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Abstract

In this paper, we study complete weighted manifolds that satisfy a weighted Poincaré inequality, with the
associated weight function assumed to be non-negative throughout the manifold. Our main focus is to
study the geometric consequences of such an inequality on the global structure of the manifold,
particularly at infinity. Specifically, we prove that such a manifold has only finitely many ¢ -nonparabolic

ends, provided that the Bakry-Emery Ricci curvature is bounded from below outside a compact subset
with respect to the weight function. This result generalizes several existing theorems in the theory of
Riemannian geometry and offers valuable insight into the interplay between curvature conditions and the
topology of ends.
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1. Introduction

A weighted manifold is defined as a triple (M ,dsé,e"”d ,u), where (M , dsfl) denotes a complete

Riemannian manifold of dimension n>3 and e *du is a weighted measure determined by a smooth

potential function ¢, with d u being the standard Riemannian volume measure. Within this setting, the
¢ -Laplacian A, is given by A, =A-—V@,V-), which naturally generalizes the Laplace-Beltrami

operator A to the framework of weighted manifolds. This operator reduces to the classical Laplacian

* Corresponding author, E-mail: hatuandung@hpu2.edu.vn
https://doi.org/10.56764/hpu2.jos.2025.4.3.11-25

Received date: 15-6-2025 ; Revised date: 25-9-2025 ; Accepted date: 20-11-2025
This is licensed under the CC BY-NC 4.0



HPU2. Nat. Sci. Tech. 2025, 4(3), 11-25

exactly when the potential function ¢ is constant. The ¢ -Laplacian is self-adjoint with respect to the

weighted measure e?’d 4. More precisely, for any smooth functions @, v e C; (M) and, one has
-9 - -9
J.Ma)(A¢v)e du= J.M<Vv,Va)>e du.
A smooth function @ definedon M is called ¢ -harmonic when it obeys the equation A,@=0. The

bottom spectrum of the weighted Laplacian A, can be characterized by

Vol e?d
/11(A¢)= irlf M#
o<Gon | o’etdu

The Bakry-Emery Ricci curvature associated to the weighted manifold (M Jdst, e ?d ,u) was first
introduced in [1] and is given by Ric,=Ric+ Hess@, where Ric denotes the Ricci curvature of M and

Hess¢ is the Hessian matrix of ¢ with respect to the metric tensor dsi,. This curvature is also related to
the gradient Ricci soliton Ric, =Ag for some constant 4, which has a fundamental role in the analysis

of singularities of the Ricci flow. A gradient Ricci soliton is categorized as expanding, steady or shrinking
if 1<0,4=0, and A >0, respectively. Gradient Ricci solitons constitute a natural generalization of

Einstein manifolds and, in recent years, have become a central focus of research in geometric analysis;
see [2] for a comprehensive survey and additional references. A fundamental analytic tool in their study
is the weighted Bochner-Weitzenbock formula, which plays a crucial role in deriving gradient estimates,
rigidity results, and various comparison theorems for manifolds with density. Specifically, for any

function @ € C” (M), we have
LA, Vo P=|Hess of +(Vo,VA,0) + Ric,(Vo,V
5 4| Vo —| essa)| +< , ¢a)>+ ic,(Vo,Vo).

Because tr(Hess a)) # A o, geometric comparison results cannot be derived in the same way as in

the classical Ricci curvature setting on Riemannian manifolds. Despite this challenge, in [3], Wei and
Wylie established several weighted mean curvature comparison theorems that extend the classical results,
under the assumptions that the Bakry-Emery Ricci curvature is bounded from below and that either the
potential function or its gradient is bounded. Subsequent to their contributions, a wide range of classical
geometric and topological results pertaining to manifolds with Ricci curvature bounded from below have
been extended to the broader framework of weighted manifolds. These generalizations, however, typically
require additional conditions on the potential function ¢. For further discussion on weighted manifolds,
we refer the reader to [3]-[10] and the references therein.

