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A finiteness theorem for ends of weighted manifolds with a weighted 
Poincaré inequality 

Tuan-Dung Ha* 

Hanoi Pedagogical University 2, Phu Tho, Vietnam 

Abstract 

In this paper, we study complete weighted manifolds that satisfy a weighted Poincaré inequality, with the 
associated weight function assumed to be non-negative throughout the manifold. Our main focus is to 
study the geometric consequences of such an inequality on the global structure of the manifold, 
particularly at infinity. Specifically, we prove that such a manifold has only finitely many -nonparabolic 

ends, provided that the Bakry-Émery Ricci curvature is bounded from below outside a compact subset 
with respect to the weight function. This result generalizes several existing theorems in the theory of 
Riemannian geometry and offers valuable insight into the interplay between curvature conditions and the 
topology of ends. 

Keywords: Weighted manifolds, weighted Poincaré inequality, finiteness theorems,  -harmonic 

functions,  -nonparabolic ends 

1. Introduction 

A weighted manifold is defined as a triple  2, , ,MM ds e d   where  2, MM ds  denotes a complete 

Riemannian manifold of dimension 3n   and e d   is a weighted measure determined by a smooth 

potential function ,  with d being the standard Riemannian volume measure. Within this setting, the 

 -Laplacian  is given by : , ,      which naturally generalizes the Laplace-Beltrami 

operator   to the framework of weighted manifolds. This operator reduces to the classical Laplacian 
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exactly when the potential function   is constant. The  -Laplacian is self-adjoint with respect to the 

weighted measure .e d   More precisely, for any smooth functions 0 ( ), Mv   and, one has 

  , .
M M

ev d v e d 
           

A smooth function   defined on M  is called  -harmonic when it obeys the equation 0.   The 

bottom spectrum of the weighted Laplacian   can be characterized by 

 
0

2

1 2( )

| |
inf .M

M

M

e d

e d




 






 






  



 

The Bakry-Émery Ricci curvature associated to the weighted manifold  2, ,MM ds e d   was first 

introduced in [1] and is given by Ric =Ric Hess ,   where Ric  denotes the Ricci curvature of M  and 

Hess  is the Hessian matrix of   with respect to the metric tensor 2 .Mds  This curvature is also related to 

the gradient Ricci soliton Ric g  for some constant  , which has a fundamental role in the analysis 

of singularities of the Ricci flow. A gradient Ricci soliton is categorized as expanding, steady or shrinking 
if 0, 0   , and 0,   respectively. Gradient Ricci solitons constitute a natural generalization of 

Einstein manifolds and, in recent years, have become a central focus of research in geometric analysis; 
see [2] for a comprehensive survey and additional references. A fundamental analytic tool in their study 
is the weighted Bochner-Weitzenböck formula, which plays a crucial role in deriving gradient estimates, 
rigidity results, and various comparison theorems for manifolds with density. Specifically, for any 

function ( ),M   we have 

221
| | Hess , Ric ( , ).

2                
 

Because   ,tr Hess     geometric comparison results cannot be derived in the same way as in 

the classical Ricci curvature setting on Riemannian manifolds. Despite this challenge, in [3], Wei and 
Wylie established several weighted mean curvature comparison theorems that extend the classical results, 
under the assumptions that the Bakry-Émery Ricci curvature is bounded from below and that either the 
potential function or its gradient is bounded. Subsequent to their contributions, a wide range of classical 
geometric and topological results pertaining to manifolds with Ricci curvature bounded from below have 
been extended to the broader framework of weighted manifolds. These generalizations, however, typically 

require additional conditions on the potential function .  For further discussion on weighted manifolds, 

we refer the reader to [3]–[10] and the references therein. 

A central focus of geometric analysis is to investigate the intricate relationship between the geometry 

and topology of manifolds, employing 2L  harmonic forms in tandem with harmonic functions. There have 
been interesting results in this direction, which have been expanded and generalized on weighted 
manifolds; see [4]–[6], [8]–[17] and the references therein. In [4], Dung and Sung investigated complete 
weighted manifolds that satisfied both the Bakry-Émery curvature lower bound and the following 
weighted Poincaré inequality: 
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Definition 1.1. Let  2, ,MM ds e d   be an n -dimensional complete weighted Riemannian manifold 

with 3n  . We say that M  satisfies a weighted Poincaré inequality with a non-negative weight function 

( )x  and a positive constant A  if the following inequality holds for all compactly supported smooth 

functions  0 :M   

2 ( ) 2 ( )( ) ( ) | | ( )x x

M M
A x x e d x e d          (1) 

In this case, we say that M  has property ,( )A . Moreover, the associated ( , )A -metric, defined 

by 2 2
,A Mds A ds  , is assumed to be complete.  

