)൯𝑑𝜏 + න 𝑆
௧

଴

(𝑡 − 𝜏)𝑓൫𝑢(𝜏)൯𝑑𝜏,  0 < 𝑡 ≤ 𝑇. 

We can see that 𝛷(𝑢)(𝑇) = 𝜉, since 𝑃(𝑇) = 𝐼 (here 𝐼 is the identity operator). In the first step, we 

want to find 𝜌∗ > 0 such that 𝛷൫𝐵ఘ∗ ൯ ⊂ 𝐵ఘ∗ , where 𝐵ఘ∗  is a closed ball in 𝕍ఓ,ఈఊᇱ  centered at 0 with 

radius 𝜌∗. Choose 𝜁 > 0 such that the following condition holds: 

6൫𝐿௙
∗ ଶ

+ 𝜁൯ ቈ𝑀଴𝑀ଵ

𝑇ଵିఈఊᇱ

1 − 𝛼𝛾′
𝛬(𝑇) + 𝜆ଵ

ଶఊఊᇱି
𝑀ଵ

𝑡ଵିఈఊᇱ

1 − 𝛼𝛾′
sup

௧∈(଴,்]
𝑡ଶఈఊᇱ𝛬(𝑡)቉ ≤ 1. 

From the definition of 𝐿௙
∗ , one can find 𝜌∗ > 0 so that 

ቀ𝐿௙(𝜌, 𝜌′)ቁ
ଶ

≤ 𝐿௙
∗ ଶ

+ 𝜁, for all 𝜌, 𝜌′ ≤ 𝜌∗. 

For 𝑢 ∈ 𝐵ఘ∗, we estimate the solution operator as follows: 

∥ 𝛷(𝑢)(𝑡) ∥ఓ
ଶ ≤ 3 ∥ 𝑃(𝑡)𝜉 ∥ఓ

ଶ  + 3 ∥ 𝑃(𝑡)[𝑆 ∗ 𝑓(𝑢)(𝑇)] ∥ఓ
ଶ  + 3 ∥ 𝑆 ∗ 𝑓(𝑢)(𝑡) ∥ఓ

ଶ

= 3[𝐼ଵ(𝑡) + 𝐼ଶ(𝑡) + 𝐼ଷ(𝑡)].
 

By applying Lemma 2.2, we obtain the estimate: 

   𝐼ଵ(𝑡) =∥ 𝑃(𝑡)𝜉 ∥ఓ
ଶ  ≤ 𝑡ିଶఈఊᇱ𝑀଴ ∥ 𝜉 ∥ఓାଶ(ଵିఊఊᇱ)

ଶ .                                          (22) 