A central focus of geometric analysis is to investigate the intricate relationship between the geometry
and topology of manifolds, employing I* harmonic forms in tandem with harmonic functions. There have
been interesting results in this direction, which have been expanded and generalized on weighted
manifolds; see [4]-[6], [8]-[17] and the references therein. In [4], Dung and Sung investigated complete
weighted manifolds that satisfied both the Bakry-Emery curvature lower bound and the following
weighted Poincaré inequality:
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Definition 1.1. Let (M Jdst,e”’d y) be an n-dimensional complete weighted Riemannian manifold

with n>3. We say that M satisfies a weighted Poincaré inequality with a non-negative weight function
p(x) and a positive constant A4 if the following inequality holds for all compactly supported smooth

functions ¢eCy (M):
Af, P e *Vdp<| VI (e Vdu (1)

In this case, we say that M has property (P, ,). Moreover, the associated (p, 4) -metric, defined

by ds}i 4= Apdsjl , is assumed to be complete.

A A
Obviously, when p(x) E# is a positive constant, M is a weighted manifold with positive

spectrum of the weighted Laplacian. With respect to the metric dsf,’ 4, the (p, A) -distance between two

points x,y e M is defined as r, ,(x,y):=inf/  ,(y) where the infimum is taken over all smooth curves
: PR

7 joining x and y,and /, ,(¥) denotes the length of y measured with dsé’ 4~ For afixed point pe M,
we set 7, (x):= oA (p,x) to be the (p, A) -distance from p to x. Forall n>3 and R >0, we define

F(R)= exp((}’l -)(n-3)+ Zma RJ’
(n=2)(n—-1)+(n-2)a

and S(R)= sup \/; to be the maximum value of /p over the geodesic ball B, ,(p,R) of radius R
B, ,(R)

with respect to the metric dsf,’ 4 centered at a fixed point p. In [4], the authors proved the following
rigidity result.

Theorem 1.2. [4, Theorem 1.3] Let (M ,dsfl,e’“’dy) be a complete weighted manifold of

. . . . n—1
dimension n>3. Assume for some nonzero weight function p >0 and constant a e[O,—j that
n-2

M satisfies the property (PP A) with

AZmin{n—l,(x/nTZ+ 4 jz}

n—1

For all x e M, suppose that the following inequalities hold:
1

V41()£ap>(¥) ang Ric, (x)2 ~(n~1)p().

If the weight function p satisfies the growth condition

then either
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M has only one ¢ -nonparabolic end, or
M is isometric to a warped product M =R x N"' with metric
dsi, =dt* +1° (t)dsy,

for some positive function 7(¢), and some compact manifold N"'.

n—-2
this assumption is in fact essential for the application of Holder's inequality in its proof (see page 625 of
[4]).

By relaxing the condition of the Bakry-Emery curvature in Theorem 1.2 to be only satisfied outside

Remark 1.3. While Theorem 1.3 in [4] does not explicitly mention the condition a € {O,n—_lj ,

a compact set of M, in this paper, we obtain a finiteness result for the ¢ -nonparabolic ends of the

weighted manifold. This result may be viewed as a generalization of Theorem 1 in [18], extending it from
Riemannian manifolds to smooth metric measure spaces.

Theorem 1.4. Let (M ,dsfl e 'd y) be a complete weighted manifold of dimension n > 3. Assume

. . n .
for some nonzero weight function p >0 and constant a € [0, J that M satisfies propert(Pp’ A)

s

with

y Zmin{n—l,(m+ijz}.

n—1

For all x € M , suppose that the following inequalities hold:

1
|V |(x) <ap?(x) and Ricy"* (x)=~(n-1)p(x)+&

for some £ >0, compact set K < M . If the weight function p satisfies the growth estimate

then M has only finitely many ¢ -nonparabolic ends.

When A4 =1, the property (Pp y ) becomes the property (PP) . By using the same arguments as in the

proof of Theorem 1.4, we can obtain the following result, which can be seen as a generalization of
Theorem 1.4.