Obviously, when 
 1

( )x
A





  is a positive constant, M  is a weighted manifold  with positive 

spectrum of the weighted Laplacian. With respect to the metric 2
,Ads , the ( , )A -distance between two 

points ,x y M  is defined as , ,( , ) : inf ( )A Ar x y l 
  where the infimum is taken over all smooth curves 

  joining x  and y , and , ( )Al   denotes the length of   measured with 2
, .Ads  For a fixed point ,p M  

we set , ,( ) : ( , )A Ar x r p x   to be the ( , )A -distance from p  to .x  For all 3n   and 0,R   we define 

( 1)( 3) 2 ( 2)
( ) exp ,

( 2)( 1) ( 2)

n n n a
F R R

n n n a

    
         

and 
, ( )

( ) sup
AB R

S R


  to be the maximum value of   over the geodesic ball , ( , )AB p R  of radius R  

with respect to the metric 2
,Ads  centered at a fixed point p . In [4], the authors proved the following 

rigidity result. 

Theorem 1.2. [4, Theorem 1.3] Let  2, ,MM ds e d   be a complete  weighted manifold of 

dimension 3.n   Assume for some nonzero weight function 0   and constant 
1

0,
2

n
a

n

 
   

 that 

M satisfies the property  ,A  with  

2

min 1, 2 .
1

a
A n n

n

             

For all ,x M  suppose that the following inequalities hold: 

1

2| | ( ) ( )x a x    and Ric ( ) ( 1) ( ).x n x     

If the weight function   satisfies the growth condition 

( )
inf 0,

)
l

(
im

R

S R

F R


 

then either 
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M  has only one  -nonparabolic end, or 

M  is isometric to a warped product 1nM N    with metric  

2 2 2 2( ) ,M Nds dt t ds   

 for some positive function ( )t , and some compact manifold 1nN  . 

Remark 1.3. While Theorem 1.3 in [4]  does not explicitly mention the condition 
1

0,
2

n
a

n

 
   

, 

this assumption is in fact essential for the application of Hölder's inequality in its proof (see page 625 of 
[4]). 

By relaxing the condition of the Bakry-Émery curvature in Theorem 1.2 to be only satisfied outside 
a compact set of ,M  in this paper, we obtain a finiteness result for the  -nonparabolic ends of the 

weighted manifold. This result may be viewed as a generalization of Theorem 1 in [18], extending it from 
Riemannian manifolds to smooth metric measure spaces. 

Theorem 1.4. Let  2, ,MM ds e d   be a complete weighted manifold of dimension 3.n   Assume 

for some nonzero weight function 0   and constant 
1

0,
2

n
a

n

 
   

 that M  satisfies propert  , A  

with 

2

min 1, 2 .
1

a
A n n

n

             

For all x M , suppose that the following inequalities hold: 

1

2| | ( ) ( )x a x    and \Ric ( ) ( 1) ( )M K x n x        

for some 0  , compact set K M . If the weight function   satisfies the growth estimate  

( )
inf 0,

)
l

(
im

R

S R

F R


 

then M  has only finitely many  -nonparabolic ends.  

When 1A  , the property  ,A  becomes the property   . By using the same arguments as in the 

proof of Theorem 1.4, we can obtain the following result, which can be seen as a generalization of 
Theorem 1.4. 

