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Abstract 

This study utilizes the statistical moment method to investigate the effects of high temperature and 
pressure on the structure and melting process of Fe thin films and FeSi interstitial alloy thin films with a 
BCC structure. The theory is developed and validated through calculations with Fe films, then extended 
for application to FeSi films. When the number of layers increases to 200, corresponding to a film 
thickness of 70 nm, the melting temperature approaches that of the bulk material. The research results 
indicate that the addition of Si to FeSi films causes significant changes in melting temperature and 
structure, reducing the material's heat resistance. 

Keywords: Fe metal thin films, FeSi interstitial alloy thin films, melting properties, temperature, high 
pressure, statistical moment method (SMM) 

1. Introduction 

Iron (Fe) is a metal characterized by low cost, high strength, and high hardness, making it widely 
used in many industries. However, due to its susceptibility to oxidation, Fe is often alloyed with other 

elements to enhance its durability. Among these, iron–silicon (FeSi) alloys are a typical example, 
extensively used in the production of cast iron, steel, and as a deoxidizing agent. In addition to its 
industrial applications, FeSi also holds potential in electronics and solid-state physics due to its unique 
electromagnetic properties. For example, the β-FeSi₂ phase is an indirect semiconductor suitable for 
infrared sensors, LEDs, and solar cells. With a crystal lattice compatible with silicon and the capability to 
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be integrated into microcircuits, FeSi is a promising candidate for spintronic devices and functional 

nanomaterials. 

Currently, most theoretical and experimental studies on thin films mainly focus on substrate-attached 
materials at low temperatures and vacuum conditions [1]–[7]. Recently, the Statistical Moment Method 
(SMM) has been successfully applied to investigate the thermodynamic and mechanical properties of bulk 

materials and thin films of pure metals or alloys, such as heat capacity, thermal expansion coefficient, 
elastic modulus, and melting temperature [8]–[14]. However, the melting behavior of intermetallic alloys 

in thin film form, such as FeSi, remains a novel topic that has not yet been explored. 

This study is the first to develop a statistical moment method model to investigate the melting 

behavior of FeSi intermetallic thin films with a BCC structure, simultaneously considering the effects of 
thickness, pressure, and interstitial atomic concentration. The computational results not only accurately 

reflect the physical trends but also provide important quantitative values to support the design of thermally 
stable materials under extreme conditions. 

2. Theoretical basis 

2.1. AB interstitial alloy model with FCC Structure 

For Interstitial Alloys (IA), in principle, small, light interstitial atoms (denoted as atom B) can diffuse 
into any interstitial site within the crystal lattice formed by the main metal atoms (denoted as atom A), 
provided that the size of the interstitial site is sufficiently large. However, since the Statistical Moment 

Method (SMM) is favorably applied to highly symmetric systems, we propose a theoretical model below 
to study the deformation of AB interstitial alloys with a BCC structure, in the case where the concentration 

of the main metal atoms A is much greater than the concentration of interstitial atoms B. The melting 
problem of interstitial alloys in the form of thin films is a new and unexplored area of research. 

 

Figure 1. Ideal AB interstitial alloy model with FCC structure. 

Consider Figure 1, where the interstitial atoms, denoted as B, are located at the body center, and the 
main metal atoms, denoted as A, are divided into two types: metal atoms A1 positioned at the face centers, 

and metal atoms A2 positioned at the corners of the unit cell. 
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2.2. Theory of melting of AB interstitial alloy thin films with FCC structure  

2.2.1. Alloy thin film model 

Consider a free-standing thin film of interstitial alloy with *n layers and thickness d. This thin film 

consists of 2 atomic layers on the outer surfaces, 2 atomic layers near the outer surfaces, and *n 4  

atomic layers in the interior. Denote 1,ng ngN N  and trN as the number of atoms in the outer layer, the 

number of atoms in the subsurface layer, and the number of atoms in the interior layer of the thin film, 
respectively. 