Theorem 1.5. Let (M Jdsi, e ?d ,u) be an n-dimensional (n > 3) weighted manifold with property

(Pp) for some non-zero weight function p>0. For all x € M, suppose that the following inequalities

hold:

1
|Vé|(x)<ar?(x) and Ricy\K ) 2-(n-Dr(x)+¢

for some £ >0, compact set K — M. Also assume that and the function 7(x) satisfies the following

Poincare inequality
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2 ¢ 2 4 o
Af wp'etdus| Vol etdu, VpeCr (M),

with

y Zmin{n—l,(\/E+Lj2}.

n—1

If p and 7 satisfy the growth condition

liminf S(R)
R F(R)

=0

then M has only finitely many ¢ -nonparabolic ends, where S(R) = sup (\/; ,\/7| )
B,(R)

This section concludes with a brief overview of the paper’s structure. Section 2 is devoted to
preliminary results concerning ends and ¢ -harmonic functions, along with the relationship between them.

In Section 3, we follow the methodology introduced in [18] to prove Theorem 1.4.
2. Ends and ¢-harmonic functions

In this section, we review fundamental results on ends of manifolds, ¢-harmonic functions, and
related topics, which will be essential for proving our main theorem. The primary references for this

section are [3], [4], [7], [9]-[11], [14]. Let (M,ds@,e"¢d,u) be a complete weighted Riemannian

manifold of dimension n>3. Throughout this work, we denote by B(O,R) the geodesic ball of radius

R >0 centered at a point 0 € M , measured with respect to the original Riemannian metric dsfl :
B(o,R):={xeM|r(o,x)<R},

where r(o,x) denotes the Riemannian distance from o to x in the metric dsfl. Similarly, let dsi’ 4

denote the conformally changed metric associated with a weight function p and parameter 4>0. We

then define the corresponding geodesic ball B, 4(0,K) by
B, 4(0,R):= {x eMl|r, 4(0,x)< R},

where 7, ,(0,x) denotes the geodesic distance from o to x with respect to the metric dsi’ 4 - For

simplicity of notation, when the base point p is fixed and understood from the context, we shall write
B(R)=B(o,R), B, ,(R)=B, (0,R).
In addition, for any measurable subset Q — M , we denote by V' (Q) the standard Riemannian

volume of Q with respect to the volume element du , and by V;(€2) the weighted volume (or ¢ -

volume) Q with respect to the weighted measure e?’d U

We begin by providing the definition of ends.
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Definition 2.1. On (M, dsj;,e d ), a smooth function Gy(w,2) defined on (M x M)\ {(w,w)} is
said to be ¢ -Green's function if it satisfies

Gy(w,2) =G, (z,w) and A, .G(w,2) =9, ()

for all x = y, where 0, ,(2) is defined by

[ v(@38,. (e du=pw)
for every compactly supported function w < M .

By applying arguments similar to those used in the proof of Theorem 1 in [19], one can show that
every complete weighted manifold admits a ¢ -Green's function. However, while some of these spaces

possess a positive ¢-Green's function, others do not. This intriguing distinction has naturally divided the

function theory of weighted manifolds into two separate classes.
Definition 2.2. A complete weighted Riemannian manifold (M Jdsi, e ?d ,u) is said to be ¢ -
nonparabolic if it admits a positive ¢ -Green's function. Otherwise, it is called ¢ -parabolic.

More generally, an end of M refers to an unbounded connected component of the complement of a
smooth compact domain in M.

Definition 2.3. Let £ be an end of the complete weighted manifold (M Jdst,e”’d y) . Theend E

is said to be ¢ nonparabolic if there exists a positive ¢ -Green's function on E satisfying Neumann

boundary conditions on JOF . Otherwise, E is called ¢ -parabolic.

If E isanend of M , we denote
E, ,(R)=ENB, ((R) and CE, ,(R):=ENOJB, ,(R),
where B, ,(R) is the geodesic ball of radius R with respect to the conformal metric dsi’ 4
From the result of Seo-Yun in [20, Lemma 3.1], we know that the number of ¢ -nonparabolic ends
of a weighted manifold (M ,dsi,,e_¢d 1) is bounded above by the dimension of the space K°(M) of
bounded ¢ -harmonic functions with finite weighted Dirichlet integral, that is,
#(¢-nonparabolic ends of M) < dim K° (M). 2)

The following lemma plays an important role in proving Theorem 1.4, which can be seen as a
weighted version of Lemma 11 by Li in [21].