Theorem 1.5. Let  2, ,MM ds e d   be an n -dimensional  3n   weighted manifold with property 

   for some non-zero weight function 0.   For all ,x M  suppose that the following inequalities 

hold: 

1

2| | ( ) ( )x a x    and \Ric ( ) ( 1) ( )M K x n x        

for some 0  , compact set .K M  Also assume that and the function ( )x  satisfies the following 

Poincare inequality 
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2 2
0| | , ( ),

M M
A e d e d C M             

 

with  

2

min 1, 2 .
1

a
A n n

n

             

If   and   satisfy the growth condition 

0l
(

im
)

inf
( )R

R

F R




 

 then M  has only finitely many  -nonparabolic ends, where  
( )

( ) sup , .
pB R

R    

This section concludes with a brief overview of the paper’s structure. Section 2 is devoted to 
preliminary results concerning ends and  -harmonic functions, along with the relationship between them. 

In Section 3, we follow the methodology introduced in [18] to prove Theorem 1.4. 

2. Ends and  -harmonic functions 

In this section, we review fundamental results on ends of manifolds,  -harmonic functions, and 

related topics, which will be essential for proving our main theorem. The primary references for this 

section are [3], [4], [7], [9]–[11], [14]. Let  2, ,MM ds e d   be a complete weighted Riemannian 

manifold of dimension 3n  . Throughout this work, we denote by  ,B o R  the geodesic ball of radius 

0R   centered at a point o M , measured with respect to the original Riemannian metric 2 :Mds  

 ( , ) : ( , ) ,B o R x M r o x R  ∣
 

 where ( , )r o x  denotes the Riemannian distance from o  to x  in the metric 2 .Mds  Similarly, let 2
,Ads  

denote the conformally changed metric associated with a weight function   and parameter 0A  . We 

then define the corresponding geodesic ball , ( , )AB o   by  

 , ,( , ) : ( , ) ,A AB o R x M r o x R   ∣
 

where , ( , )Ar o x  denotes the geodesic distance from o  to x  with respect to the metric 2
,Ads . For 

simplicity of notation, when the base point p  is fixed and understood from the context, we shall write  

, ,( ) : ( , ), ( ) : ( , ).A AB R B o R B R B o R  
 

In addition, for any measurable subset M  , we denote by ( )V   the standard Riemannian 

volume of   with respect to the volume element d , and by ( )V   the weighted volume (or  -

volume)   with respect to the weighted measure e d  . 

We begin by providing the definition of ends.  
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Definition 2.1. On  2, , ,MM ds e d   a smooth function ( , )w z  defined on ( ) \{( , )}M M w w  is 

said to be  -Green's function if it satisfies 

, ,( , ) ( , ) and ( , ) ( )z ww z z w w z z        
 

for all x y , where , ( )w z  is defined by 

,( ) ( ) ( )w
M

z z e d w
      

for every compactly supported function M  . 

By applying arguments similar to those used in the proof of Theorem 1 in [19], one can show that 
every complete weighted manifold admits a  -Green's function. However, while some of these spaces 

possess a positive  -Green's function, others do not. This intriguing distinction has naturally divided the 

function theory of weighted manifolds into two separate classes. 

Definition 2.2. A complete weighted Riemannian manifold  2, ,MM ds e d   is said to be  -

nonparabolic if it admits a positive  -Green's function. Otherwise, it is called  -parabolic. 

More generally, an end of M  refers to an unbounded connected component of the complement of a 
smooth compact domain in .M  

Definition 2.3. Let E  be an end of the complete weighted manifold  2, ,MM ds e d  . The end E  

is said to be   nonparabolic if there exists a positive  -Green's function on E  satisfying Neumann 

boundary conditions on E . Otherwise, E  is called  -parabolic.  

If E  is an end of M , we denote 

, ,( ) : ( )A AE R E B R    and  , ,( ) : ( ),A AE R E B R     

where , ( )AB R  is the geodesic ball of radius R  with respect to the conformal metric 2
,Ads .  

From the result of Seo-Yun in [20, Lemma 3.1], we know that the number of  -nonparabolic ends 

of a weighted manifold 2( , , )MM ds e d   is bounded above by the dimension of the space 0 ( )M  of 

bounded  -harmonic functions with finite weighted Dirichlet integral, that is, 

0( -nonparabolic ends of ) dim ( ).M M    (2) 

The following lemma plays an important role in proving Theorem 1.4, which can be seen as a 

weighted version of Lemma 11 by Li in [21]. 