In addition, 

𝐼ଶ = ‖𝑃(𝑡)[𝑆 ∗ 𝑓(𝑢)(𝑇)]‖ఓ
ଶ ≤ 𝑀଴𝑀ଵ𝑡ିଶఈఊᇲ ்భషഀംᇲ

ଵିఈఊᇲ ∫ (𝑇 − 𝜏)ିఈఊᇲ
ฮ𝑓൫𝑢(𝜏)൯ฮ

ఓାଶିସఊఊᇲ

ଶ
𝑑𝜏

்

଴
  

≤ 𝑀଴𝑀ଵ
்భషഀംᇲ

ଵିఈఊᇲ 𝑡ିଶఈఊᇲ
∫ (𝑇 − 𝜏)ିఈఊᇲ

𝐿௙(‖𝑢(𝜏)‖ఓ , 0)ଶ‖𝑢(𝜏)‖ఓ
ଶ 𝑑𝜏

்

଴
  



HPU2. Nat. Sci. Tech. 2025, 4(2), 80-91 

https://sj.hpu2.edu.vn 88   

            ≤ 𝑀଴𝑀ଵ
்భషഀംᇲ

ଵିఈఊᇲ 𝑡ିଶఈఊᇲ
∫ (𝑇 − 𝜏)ିఈఊᇲ

𝑙௙(𝜏ఈఊᇱ)ିଶ𝐿௙(𝜏ఈఊᇱ‖𝑢(𝜏)‖ఓ , 0)ଶ‖𝑢(𝜏)‖ଶ𝑑𝜏
்

଴
  

              ≤ 𝑀଴𝑀ଵ
்భషഀംᇲ

ଵିఈఊᇲ 𝑡ିଶఈఊᇲ
𝜌∗ଶ

∫ (𝑇 − 𝜏)ିఈఊᇲ
𝜏ିଶఈఊᇲ

𝑙௙(𝜏ఈఊ )ିଶ𝐿௙(𝜏ఈఊᇱ‖𝑢(𝜏)‖ఓ , 0)ଶ𝑑𝜏
்

଴
  

            ≤ 𝑀଴𝑀ଵ
்భషഀംᇲ

ଵିఈఊᇲ 𝑡ିଶఈఊᇲ
𝜌∗ଶ(𝐿௙

∗ ଶ
+ 𝜁) ∫ (𝑇 − 𝜏)ିఈఊᇲ

𝜏ିଶఈఊᇲ
𝑙௙(𝜏ఈఊᇱ)ିଶ𝑑𝜏

்

଴
.                    (23) 

To deal with 𝐼ଷ(𝑡), we use Lemma 2.1. One can see that 

∥ 𝑆 ∗ 𝑓(𝑢)(𝑡) ∥ఓ
ଶ ≤  𝑀ଵ

𝑡ଵିఈఊᇱ

1 − 𝛼𝛾′
න (𝑡 − 𝜏)ିఈఊᇱ

௧

଴

∥ 𝑓൫𝑢(𝜏)൯ ∥ఓିଶఊఊ
ଶ 𝑑𝜏

≤  𝜆ଵ
ଶఊఊᇱିଶ

𝑀ଵ

𝑡ଵିఈఊᇱ

1 − 𝛼𝛾′
න (𝑡 − 𝜏)ିఈఊᇱ

௧

଴

∥ 𝑓൫𝑢(𝜏)൯ ∥ఓାଶିସఊఊᇱ
ଶ 𝑑𝜏.

 

By using the same arguments as in the estimate for 𝐼ଶ(𝑡), one can have 

        𝐼ଷ(𝑡) ≤  𝜆ଵ
ଶఊఊᇱିଶ

𝑀ଵ
௧భషഀംᇲ

ଵିఈఊᇱ
𝜌∗ଶ൫𝐿௙

∗ ଶ
+ 𝜁൯ ∫ (𝑡 − 𝜏)ିఈఊᇱ௧

଴
𝜏ିଶఈఊᇱℓ௙(𝜏ఈఊᇱ)ିଶ𝑑𝜏.               (24) 

From (22)-(24) we obtain 

𝑡ଶఈఊᇱ ∥ 𝛷(𝑢)(𝑡) ∥ఓ
ଶ

≤ 3𝑀଴ ∥ 𝜉 ∥ఓାଶ(ଵିఊఊᇱ)
ଶ  + 3൫𝐿௙

∗ ଶ
+ 𝜁൯[𝑀଴𝑀ଵ

𝑇ଵିఈఊᇱ

1 − 𝛼𝛾′
𝛬(𝑇)

 + 𝜆ଵ
ଶఊఊᇱିଶ

𝑀ଵ

𝑡ଵିఈఊᇱ

1 − 𝛼𝛾′
𝑡ଶఈఊᇱ𝛬(𝑡)]𝜌∗ଶ

≤ 3𝑀଴ ∥ 𝜉 ∥ఓାଶ(ଵିఊఊᇱ)
ଶ +

1

2
𝜌∗ଶ.

 

Choose 𝛽 = ൫ඥ6𝑀଴൯
ିଵ

𝜌∗, with ∥ 𝜉 ∥ఓାଶ(ଵିఊఊᇱ)≤ 𝛽 we have 

𝑡ଶఈఊᇱ ∥ 𝛷(𝑢)(𝑡) ∥ఓ
ଶ ≤ 𝜌∗ଶ for all 𝑡 ∈ (0, 𝑇]. 