Lemma 2.4. [21, Lemma 11] Let (M,ds@,e"¢d,u) be an n -dimensional (n23) complete

weighted manifold. Let H' (Lﬁ, (M )) be the space of I”-integrable ¢-harmonic 1-forms on M . If H is

a finite dimensional subspace of H' (Ljj M )) defined over a set Q — M then there exists @, € H such

that

dimHIQ|a)0|2e*¢dv <V,(Q)-min{n,dimH} - sup|a)0|2 :
Q

https://sj.hpu2.edu.vn 16



HPU2. Nat. Sci. Tech. 2025, 4(3), 11-25

Towards the end of this section, we demonstrate the following result, which constitutes a key step in
the proof of the main theorem.

Lemma 2.5. Let (M ,dsé,e”d ,u) be a complete weighted Riemannian manifold of dimension

n>3, and suppose that M satisfies the property (73/J A) for some nontrivial weight function p>0.

Assume that the following pointwise conditions hold for all x e M :

1
| V| (x) < ap?(x) and Ric,(x)=~(n—1)p(x),

where a >0 is a constant. Then, for every positive ¢ -harmonic function @ on M, there exists a

constant C >0, depending solely on n,a and A, for which the gradient estimate
[V (x)| < CS(R+1) o (x) 3)
holds for all xe B, ,(R).

Proof of Lemma 2.5. Applying Theorem 2.1 in Wu [16], we conclude that there exist constants
C,,C, such that

IVw'(x)SCl sup \/;+&, (4)
@ B(x,R) R

for all xe M, where C,,C, are constants depending only on » and a. For te(O,oo), we consider the

following function

-1
]-"(t)zt—(sup Apj .

B(x,t)
We observe that ling]—' (#)=0 and limF(¢) =o. Thus, by Mean value theorem, we can choose
t— t—>x

R, >0 such that F(R,) =0, that is

-1
R, :[ sup ApJ .
B(x.R, )
For any point yeB(x,Ro), let ¥ be a minimizing geodesic (with respect to dsi,) joining x, y.

Then, we have
o) = [ JAp(r () < sup )\/Ap(y)Ro <1.
B(x,R,

This shows that B(x,RO) c B, 4(x,1). Forany x€ B, ,(R), we see that
B(x,Ry)< B, ,(x,))C B, [(R+1).
Now, we choose R =R, in (4) and conclude that

|Vo|

w

(x)é&[ sup p+RL]=Z’(1+\/Z) sup pS6(1+\/Z) sup [p =CS(R+1),

B(x,Ry) 0 B(x,Ry) B, 4(R+1)

where C=max{C,,C,}. The proof of Lemma 2.5 is complete.
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The proof of Theorem 1.5 follows essentially the same approach as that of Theorem 1.4, with only a
minor difference stemming from Lemma 2.5. To conclude this section, we provide an alternative
formulation of Lemma 2.5, that is tailored to the assumptions of Theorem 1.5.

Lemma 2.6. Let (M Jdsy e ?d ,u) be an n-dimensional (n 23) weighted manifold with property

(73/3) for some non-zero weight function p>0. For all x € M, suppose that the following inequalities

hold:

1
|V |(x)<ar?(x) and Ric)"* (x) 2 ~(n—1)r(x) + &

for some & >0, compact set K — M. Also assume that and the function 7(x) satisfies the following

Poincare inequality
2 - < 2 -4 )
Af wpletdus| Vol etdu. VpeCr (),

with

y Zmin{n—l,(M+LJ2}.

n—1

Then, for every positive ¢-harmonic function @ on M, there exists a constant C >0, depending

solely on n and a, for which the gradient estimate

Vo (x)| < CS(R+1) o (x)

holds for all x € B,(R), where S(R)= sup (\/_,\/7|)
B,(R)

Proof of Lemma 2.6. As in the proof of Lemma 2.4, there exists a constant C, depending only on
n and a, such that

M()c)é C[ sup
1) R

B(x,R)