Lemma 2.4. [21, Lemma 11]  Let  2, ,MM ds e d   be an n -dimensional  3n   complete  

weighted manifold. Let  1 2 ( )H L M  be the space of 2L -integrable  -harmonic 1 -forms on M . If   is 

a finite dimensional subspace of  1 2 ( )H L M  defined over a set M   then there exists 0   such 

that 

 2 2
0 0dim ( ) min ,dim sup .e dv V n

 

 
    
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Towards the end of this section, we demonstrate the following result, which constitutes a key step in 
the proof of the main theorem. 

Lemma 2.5. Let  2, ,MM ds e d   be a complete weighted Riemannian manifold of dimension 

3,n  and suppose that M  satisfies the property  ,A  for some nontrivial weight function 0  . 

Assume that the following pointwise conditions hold for all :x M   

1

2| | ( ) ( )x a x    and Ric ( ) ( 1) ( ),x n x     

where 0a   is a constant. Then, for every positive  -harmonic function   on ,M  there exists a 

constant 0,C   depending solely on ,n a  and ,A  for which the gradient estimate 

( ) ( 1) ( )x CS R x     (3) 

holds for all , ( )Ax B R . 

Proof of Lemma 2.5. Applying Theorem 2.1 in Wu [16], we conclude that there exist constants 

1 2,C C  such that 

 

2
1

,

| |
( ) sup ,

B x R

C
x C

R


   (4) 

for all ,x M where 1 2,C C  are constants depending only on n  and .a  For  0, ,t   we consider the 

following function 

1

( , )
( ) sup .

B x t
t t A


 

   
 


 

We observe that 
0

lim ( ) 0 and lim ( ) .
t t

t t
 

     Thus, by Mean value theorem, we can choose 

0 0R   such that 0( ) 0,R   that is  

 0

1

0
,

sup .
B x R

R A


 
  
   

For any point  0,y B x R , let   be a minimizing geodesic (with respect to 2
Mds ) joining ,  .x y  

Then, we have 

 0

, 0
,

( , ) ( ( )) sup ( ) 1.A
B x R

r x y A t dt A y R 
    

 

This shows that  0 ,, ( ,1).AB x R B x  For any , ( ),Ax B R  we see that  

 0 , ,, ( ,1) ( 1).A AB x R B x B R     

Now, we choose 0R R  in (4) and conclude that  


 

  
 

    
0 0 ,, , ( 1)0

| |
( ) sup 1 sup 1 s

1
up 1 ,

AB x R B x R B R
x C C A C A CS R

R 

  
 


    

 
 





 

where   1 2max , .C C C  The proof of Lemma 2.5 is complete. 
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The proof of Theorem 1.5 follows essentially the same approach as that of Theorem 1.4, with only a 
minor difference stemming from Lemma 2.5. To conclude this section, we provide an alternative 
formulation of Lemma 2.5, that is tailored to the assumptions of Theorem 1.5. 

Lemma 2.6. Let  2, ,MM ds e d   be an n -dimensional  3n   weighted manifold with property 

   for some non-zero weight function 0.   For all ,x M  suppose that the following inequalities 

hold: 

1

2| | ( ) ( )x a x    and \Ric ( ) ( 1) ( )M K x n x        

for some 0  , compact set .K M  Also assume that and the function ( )x  satisfies the following 

Poincare inequality 

2 2
0| | , ( ),

M M
A e d e d C M             

with  

2

min 1, 2 .
1

a
A n n

n

             

Then, for every positive  -harmonic function   on ,M  there exists a constant 0,C   depending 

solely on n  and ,a  for which the gradient estimate 

( ) ( 1) ( )x C R x   
 

holds for all ( ),x B R  where  
( )

( ) sup , .
pB R

R    

Proof of Lemma 2.6. As in the proof of Lemma 2.4, there exists a constant C , depending only on 

n  and a , such that  

 ,
.

| |
( ) u

1
s p

B x R
x C

R

 









 
   

For all ,x M  set  

  1 1
( ) | ( ) | .

2 2
x x x   

 

Then, we have | | 2 ,    
( ) ( )

sup sup , | | ( ),
B R B R

R
 

     and  

 ,
,

| |
( ) u

1
s p

B x R
x C

R

 









 
   

 for all .x M  For  0, ,t   we consider the following function 


1

( , )
( ) 2 sup .

