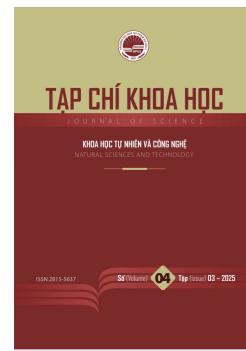


HPU2 Journal of Sciences: Natural Sciences and Technology

Journal homepage: <https://sj.hpu2.edu.vn>



Article type: Research article

The sequential Cohen-Macaulayness of idealizations

Van-Loc Phan*, Minh-Son Doan

Hanoi Pedagogical University 2, Phu Tho, Vietnam

Abstract

Let (R, \mathfrak{m}) be a Noetherian local ring and M a finitely generated R -module. The *idealization* $R \times M$, introduced by M. Nagata, has become a useful construction in commutative algebra. Recent work has characterized the approximate Cohen–Macaulayness of such idealizations via the length function associated with a good system of parameters. Motivated by these developments, we investigate via the sequential Cohen–Macaulayness of the idealization $R \times M$. We provide a characterization in terms of the length function with respect to a good system of parameters of the form $(x_1, 0), \dots, (x_r, 0)$, where $r = \dim R$. Furthermore, we provide equivalent conditions for $R \times M$ to be sequentially Cohen–Macaulay, expressed in terms of the length functions of both R and M , and their respective dimension filtrations.

Keywords: Idealization, Dimension filtration, Good systems of parameters, Sequentially Cohen-Macaulay

1. Introduction

Let (R, \mathfrak{m}) be a Noetherian local ring and M a finitely generated R -module. On additive group $R \oplus M$, we define the multiplication as follows:

$$(r_1, m_1) \cdot (r_2, m_2) = (r_1 r_2, r_1 m_2 + r_2 m_1)$$

for all $(r_1, m_1), (r_2, m_2) \in R \oplus M$. Since R is a Noetherian local ring with maximal ideal \mathfrak{m} , it follows that $R \oplus M$ is a Noetherian local ring with maximal ideal $\mathfrak{m} \times M$, and its dimension equals $\dim R$. Denoted by $R \times M$ and referred to as the *idealization* of M over R , this local ring was introduced by M. Nagata [1] and has found important applications in commutative algebra. The study of the properties

* Corresponding author, E-mail: phanvanloc@hpu2.edu.vn

<https://doi.org/10.56764/hpu2.jos.2025.4.3.34-41>

Received date: 26-6-2025 ; Revised date: 14-8-2025 ; Accepted date: 20-11-2025

This is licensed under the CC BY-NC 4.0

of idealization and its various applications has garnered significant attention from mathematicians (see [2]-[8]). Notably, the Gorensteinness of idealizations was studied by I. Reiten in [5]. Building on this, S. Goto et al. in [6] investigated the conditions under which the idealization $R \times M$ qualifies as an almost Gorenstein local ring. Recently, P.H. Nam, D. V. Kien, and P.V. Loc [9] have characterized the approximate Cohen-Macaulayness of an idealization $R \times M$ via the length function relative to a good system of parameters of the form $(x_1, 0), \dots, (x_r, 0)$ (such a good system of parameters exists, see [9, Corollary 2.4], where $r = \dim R$).

Motivated by the work of P.H. Nam et al. (see [10]–[15]), we characterize the sequential Cohen-Macaulayness of an idealization in terms of the length function with respect to a good system of parameters of the form $(x_1, 0), \dots, (x_r, 0)$.

To be more specific, let $\dim R = r$ and $\dim M = d$. Note that $\dim(R \times M) = r \geq d$. If $r = 1$, then $R \times M$ is a sequentially Cohen-Macaulay local ring. Therefore, we restrict our attention to the case $r \geq 2$. The following theorem constitutes the main result of this paper.

Theorem 1.1. *Suppose that $r \geq 2$. Put $A = R \times M$. The following assertions are equivalent.*

(a) *A is sequentially Cohen-Macaulay.*

(b) *There exists a good system of parameters $(x_1, 0), \dots, (x_r, 0)$ of A such that*

$$\ell\left(A / (u_1^{n_1}, \dots, u_r^{n_r})\right) = \sum_{i=0}^r n_1 \dots n_i e(u_1, \dots, u_i; A_i)$$

for all $n_1, \dots, n_r \geq 1$, where $A_0 \subseteq A_1 \subseteq \dots \subseteq A_r$ is the dimension filtration of A and $u_1 = (x_1, 0), \dots, u_r = (x_r, 0)$.