J?+lj.
R
Forall xe M, set
B(x) =2 p(x) 4+ 2(x)].
2 2
Then, we have \/|T <\2p, sup/p < sup (J;,M) =S(R), and
B,(R) B,(R)

|Vo|
@

= 1
(x)SC( sup +/ o +E],

B(x,R)
forall xe M. For t e (0,00), we consider the following function
N\
F(0) =\/§z—( sup \/;] .
B(x,t)
We see that ling F(t)=0 and lim F(¢) = . Thus, by Mean value theorem, we can choose R, >0
t— t—>o©

such that F(R,) =0, that is
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-1
\/ERO :[ sup \/;j .
B(x,Ry)

For any point yeB(x,RO), let ¥ be a minimizing geodesic (with respect to dsf/, ) joining x, y.

Then, we have

r(x,y) = f p(r(1)) dt<j\/_\/p(7(t )dt <[2R, sup J7 =1.

B(x,Ry)

This shows that B(x,RO) < B, (x,1). Forany x € B,(R), we obtain

B(x,Ry) < B,(x,1)C B, (R+]1).

M(Jc) <C ( sup /_) + %J and conclude that
w

B(x,R)

Now, we choose R = R, in the inequality

IV“"(x)<c sup p+— =C(1++2 sup JB <C(1+42) sup B =C(1+42)S(R+1).
R

(x,RO) 0 x R() B, (R+1)
for all x e M. The proof of Lemma 2.6 is complete.
3. Proof of Theorem 1.4
With the necessary preparations in place, we proceed to prove Theorem 1.4 by following the
approach introduced by Lam in [18].

Proof of Theorem 1.4. In view of (2), to prove Theorem 1.4, it is sufficient to prove that

dim/C°(M) < oo, Assume henceforth that A/ admits at least two ¢ -nonparabolic ends. Following the

construction in Subsection 2.1, we obtain a nonconstant bounded ¢ -harmonic function @ e K (M) with
finite Dirichlet weighted integral, such that inf @ =0 and sup @ =1. Moreover, the infimum is attained at
infinity of a ¢ -nonparabolic end E,, while the supremum is attained at infinity of the other ¢
nonparabolic end M \ E,.

If A>n-1, then, by arguments analogous to those employed in the initial part of the proof of

Theorem 3.1 in [4], we deduce that the manifold M is isometric to the Riemannian product of a line and

a compact manifold. Consequently, the proof of Theorem 1.4 is completed in this case.

2
We next turn to the case 4> (\/n -2 +L1j . Using Lemma 2.7 in [5], we get
n—

v[vel

AyValz-| n- 1+\/n_j(p &)|Val+(1- a)w,

n- 2 and &= LE‘. From this, we deduce that
n— 1 (n - ) n-1

in M \K,where o=

Ashz-A(p—e)h (5)

https://sj.hpu2.edu.vn 19



HPU2. Nat. Sci. Tech. 2025, 4(3), 11-25

in M\K, where h=|Va)|a. Let pC’°(M\K) be a non-negative smooth function with compact

support in M \ K . Then by the property (P ), we have

p,A
272 4 2 -4
Al o dus| NghP etdu
_ 2 2 ¢ —-¢ 2 2 ¢
_th Vo[ e d,u+2JMh¢<Vh,V¢>e dy+jM¢ \VA[ e?du.
The Stokes' theorem implies that
1
-¢ _ 2 2\ ¢
2th¢<Vh,v¢>e dy_2jM<Vh Vo >e du
__ 2 —¢ _ 2 2 ¢
- IM¢ hAhe™*d u IM¢ Vi e ?du.
From the above results, we deduce that
2,2 —¢ 2 2 ~bg., 2 —4
AJMp¢he dySIMh VoI ePdu IM¢ hAhe™*d
This and (5) entail that

272 — 2 2 -
Ang¢he¢dﬂsth Vo[ e?du (6)
forany ¢ €C(M \K). Since K is compact, we may choose R, >0 such that

Kc|JB, (x)<B(R,-1).