B x t
t t 


 

   
 


 

We see that  
0

lim ( ) 0 and lim ( ) .
t t

t t
 

     Thus, by Mean value theorem, we can choose 0 0R   

such that  0( ) 0,R   that is  
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 0

1

0
,

2 sup .
B x R

R 


 
  
   

For any point  0,y B x R , let   be a minimizing geodesic (with respect to 2
Mds ) joining ,  .x y  

Then, we have 

 0

0
,

( , ) ( ( )) 2 ( ( )) 2 sup 1.
B x R

r x y t dt t dt R  
        

 

This shows that  0, ( ,1).B x R B x  For any ( ),x B R  we obtain 

 0, ( ,1) ( 1).B x R B x B R   
 

Now, we choose 0R R  in the inequality 
 ,

| |
( s

1
) up

B x R
x C

R





 
 






  and conclude that  

 
 

 
   

0 0, , ( 1)0

| |
( ) sup 1 2 sup 1 2 sup 1 2 ( 1).

1

B x R B x R B R
x C C C C R

R 




  



 

 
 

 
     

 

for all .x M  The proof of Lemma 2.6 is complete. 

3. Proof of Theorem 1.4 

With the necessary preparations in place, we proceed to prove Theorem 1.4 by following the 

approach introduced by Lam in [18]. 

Proof of Theorem 1.4. In view of (2), to prove Theorem 1.4, it is sufficient to prove that 

0dim ( ) .M   Assume henceforth that M  admits at least two  -nonparabolic ends. Following the 

construction in Subsection 2.1, we obtain a nonconstant bounded  -harmonic function 0 ( )M  with 

finite Dirichlet weighted integral, such that inf 0   and sup 1  . Moreover, the infimum is attained at 

infinity of a  -nonparabolic end 1E , while the supremum is attained at infinity of the other   

nonparabolic end 1\ .M E  

If 1A n  , then, by arguments analogous to those employed in the initial part of the proof of 

Theorem 3.1 in [4], we deduce that the manifold M  is isometric to the Riemannian product of a line and 

a compact manifold. Consequently, the proof of Theorem 1.4 is completed in this case. 

We next turn to the case 
2

2
1

a
A n

n
     

. Using Lemma 2.7 in [5], we get  

 
2

1 ( ) | | 1 ,
2

a
n

n



    


  

              

in \M K , where 
2

2 2

1 ( 1)

n n a

n n
  
 

 
 and 

1
.

1n
 


   From this, we deduce that  

( )h A h       (5) 
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in \ ,M K  where .h
   Let ( \ )c M K   be a non-negative smooth function with compact 

support in \M K . Then by the property  , ,A  we have 

2 2 2

2 2 2 2

| ( ) |

| | 2 , | | .

M M

M M M

A h e d h e d

h e d h h e d h e d

 

  

   

      

 

  

 

       

 
    

The Stokes' theorem implies that 

2 2

2 2 2

1
2 , ,

2

| | .

M M

M M

h h e d h e d

h he d h e d

 

 


    

   

 

 

     

    

 
   

From the above results, we deduce that 

2 2 2 2 2| | .
M M M

A h e d h e d h he d  
              

This and (5) entail that 

2 2 2 2| |
M M

A h e d h e d          (6) 

for any ( \ ).c M K    Since K  is compact, we may choose 0 0R   such that 

 , 0( ,1) 1 .A
x K

K B x B R


  
 

Let 0R   be such that  0 , ( 1)AB R B R  . Then, from (6) we have  

   , 0 , 0

2 2 2 2
( )\ 1 ( )\ 1 | | ,

A AB R B R B R B RA h e d h e d
 

      
   

 

for any   , 0( ) \ 1 .c AB R B R    We next choose    to be the  product of two compactly 

supported functions, where  

 1

1

0  on (0, ) (1 ,1),

ln( ) ln
 on ( , ) \ ,

ln( )
ln( ) ln(1 )

 on (1 ,1 ) ,
ln
1  otherwise, 

u
M E

x
u

E

 
  


  



 
  
      




Y Y

Y

Y

 

and  

 
 

0

, 0

, , ,

,

0  on 1 ,

1  on ( 1) \ ,
( )

 on ( ) \ ( 1),

0  on \ ( ),

A

A A A

A

B R

B R B R
x

R r B R B R

M B R



  





 
    
  

for some 0 1   and 
1

0
2

   to be determined later, where ( , ) { : ( ) },c d x M c x d   Y  and 

 ( ) : ( ) .x M x   y  From this and the Cauchy-Schwarz inequality, we see that  
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 

   

, 0

, 0 , 0

2 2
( )\ 1

2 2 2 2 2 2
( )\ 1 ( )\ 1

| |

2 | | 2 | | .