2.2.2. Binding energy, crystal parameters of the inner layer, subsurface layer, and outer layer 

The binding energy 0u  and alloy parameters ,k  1,  2 ,    for B atoms in the two-coordination 

sphere approximation, and for A1 and A2 atoms in the three-coordination sphere approximation, belonging 

to the inner layer of the FCC-structured AB interstitial alloy thin film, are expressed as follows [4], [5], 
[15] 
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tr is the interaction potential between two atoms belonging to the inner layer, 
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A correspond to the BCC structure in the approximation of two coordination 

spheres. 

Similar to the calculations above, 0u , ,k  1,  2,   for the subsurface layer and outer layer of the 

AB interstitial alloy thin film with a BCC structure are represented [15], [16], [17]. 

2.2.3. Average nearest-neighbor distance between two atoms in the inner layer, subsurface layer, and 
surface layer 

Based on the theory of the alloy thin film model, considering the free-standing interstitial alloy thin 
films, pressure P, and temperature T, the average nearest neighbor distance between two X atoms in all 

three layers can be expressed by the following equation [15], [16], [17] 
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Equation (22) can be used to calculate the nearest-neighbor distance 1 0 ,Xr (P, ) lattice parameters 

1 20 0 0 0X X X Xk (P, ), γ (P, ), γ (P, ), γ (P, ), and the displacement Xy (P,T)of atom X. 

2.2.4. Helmholtz free energy of inner, subsurface, and outer layers 

Assume that the thin film has N atoms corresponding to the *n  layer, with each layer having an equal 

number of atoms, which is exactly N. At that point [18], 

* LN n N
                                                              (23) 

We determine the number of atoms in the inner layer trN , the subsurface layer 1ngN , and the outer 

layer ngN [18]. The free energy of the thin film is determined [18] 



HPU2. Nat. Sci. Tech. 2025, 4(2), 92-104 

https://sj.hpu2.edu.vn 97   

  
1 1 1tr ng ng tr tr ng ng ng ng

c cTS N N N TS            
 

  14 2 2 ,L tr L ng L ng
cN N N N TS                                     (24) 

With the total number of atoms in the film being 1tr ng ngN N N N   , the entropy configuration 

of the film is cS , for the inner layer, the nearest outer layer, and the outer layer of the thin film, the free 

energy per atom are 
1, ,tr ng ng   . From equation (24), the free energy of the thin film per atom is 

derived [18]. 

1

* * *

4 2 2
1 .tr ng ng cTS

N n n n N
         

                                    (25) 

The symbols: a is the average nearest neighbor distance between two atoms, b is the average 

thickness of the two corresponding layers of the film, and ca is the average lattice constant of the film.  

Applied to the thin film with a BCC structure [18], it is given that  
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The thickness of the film is related to the number of layers through [18] 
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We derive the expression for the free energy [16], [17], [18] 
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2.2.5. Melting theory of AB interstitial alloy thin films with bcc structure 

From the free energy, the pressure has the form of 
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                                                                                                           (30) 

For an ideal interstitial alloy thin film with a BCC structure 
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Here, 
G plays the role of the Grüneisen parameter of the interstitial alloy thin film. In that case, 
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The condition for the absolute stability limit of the crystalline state is in the form of 

                                             0
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From there, we can derive the temperature for the absolute stability limit of the crystalline state 
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Set up a similar calculation for the case when P = 0, then 2

2
s

TS
T

MS
                                            (35) 

Since the curve of the absolute stability limit of the interstitial alloy thin film state approaches the 
melting curve of the interstitial alloy thin film, the temperature Ts is usually high and can be considered 

1 2coth 1( , , , , , , 1)m m m
X X XX x x X A C A A m tr ng ng    at temperature Ts. Therefore, we deduce 



HPU2. Nat. Sci. Tech. 2025, 4(2), 92-104 

https://sj.hpu2.edu.vn 99   

    

     

 
 

   