(c) *One of the following conditions holds.*

(i) *$d = r$ and there exists a good system of parameters x_1, \dots, x_r of both R and M such that*

$$\ell(R / (x_1^{n_1}, \dots, x_r^{n_r})) = \sum_{i=0}^r n_1 \dots n_i e(x_1, \dots, x_i; R_i)$$

and

$$\ell(M / (x_1^{n_1}, \dots, x_r^{n_r})M) = \sum_{i=0}^r n_1 \dots n_i e(x_1, \dots, x_i; M_i)$$

for all $n_1, \dots, n_r \geq 1$, where $R_0 \subseteq R_1 \subseteq \dots \subseteq R_r$ and $M_0 \subseteq M_1 \subseteq \dots \subseteq M_r$ are the dimension filtrations of R and M, respectively.

(ii) *$d < r$ and there exists a good system of parameters x_1, \dots, x_r of R such that x_1, \dots, x_d is a good system of parameters of M and $x_{d+1}, \dots, x_r \in \text{Ann}_R M$ such that*

$$\ell(R / (x_1^{n_1}, \dots, x_r^{n_r})) = \sum_{i=0}^r n_1 \dots n_i e(x_1, \dots, x_i; R_i)$$

and

$$\ell(M / (x_1^{n_1}, \dots, x_d^{n_d})M) = \sum_{i=0}^d n_1 \dots n_i e(x_1, \dots, x_i; M_i)$$

for all $n_1, \dots, n_r \geq 1$, where $R_0 \subseteq R_1 \subseteq \dots \subseteq R_r$ and $M_0 \subseteq M_1 \subseteq \dots \subseteq M_d$ are the dimension filtrations of R and M , respectively.

In the next section, we recall some properties of good system of parameters of the idealization $R \ltimes M$. In Section 3, we present the proof of Theorem 1.1.

2. Preliminaries

An interesting extension of Cohen-Macaulay modules is sequentially Cohen-Macaulay modules due to R.P. Stanley [16] for graded rings and P. Schenzel [17] for local rings. The study of sequential Cohen-Macaulayness has taken many different directions, see [13], [14], [18]–[22]. There is a close connection between this concept and the notion of dimension filtration introduced by P. Schenzel [17].

Let $0 \leq i < d$ be an integer. Define M_i to be the largest submodule of M satisfying $\dim M_i \leq i$. Since M is a Noetherian R -module, each submodule M_i is well-defined. Furthermore, these submodules form an ascending chain

$$M_0 \subseteq M_1 \subseteq \dots \subseteq M_d = M,$$

where $M_{i-1} \subseteq M_i$ for all $i \in \{1, \dots, d\}$. This ascending filtration of M is referred to as the *dimension filtration* of M (see [17, Definition 2.1]).

Definition 2.1 (see [17]). Let $M_0 \subseteq M_1 \subseteq \dots \subseteq M_d = M$ be the dimension filtration of M . We say that M is a *sequentially Cohen-Macaulay module* if $M_i / M_{i-1} = 0$ or M_i / M_{i-1} is a Cohen-Macaulay module of dimension i for all $0 < i \leq d$.

From now on, we denote $A = R \ltimes M$ as the idealization of M over R . Note that $\dim A = r$. Then, we have the following lemma (see [9, Lemma 2.2]).

Lemma 2.2. Let $M_0 \subseteq M_1 \subseteq \dots \subseteq M_d = M$ and $R_0 \subseteq R_1 \subseteq \dots \subseteq R_r = R$ be the dimension filtrations of M and R , respectively.

(a) Let $d = r$. For $i = 0, \dots, r$, we put $A_i = R_i \times M_i$. Then, we have

$$A_0 \subseteq A_1 \subseteq \dots \subseteq A_r = A$$

is the dimension filtration of A .

(b) Let $d < r$. For $i = 0, \dots, d$, we put $A_i = R_i \times M_i$ and $A_j = R_j \times M$ for $j = d+1, \dots, r$. Then, we have $A_0 \subseteq A_1 \subseteq \dots \subseteq A_r = A$ is the dimension filtration of A .

Introduced by N.T. Cuong and D.T. Cuong in [18], the concept of a good system of parameters is a key tool in analyzing the sequential Cohen-Macaulay property of modules (see [19]).

Definition 2.3 (see [18, Lemma 2.2]). Let $M_0 \subseteq M_1 \subseteq \dots \subseteq M_d = M$ be the dimension filtration and $\underline{x} = x_1, \dots, x_d$ a system of parameters of M . \underline{x} is called a *good system of parameters* of M if $M_i \cap (x_{i+1}, \dots, x_d)M = 0$ for $i \in 0, \dots, d-1$.

Following [18, Lemma 2.5], M always admits a good system of parameters. By [9, Proposition 2.3], we can construct a good system of parameters for the idealization A .