A

A A

B R B R

B R B R B R B R

h e d

h e d h e d



 



 

 

     




 
 



   



 
 (7) 

By the definition of the function  , we get 

 

     

   

, 0

, , 1 , , 1

0 0

2 2 2
( )\ 1

2 2 2 2 2 2
( )\ ( 1) ( )\ ( 1) \

2 2 2
\ 1

| |

| | | |

| | .

A

A A A A

B R B R

B R B R E B R B R M E

B R B R

h e d

h e d h e d

h e d



   



 



  

     

  




 
   






   

 



 



 (8) 

In the following C  denotes a constant depending only on ,n a and, A  whose value may change from  

line to line. Denote by 

2 2

1 2 2 1 1 1 2
: , : 1 .

1 1( 1) ( 1)

n n n
a a

p n q p nn n
   

      
    

Since  
1

0, ,
2

n
a

n

 
   

we get  , 0,1 .p q  Employing Hölder's inequality together with the fact that  

0 1  , the first term on the right-hand side of (8) admits the following estimate: 

 

   
, , 1

2
2 2 2

( )\ ( 1)

1 1

2

| | | |

| | ,

A A

p
B R B R E

p qq

h e d A u e d

A u e d e d

 

 

 

    

  

 
  

 

 

  

 

 

 
 (9) 

where  , , 1( ) \ ( 1) ( ( ,1 )).A AB R B R E        L  From Lemma 2.6 in [5], we have 

 
1

2 2
| | exp .p R

u e d C
p

 



 
   

   (10) 

By Lemma 2.6 in [5] and note that 
, ( )

( ) sup ,
AB R

S R


  we get 

2( 1)

2( 1) 2 2 2( 1) 2

[ ( )]

[ ( )] ( ) [ ( )] ( ) exp( 2 ).

q q

q q

e d S R e d

S R u e d C S R R

 



   

   

  

 

    





  

 
  

This implies that 

 
1 2( 1) 2

2
[ ( )] ( ) exp .

q
qq q q R

e d C S R
q

  







 
  

   (11) 

 

Substituting (10) and (11)  in (9), we deduce that  

 , , 1

2( 1) 2
2 2 2

( )\ ( 1)
| | [ ( )] ( ) exp( 2 ).

A A

q

q q
B R B R E

h e d C S R R
 

   





 
    (12) 
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Following similar arguments as in the proof of the estimate (12), we also obtain  

   , , 1

2( 1) 2
2 2 2

( )\ ( 1) \
| | [ ( )] ( ) exp( 2 ).

A A

q

q q
B R B R M E

h e d C S R R
 

   





 
  

 

Plugging this and (12) into (8), we conclude that 

 

   

, 0

0 0

2 2 2
( )\ 1

2( 1) 2
2 2 2

\ 1

| |

[ ( )] ( ) exp( 2 ) | | .

AB R B R

q

q q
B R B R

h e d

C S R R h e d







  

   












   




 (13) 

On the other hand, since 0 1  , we obtain  

    

    

, 0 , 0 1

, 0 1

2
2 2 2 2

( )\ 1 ( )\ 1

2
2

( )\ 1 \ \

| | | | | |

| | | | .

A A

A

p
B R B R B R B R E

p
B R B R M E

h e d u e d

u e d

 



 



    

 

 
  




   

  

 


 (14) 

Using the estimate (3) in Lemma 2.5, we have 

     



, 0 1

2 2
2

2 2 2
( )\ 1 \

2 2
2

2 2

| | | | (ln ) | |

(ln ) [ ( 1)] | | ,

A

p p
B R B R M E

p p

u e d u u e d

C S R u u e d



 



   

 




   

 


 





   

  

 


 (15) 

where      , 0 1( ) \ 1 \ ( , ).AB R B R M E      L  The co-area formula and Lemma 2.8 in [5] entail 

that 

  1 ,

2 2 2
2 2 2

2
( ) \ ( ) ( )

|  | | | | | ,
A

p p p
t M E B R b

u u e d t u dAdt u dA t dt


 

 


     


 
       y y  

for any level set .b  This and (15) imply that 

    , 0 1

2 2 2 2
2 2

( )\ 1 \
| | | | (ln ) [ ( 1)] 1 .