2 2

2 2 2
1 11

1
2 2 2 21 1

1 0 0
2 2 211

1 1 1

4 3 3 2

3 3

2 3 3 2
2

63 3 3

tr tr ng ng
X X X X

tr ngtr ng
X XX XB X X

tr ngng ng
tr ngX XX X
X Xngng tr ng

X XXX X X

c k c kd a a

r rd a d ar k k k

r U Uc ka d a a
PV c c

rd a d a d ak r r



     
          

                 

 

 

 
 

 

 

222 1 2
11 0

2 21
11 1

2 2 1

2
1 1

2 3 3 1

4 23 3

2 1 2

23 3

X

ng tr tr tr tr
ng X X X X X
X tr tr trng tr

X X X X XX X

ng ng ng ng ng n
X X X X X X

ng ng tr ng
X X X X X

rU c k ka d a
c

k k rd a d ar r

c k k ca a

k k rd a d ar



 



                    

            



 





 

21 1 2 1

21 1 1 1
1 1

1 1 1

1

2

1 3 3 2

3 3

g ng ng
X X

ng ng tr ng
X X X X X

tr tr ng ng
X X X X
tr tr ng ng

X XB X X X X

k k

k k r r

c k c kd a a

k r k r k rd a d a

            
  

     



 
 

 

11 1
0 01

1 1
1 1 1

1
1 0

1
1

2 3 3 2
2

33 3 3

2
0.

3

tr ngng ng
tr ngX XX X
X Xng ng tr ng

X X XX X X X

ng
ng X
X ng

X X

U Uc k ra d a a
PV c c

k r r rd a d a d a

Ua
c

rd a

             
   

  


 

(36) 

The equation of the absolute stability limit curve is given in (36). The pressure is considered as a 
function of the average nearest neighbor distance 

1( ).P P r                                                                         (37) 

Consider the crystal at low pressure. Similarly, using the method above, the expression for 
determining the absolute stability limit temperature in the interstitial alloy thin film is developed. At that 

point, 
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                                                                                                                           (38) 

From there, the absolute stability limit temperature Ts (0) in the interstitial alloy thin film state at 
pressure P = 0 is determined 
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      (39)   

Where the parameters 0
1

1

, , , , ( , , 1)
m
X

Gm
X

U
r d a m tr ng ng

r





are calculated at temperature (0).sT  

At pressure P, the absolute stability limit temperature in the interstitial alloy thin film is determined 

by 
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Note that , , G
GV

T

 


are determined at .sT  An approximation of the melting temperature Tm can be 

considered with Ts. By applying the iterative approximation method to solve the above equation, we obtain 
better approximate values of Ts at low pressure P. 

For a crystal at high pressure, we can calculate the Young's modulus YE , the shear modulus G of 

the interstitial alloy thin film. The isothermal elastic modulus TB of the interstitial alloy thin film is a 

function of pressure P, i.e., TB = TB  (P). At that point, TB can be expanded into a series 
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At that point 
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2.3. Results and discussion 
2.3.1. Interaction potential between atoms in the interstitial alloy 

To study the interaction between Fe-Fe and Si-Si atoms, we apply the Mie-Lennard-Jones n-m pair 

potential [19] and the potential parameter values from Table 1. 
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Table 1. The potential parameters D, r0, m, and n [10] for Fe-Fe, Si-Si interactions. 

Interactions m n D(10-16erg) r0(10-10m) 
Fe-Fe 8,26 3,58 12576,70 2,4775 
Si-Si  6 12 45128,24 2,295 

The interaction potential between Fe-Si atoms is approximated by 

 Fe-Si Fe-Fe Si-Si

1
.

2
   

                                                        (45) 
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2.3.2. Numerical calculation results for Fe and FeSi thin films 

Table 2. The dependence of pressure and number of film layers on the melting temperature for Fe thin films 
calculated by SMM. 