xeK

Let R >0 be such that B(RO) c B, ,(R—1). Then, from (6) we have

272 — 2 2 -4
Ae J‘B},.A<R)\B(Ro—1)¢ ke ¢dﬂ§J‘Bp,A<R>\B(R071)h Vo[ e’du,

for any ¢eC” (BP,A(R)\B(R0 —1)). We next choose ¢ = yy to be the product of two compactly

supported functions, where

0 on 2(0,0g) U Y(1-d¢,1),
ln(g‘lg_)—;h‘” on Y(5z,2) (M \E,),
2(0)= !
In@2)=Ind=w) o i-71-0F)AE,
Ino
1 otherwise,
and
0 on B(R, -1),
1 onB, ,(R-D\B(R,),
V=1, s (f
rp,A Oan,A(R) Bp,A(R_ )5
0 on M\B, ,(R),

_ 1 .
for some 0<d<1 and O<e& <§ to be determined later, where Q)(c,d)={xeM :c<w(x)<d}, and

n(r)= {x eEM:o(x)= r}. From this and the Cauchy-Schwarz inequality, we see that
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I, 5, st I 1VOP €

(7
SszP,A(R)\B(RO W Ve ¢dy+2j B, (RVB(R WHw |V P etd
By the definition of the function y , we get
2.2 2 -
J‘Bﬂ’A(R)\B(RO—l)h 2 IVyleld
— 2.2 2 ¢ 2
B (B,,,A(R)\BP,A(R%))ﬁElh X \Vyle dﬂ+'[( B, ,(R)\B, ,(R-D)"(M\E,) Wy \Vyle? (®)

+ J.B(RO)\B(RO—I) Wr*|\Vyle’d

In the following C denotes a constant depending only on #n,a and, 4 whose value may change from
line to line. Denote by
n—2
~-a
(n=1)

==

1 1
— > =l-—=—-
p n-1 (n-1) 1

iz

0< y <1, the first term on the right-hand side of (8) admits the following estimate:

Since ae [0, j,we get p,ge (0,1). Employing Holder's inequality together with the fact that

2

2 2 2 ¢ P
j(sp,ﬂ<R>\B,J,,,<R4>)mah IVl eldu< IQAp|Vu| e?d

2 ¢ P q,~9 q
_A(IQWM ¢ d,u) (Lp ¢ d,u) ,
where Q=(B, ((R)\B, ,(R-1))"E, " (£(5,1-5)). From Lemma 2.6 in [5], we have
- 2R
(J. |V |? e"”’dy)‘” < Cexp(——}. (10)
Q P
By Lemma 2.6 in [5] and note that S(R) = sup \/; , we get
B, 4(R)
q,-¢ 2(q-1) -¢
[ pretdus<isRP ™[ petdu
<[S(RP(s2) pru e ?du< C[S(R)I“™(62) exp(-2R).
This implies that
1 2(g-1) 2 2R
(jQ p‘fe*¢dy)q <CIS(R)] ¢ (5) ¢ exp(—j. (11)
q
Substituting (10) and (11) in (9), we deduce that
2(¢-1) 2
27 VP e?du<CIS(R)] 7 (J€) ! exp(-2R). (12)

(B, 4(R)\B, 4(R-))NE
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Following similar arguments as in the proof of the estimate (12), we also obtain
204-) 2

i, ey 2 VY P e duS SR T (68) * exp(-2R).

Plugging this and (12) into (8), we conclude that

J.BPVA(R)\B(RO—I Ry |V P e’d
2Ag-) 2 (13)
<CIS(R)] ¢ (52) 7 exp(—2R) + I h2 IV e?d

o )\B(Ry—1

On the other hand, since 0 <y <1, we obtain

2

2.2 2 - P 2 -
J.Bﬂ,A (R)\B(Ry~1) h 4 | VZ | € ¢dﬂ = J‘(Bp,A(R)\B(Ro*I))ﬁEl | Vu |p | VZ | ¢ ¢d

2 (14)
T (B, m0a(r, )01 E) |Vul?|[Vy [ e
Using the estimate (3) in Lemma 2.5, we have
2 2
(5, st )y | V1V P e bd =) ? [ W2 |Vul P ety (15)