A

p p

p p p p
B R B R M E

u e d C S R


    
 

 
 

 
     
 
 

  (16) 

Applying the same estimate as in the proof of Lemma 2.5 to the function 1 u , we also have 

 | ( ) | ( 1) 1 ( )u x CS R u x     (17) 

for all , ( ).Ax B R  Then, by replacing the function u  with 1 u and using (3) in place of (17), we obtain 

the following estimate by applying the same reasoning as in the proof of inequality (16) 

  , 0 1

2 2 2 2
2 2

( )\ 1
| | | | (ln ) [ ( 1)] 1 .

A

p p

p p p p
B R B R E

u e d C S R


    
 

 
 

 
     
 
 


 

From this, (14) and (16), we get 

 , 0

2 2 2
2 2 2 2

( )\ 1 | | (ln ) [ ( 1)] 1 .
A

p p

p p p
B R B R h e d C S R


     
 

 


 
    
 
 


 

Hence together with (6), (7) and (13), we conclude that 
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     , 0 0 0

2 2 2 2 2
( )\ 1 \ 1

2( 1) 2 2 2 2
2

| |

[ ( )] ( ) exp( 2 ) (ln ) [ ( 1)] 1 .

AB R B R B R B R

q p p

q q p p p

A h e d h e d

C S R R C S R



      

   

 
 

  




 

 
     
 
 

 

If we choose 
1

2
   and exp( 2 )R    then the above inequality implies that 

 

   

, 0

2

0 0

2 2
( )\ 1

2 2
2

1 ( 1) 2 2
\ 12

3 2 2
[ ( 1)] exp 2 | |

1 ( 1)

AB R B R

n n
a

n n
B R B R

A h e d

n n
C S R R a h e d

n n







  

 




  
     



   
            




 (18) 

Given that 
( )

lim 0,
( )R

S R

F R
 it follows that the first term on the right-hand side of the preceding 

inequality vanishes in the limit as .R    Thus, letting R    in (18), we obtain 

     0 0 0

2 2
\ \ 1 .M B R B R B RA h e d C h e d    

 
 

This deduces that  

   0 0

2 2

2
,

B R B R
h e d C h e d      (19) 

where ( , , , ).C C n a A  From (19), we conclude that h h     on  0,2B p R , where  

 0,2
inf Ric .

1 B p R

A

n  
  

Then by the mean value inequality of Wu [10, Theorem 5.2], we find that 

   0 0

2 2 2
1 1

, ,2
( ) ,

B x R B p R
h x C h e d C h e d     

 

where  1 1 , ,C C n    and 
 

  
0

0
,

inf , .
x B p R

V B x R


  This and (19) lead to 

   00

2 2
2

,,
sup ,

B p RB p R
h C h e d  

 

where 2 2 ( , , , , , ).C C n a A    Using the Hölder's inequality, we get 

   
  

0 0

12 2
0| | .

B R B R
h e d e d V B R


 

  
          

 

Consequently, 

   00

2 2
3sup | | | | ,

B RB R
C e d      (20) 

where  3 3 0, , , , , ,C C n a A R    is a constant independent of 0( )u M . We are now in a position 

to demonstrate that 0 ( )M  is finite dimensional. To this end, consider the space of 1 -forms 

 0: ( ) ,d M   
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equipped with the bilinear form defined by
 0

, .
B R

h e d     Observe that if  

 0

2| | 0
B R

e d  
 

for some 0 ( )M , then the unique continuation property implies that   must be constant. 

Consequently, the bilinear form defines an inner product on .  According to Lemma 2.4, there exists 
0

0 ( )M   such that 

 
  

 0 0

2 2
0 0 0dim sup .

B R B R
d e d nV B R d

  
 

From this and (20), one finds that  

0
4dim ( ) dim 1M C     

 for some fixed constant    4 4 3 0, .C C C V B R  The proof is complete. 
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