 
 
 

0,5 1 2 3 4 5 6 

cSi (%) = 0 

 
 
 

 mT K  

 
 

S 
MM 

10 1048,64 1055,59 1069,41 1083,07 1096,61 1110,03 1123,32 

20 1442,05 1450,36 1466,86 1483,23 1499,45 1515,53 1531,48 

70 1740,52 1749,87 1768,44 1786,86 1805,14 1823,26 1841,25 

200 1820,67 1830,29 1849,43 1868,41 1887,24 1905,91 1924,45 

[20] Bulk 1842,5 1873 1908 1943 1978 2013 2033 

Table 3. The dependence of silicon concentration and number of film layers on the melting temperature for FeSi 
thin films at P = 0 calculated by SMM. 

Layers cSi (%) 0 1 3 5 
10  

 
Tm (K) 

1041,64 985,60 881,81 788,18 
20 1433,70 1355,39 1210,50 1080,00 
70 1731,13 1635,92 1459,86 1301,38 

200 1811,00 1711,25 1526,82 1360,83 

Table 4. The dependence of pressure and silicon concentration on the melting temperature for FeSi thin films at 
n* = 10 calculated by SMM. 

cSi 
(%) 

P (GPa) 0,5 1 2 3 4 5 6 

0  
 

Tm(K) 

1048,64 1055,59 1069,41 1083,07 1096,61 1110,03 1123,32 

1 994,25 1002,70 1019,17 1035,21 1050,91 1066,32 1081,49 
3 893,27 904,29 925,36 945,51 964,98 983,91 1002,39 
5 801,88 814,94 839,74 863,26 885,85 907,72 928,98 

 

1 2 3 4 5 6
1000

1200

1400

1600

1800

2000

T
m

(K
)

P (GPa)

 n* = 10
 n* = 20
 n* = 70
 n* = 200
 EXPT [20]

 
0 1 2 3 4 5

600

800

1000

1200

1400

1600

1800

2000

T
m

(K
)

cSi(%)

 n* = 10 
 n* = 20
 n* = 70
 n* = 200

 

P(GPa) 

   n* 
Quantity 



HPU2. Nat. Sci. Tech. 2025, 4(2), 92-104 

https://sj.hpu2.edu.vn 102   

Figure 2. The dependence of pressure and number of 
film layers on the melting temperature for Fe thin films 

calculated by SMM. 

Figure 3. The dependence of silicon concentration 
and number of film layers on the melting temperature 

for FeSi thin films at P = 0 calculated by SMM. 
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Figure 4. The dependence of pressure and silicon concentration on the melting temperature for FeSi thin films at 

n* = 10 calculated by SMM. 

Figure 2 shows the calculated Tm of the FeSi film. According to the obtained results for a film with 
200 layers, corresponding to a film thickness of 70 nm, the Tm of the film gradually approaches the bulk 
material value [20]. At the same pressure and thickness, Tm increases as the pressure increases. At 10 

layers, Tm is 1048,64K increasing sharply to 1740,52K at 70 layers. From 70 layers to 200 layers, Tm 
increases from 1740,52K to 1820,67K. At P=0.5 GPa, Tm is 1048,64 K for a 10-layer film, increasing to 

1820,67 K for a 200-layer film, and approaching the experimental Tm of the bulk material at 1842,5 K. As 
the film thickness increases, the Tm of the film gradually approaches the Tm of the bulk material [20]. At 
200 layers, corresponding to a thickness of 27 nm, Tm = 1820,67K gradually approaches the Tm of the bulk 
material [20] which is 1842,5K. As the Si concentration increases, Si atoms occupy interstitial sites within 
the BCC crystal lattice of Fe, causing lattice distortion and disrupting the original crystal order. Due to 
differences in atomic radius and bonding nature between Fe–Fe and Fe–Si (compared to the original Fe–
Fe bonds), the average interatomic bonding strength is weakened, leading to a reduction in bonding energy 
and consequently lowering the melting temperature. From a thermodynamic perspective, the presence of 

interstitial atoms increases configurational entropy but simultaneously generates internal stress, rendering 
the crystal lattice less stable against heating. On the other hand, as pressure increases, the atomic spacing 

contracts, enhancing the short-range interactions between atoms (particularly modeled by the n–m Mie–
Lennard–Jones potential), which in turn raises the bonding energy and stabilizes the lattice. This explains 
why, at the same Si concentration, the melting temperature increases with pressure. 