2
ad 4+ =
<C(nS)*[S(R+1)]? '[ﬁqu Pu Pefdu,

where Q = (quA (R)\B(R, - 1)) N (M \E)" £(5€,€). The co-area formula and Lemma 2.8 in [5] entail
that

2 2 2
-2+= z 2+= z 24—
2 p,9 pI p
J.ﬁ|Vu| u ‘e dySJ‘gt D(ON(M\E )AB, 1 (R) |Vu|dAdt£L(b)|Vu|dALEt dt,

for any level set 5. This and (15) imply that

2 2 2p) 2p
(8, 0 sr )i | VUl IVZF €t du< Cnd) SR+ DI [1—5 ! J? " (16)

Applying the same estimate as in the proof of Lemma 2.5 to the function 1—u , we also have

| Vau(x) [< CS(R+1)(1-u(x)) (17)

forall xe B, ,(R). Then, by replacing the function u with 1-u and using (3) in place of (17), we obtain

the following estimate by applying the same reasoning as in the proof of inequality (16)

2

2 2p\ 2
j( s, sty s | Vil IVZ P e bdp< CInd) 2SR+ D) [1—5 ’ }? "

From this, (14) and (16), we get

B, 4

2 2p) 2
J RB(R-1 hzyﬂ IVy e¢d,LzSC(ln5)2[S(R+1)]"[1—5 p JE P

Hence together with (6), (7) and (13), we conclude that
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AEJ.BP’A(R)\B(RO—I)¢ he ’¢d,u<Jl B(Ro)\B(Ry-1) Wy |Vl e?

A2 2 22p\ 2
CIS(R)] ¢ (J€) exp(-2R)+ C(InSs) *[S(R+1)]” {1—5 ? ]E L
1 . o
If we choose = ) and £ =exp(—2R) then the above inequality implies that

Ag-f Lwa(r) P

ENz ] (18)
(1) n-3 2\/ -2
CIS(R+1)] [ 2R(n e B+I B(R)\B(Ry-1) PV e?
. . SR . . . .
Given that Rpm—:O, it follows that the first term on the right-hand side of the preceding

inequality vanishes in the limit as R — oo. Thus, letting R — o in (18), we obtain

Ae J s e dp s cj sk Bk, ) € A
This deduces that
2 ¢ 2 —¢
JB(ZRO)h e?du< CJ.B(RO)h e’du, (19)

where C =C(g,n,a,A). From (19), we conclude that A¢h >—fh on B(p,ZRO) , where

A
=—— inf RIC
ﬂ n—138(p.2R,)

Then by the mean value inequality of Wu [10, Theorem 5.2], we find that
200 < 2,47 < 2 4
h (x)_CIJ.B(X’RO)h e dy_CIJAB(p,ZRO)h e?du,

where G, =C,(n,f,1) and u= inf V,(B(x,R,)). This and (19) lead to

xeB(p, Ro)

sup h*<C, e ldu,
B(p.Ry)

where C, =C,(&,u, B,n,a,4). Using the Holder's inequality, we get

_ _ . 1-a
IB(RU)h% %ms( L(RO)|V“"2 e ’”du) [V, (B(R,))] "
Consequently,

sup |Veol*’<C Vol e’du,
s |Vaf<G [ Vol e*du (20)

where C; =C; (8, M, p.n,a,4,R, ) is a constant independent of u K° (M) . We are now in a position

to demonstrate that /C° (M) is finite dimensional. To this end, consider the space of 1-forms

IC={da):a)elC0(M)},
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equipped with the bilinear form defined by J.B(RU) (V,Vhye ?d . Observe that if
Vol e?du=0
J. B(Ro)| | a

for some a)e/CO(M ) , then the unique continuation property implies that @ must be constant.
Consequently, the bilinear form defines an inner product on K. According to Lemma 2.4, there exists

@, € K"(M) such that

dimK IB(&))|dw0|2e’¢dy <n¥,(B(R,)) p)|da)0|2 .

su
B(R
From this and (20), one finds that

dimK"(M)=dimK+1<C,

for some fixed constant C, =C, (C3 Vy (B(R0 ))) The proof'is complete.
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