Therefore 𝛷(𝑢) ∈ 𝐵ఘ∗ .  

The second step is showing that 𝛷 is a contraction mapping on 𝐵ఘ∗. For 𝑢, 𝑣 ∈ 𝐵ఘ∗ , one gets 

∥ 𝛷(𝑢)(𝑡) − 𝛷(𝑣)(𝑡) ∥ఓ
ଶ

≤ 2 ∥ 𝑃(𝑡)൫𝑆 ∗ [𝑓(𝑢) − 𝑓(𝑣)](𝑇)൯ ∥ఓ
ଶ  + 2 ∥ 𝑆 ∗ [𝑓(𝑢) − 𝑓(𝑣)](𝑡) ∥ఓ

ଶ

≤ 2𝑀଴𝑀ଵ𝑡ିଶఈఊᇱ
𝑇ଵିఈఊᇱ

1 − 𝛼𝛾′
න (𝑇 − 𝜏)ିఈఊᇱ

்

଴

∥ 𝑓൫𝑢(𝜏)൯ − 𝑓൫𝑣(𝜏)൯ ∥ఓାଶିସఊఊᇱ
ଶ 𝑑𝜏

 + 2𝜆ଵ
ଶఊఊᇱିଶ

𝑀ଵ

𝑡ଵିఈఊᇱ

1 − 𝛼𝛾′
න (𝑡 − 𝜏)ିఈఊᇱ

௧

଴

∥ 𝑓൫𝑢(𝜏)൯ − 𝑓൫𝑣(𝜏)൯ ∥ఓାଶିସఊఊᇱ
ଶ 𝑑𝜏.

 

Notice that 



HPU2. Nat. Sci. Tech. 2025, 4(2), 80-91 

https://sj.hpu2.edu.vn 89   

න
௧

଴

(𝑡 − 𝜏)ିఈఊᇱ ∥ 𝑓൫𝑢(𝜏)൯ − 𝑓൫𝑣(𝜏)൯ ∥ఓାଶିସఊఊᇱ
ଶ 𝑑𝜏

≤ න (𝑡 − 𝜏)ିఈఊᇱ
௧

଴

𝐿௙൫∥ 𝑢(𝜏) ∥ఓ , ∥ 𝑣(𝜏) ∥ఓ൯
ଶ

∥ 𝑢(𝜏) − 𝑣(𝜏) ∥ఓ
ଶ 𝑑𝜏

≤ න (𝑡 − 𝜏)ିఈఊᇱ
௧

଴

𝜏ିଶఈఊᇱℓ(𝜏ఈఊ )ିଶ

   × 𝐿௙൫𝜏ఈఊᇱ ∥ 𝑢(𝜏) ∥ఓ , 𝜏ఈఊᇱ ∥ 𝑣(𝜏) ∥ఓ൯
ଶ

ൣ𝜏ଶఈఊᇱ ∥ 𝑢(𝜏) − 𝑣(𝜏) ∥ఓ
ଶ ൧𝑑𝜏

≤ ൫𝐿௙
∗ ଶ

+ 𝜁൯𝛬(𝑡) ∥ 𝑢 − 𝑣 ∥ఓ,ఈఊᇱ
ଶ .

 

Therefore 

𝑡ଶఈఊᇱ ∥ 𝛷(𝑢)(𝑡) − 𝛷(𝑣)(𝑡) ∥ఓ
ଶ ≤ 2൫𝐿௙

∗ ଶ
+ 𝜁൯[𝑀଴𝑀ଵ𝑡ିଶఈఊᇱ

𝑇ଵିఈఊᇱ

1 − 𝛼𝛾′
𝛬(𝑇)

 + 𝜆ଵ
ଶఊఊᇱି

𝑀ଵ

𝑡ଵିఈఊᇱ

1 − 𝛼𝛾′
𝑡ଶఈఊᇱ𝛬(𝑡)] ∥ 𝑢 − 𝑣 ∥ఓ,ఈఊᇱ

ଶ

≤
1

3
∥ 𝑢 − 𝑣 ∥ఓ,ఈఊ

ଶ  for all 𝑡 ∈ (0, 𝑇],

 

this implies that 𝛷 is a contraction mapping on 𝐵ఘ∗. The proof is complete.  