Figure 3 shows that, for the same number of layers, Tm decreases as the Si concentration increases. 

For a film with 10 layers and P = 0, Tm is 985,6K at 1% Si concentration, 881,81 K at 3% Si concentration, 
and 788,18 K at 5% Si concentration. Additionally, at different layers, the Tm values of the film at Si 

concentrations cSi = 1%, cSi = 3%, and cSi = 5% vary more significantly. For example, in a film with 200 
layers, we have Tm = 1711,25 K at cSi = 1%, decreasing to 1526,82 K at cSi = 3%, and further decreasing 
to 1360,83K at cSi = 5%. This also indicates that, at P = 0 and the same Si concentration, Tm gradually 
increases with the number of layers. For instance, at cSi = 5%, Tm = 788,18 K at 10 layers, increases to 
1301,38 K at 20 layers, and further increases to 1360,83 K at 200 layers. Specifically, from the results in 
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Tables 2 and 3, we observe that when the number of layers increases from 10 to 70 (corresponding to a 
thickness increase from approximately 3.5 nm to ~27 nm), the melting temperature (Tm) rises rapidly. 
However, as the number of layers increases further from 70 to 200 (~70 nm), the increase in Tm slows 

down and approaches the bulk material value. This indicates that a thickness threshold of around 70 nm 
marks the transition from the “thin film with distinct properties” region to the “bulk-like material” region. 

Similarly, Tables 3 and 4 show that with Si concentrations ranging from 0 to 1%, the melting temperature 
(Tm) decreases slightly; however, once the Si concentration exceeds the threshold of approximately 3%, 
Tm begins to decrease sharply and continuously. Therefore, 3% can be considered the critical impurity 
concentration of Si, beyond which the crystal lattice is significantly weakened and undergoes rapid 
thermal instability. These quantitative thresholds are not easily determined by intuition alone, making the 
use of the Statistical Moment Method (SMM) to clarify them entirely justified. 

Figure 4 shows that the melting temperature of the film decreases as the Si concentration increases. 
For a 10-layer film at P = 0.5 GPa, Tm decreases from 994,25 K at cSi = 1% to 893,27 K at cSi = 3%, and 
further down to 801,88 K at cSi = 5%. When the P values are higher, reaching several GPa, the Tm values 
of the film at different cSi concentrations also show greater differences. For example, at cSi = 5%, Tm = 
814,94 K at P = 1 GPa, increases to 863,26 K at P = 3 GPa, and further to 928,98 K at P = 5 GPa. This 

also indicates that, at the same Si concentration, Tm gradually increases as the pressure increases. 

3. Conclusions 

This research focuses on developing a model of BCC-structured AB interstitial alloy thin films and 
advancing the theory of melting temperature using the statistical moment method. Based on the Mie-
Lennard-Jones m-n potential and the coordination sphere method, the study determines the melting 
temperature of Fe and FeSi films within a pressure range of 0.5–6 GPa, interstitial atomic concentrations 
of 0–5%, and layer counts from 10 to 200. The results indicate that the melting temperature of the films 
is dependent on pressure, film thickness, and interstitial atomic concentration. As the interstitial atomic 
concentration approaches 0 or the film thickness becomes sufficiently large, the melting temperature of 
the film converges towards the bulk material value for the number of layers increases to 200, 
corresponding to a film thickness of 70 nm. The calculated data are predictive and can provide guidance 
for experimental studies. This theory can be extended to apply to other metal films, BCC-structured 

interstitial alloy films, and to advance research on ternary alloys with cubic structures. 
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