Example 3.3. We now give an example of a function 𝑓 that satisfies the assumption (F) and the 

assumptions of Theorem 3.2. Let 𝛺 be a subset of ℝௗ , 𝑑 ≥ 2. The parameters 𝜇, 𝜃, 𝛾, 𝛾′ are given in 

Theorem 3.2. Consider the function 𝑓(𝑢) = |𝑢|௣.  

For 𝜃 = 4𝛾𝛾′ − 2 − 𝜇 > 0, if we put 𝑞 =
ଶௗ

ௗାଶఏ
, 𝑝̂ =

ଶௗ

ௗିଶఓ
, 𝑞ො =

ௗ

ఓାఏ
, then 

ଵ

௣ො
+

ଵ

௤ො
=

ଵ

௤
. Applying the 

general Hölder inequality for 𝑢 ∈ 𝐿(௣ିଵ)௤ො (𝛺), 𝑣 ∈ 𝐿௣ො(𝛺), we get 

 
∥ |𝑢|௣ିଵ𝑣 ∥௅೜ ≤  ∥ |𝑢|௣ିଵ ∥௅೜ෝ ∥ 𝑣 ∥௅೛ෝ

=  ∥ 𝑢 ∥
௅(೛షభ)೜ෝ
௣ିଵ

∥ 𝑣 ∥௅೛ෝ .
 

Assume that (𝑝 − 1)𝑞ො ≤ 𝑝̂ , then it follows from [20, Lemma 3] that ℍఓ ⊂ 𝐻଴
ఓ(𝛺) ⊂ 𝐿௣ො(𝛺) ⊂

𝐿(௣ିଵ)௤ො (𝛺). Hence ∥ |𝑢|௣ିଵ𝑣 ∥௅೜  ≤ 𝐶ଵ ∥ 𝑢 ∥ℍഋ
௣ିଵ

∥ 𝑣 ∥ℍഋ , where 𝐶ଵ  is a positive constant which is not 

depend on 𝑢 and 𝑣. Moreover, we also have 𝐿௤(𝛺) ⊂ 𝐻ିఏ ⊂ ℍିఏ  (from [20, Lemma 3]).  Therefore 

there exists a constant 𝐶ଶ  such that ∥ |𝑢|௣ିଵ𝑣 ∥ℍషഇ ≤ 𝐶ଶ ∥ 𝑢 ∥ℍഋ
௣ିଵ

∥ 𝑣 ∥ℍഋ . With 𝑢, 𝑣 ∈ 𝐶((0, 𝑇]; ℍఓ), 

one gets 

 ∥ |𝑢(𝑡)|௣ − |𝑣(𝑡)|௣ ∥ℍషഇ  ≤ 𝐶ଷ൫∥ 𝑢(𝑡) ∥ℍഋ
௣ିଵ

+∥ 𝑣(𝑡) ∥ℍഋ
௣ିଵ

൯ ∥ 𝑢(𝑡) − 𝑣(𝑡) ∥ℍഋ , where 𝐶ଷ is a constant. 

So the condition (F) holds for 𝐿௙(𝜌, 𝜌′) = 𝐶ଷ(𝜌௣ିଵ + 𝜌′௣ିଵ) and ℓ௙(𝜆) = 𝜆௣ିଵ. 

4. Conclusion 

In this paper, we study the mild solution of the final value problem for the reaction-subdiffusion 
equation. The main contributions of this paper include several new estimates related to the resolvent 
operator in Hilbert scales and sufficient conditions for the unique existence of mild solution. This research 
issue allows us to consider broader classes of nonlinear functions, which play important roles in physics. 
In subsequent works, we want to study the regularity with respect to the time variable of the solution, 
specifically Hölder regularity. 
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