Proposition 2.4. Let $\underline{x} = x_1, \dots, x_r$ be elements in \mathfrak{m} . For $i = 1, \dots, r$, set $u_i = (x_i, 0)$ and $\underline{u} = u_1, \dots, u_r$. The statements below are equivalent.

- (a) \underline{u} is a good system of parameters of A .
- (b) \underline{x} is a good system of parameters of R and x_1, \dots, x_d is a good system of parameters of M . Furthermore, if $d < r$, then $x_{d+1}, \dots, x_r \in \text{Ann}_R M$.

Corollary 2.5. There always exists a good system of parameters of A of the form $(x_1, 0), \dots, (x_r, 0)$, where x_1, \dots, x_r is a good system of parameters of R and x_1, \dots, x_d is a good system of parameters of M . And if $d < r$, then $x_{d+1}, \dots, x_r \in \text{Ann}_R M$.

3. Proof of main result

From now on, let $\mathfrak{F}_R : R_0 \subseteq R_1 \subseteq \dots \subseteq R_r = R$ and $\mathfrak{F}_M : M_0 \subseteq M_1 \subseteq \dots \subseteq M_d = M$ be the dimension filtrations of R and M , respectively. Let $\underline{y} = x_1, \dots, x_d$ be a good system of parameters of M . Then x_1, \dots, x_i is a multiplicity system of M_i , for all $i = 0, \dots, d$. Therefore, the following function is well-defined

$$I_{\mathfrak{F}_M}(\underline{y}) = \ell(M / \underline{y}M) - \sum_{i=0}^d e(x_1, \dots, x_i; M_i),$$

where $e(x_1, \dots, x_i; M_i)$ is the multiplicity symbol of M_i with respect to x_1, \dots, x_i , for $i = 0, 1, \dots, d$. It is clear that $e(x_1, \dots, x_i; M_i) = 0$ if and only if $\dim M_i < i$. Thus, the above concept of $I_{\mathfrak{F}_M}(\underline{y})$ is identical to the concept of $I_{\mathfrak{F}_M}(\underline{y})$ of N.T. Cuong et al. in [17]. However, for the convenience of calculations, we will use the above definition of $I_{\mathfrak{F}_M}(\underline{y})$. For any integers $\underline{m} = m_1, \dots, m_d$, we denote

$$I_{\mathfrak{F}_M}(\underline{y}(\underline{m})) = \ell(M / (\underline{y}(\underline{m}))M) - \sum_{i=0}^d m_1 \dots m_i e(x_1, \dots, x_i; M_i)$$

as a function on m_1, \dots, m_d where $\underline{y}(\underline{m}) = x_1^{m_1}, \dots, x_d^{m_d}$. By [17, Lemma 2.7, Proposition 2.9], we have the following lemma.

Lemma 3.1. Let $\underline{y} = x_1, \dots, x_d$ be a good system of parameters of M . Then the function $I_{\mathfrak{F}_M}(\underline{y}(\underline{m}))$ is non-decreasing and non-negative.

We set $A_i = R_i \times M_i$ for $i = 0, \dots, d$ and $A_j = R_j \times M$ for $j = d+1, \dots, r$. Following Lemma 2.2, $A_0 \subseteq A_1 \subseteq \dots \subseteq A_r$ is the dimension filtration of A .

Lemma 3.2. Let $\underline{x} = x_1, \dots, x_r$ be a good system of parameters of R . Set $\underline{u} = u_1, \dots, u_r$, where $u_i = (x_i, 0)$ for $i = 1, \dots, r$. Then \underline{u} is a system of parameters of A . Moreover, if $\underline{y} = x_1, \dots, x_d$ is a good system of parameters of M and $x_{d+1}, \dots, x_r \in \text{Ann}_R M$, then for any positive integers n_1, \dots, n_r , we have

$$I_{\mathfrak{F}_A}(\underline{u}(\underline{n})) = I_{\mathfrak{F}_R}(\underline{x}(\underline{n})) + I_{\mathfrak{F}_M}(\underline{y}(\underline{m})).$$

We now proceed to the proof of Theorem 1.1.

Proof of Theorem 1.1. (a) \Rightarrow (b). By Corollary 2.5, A admits a good system of parameters of the form $u_1 = (x_1, 0), \dots, u_r = (x_r, 0)$. Following [18, Remark 2.3], $(x_1, 0)^{n_1}, \dots, (x_r, 0)^{n_r}$ is a good system of parameters of A for all $n_1, \dots, n_r \geq 1$. Since A is sequentially Cohen-Macaulay, we get by [18, Theorem 4.2] that $I_{\mathfrak{F}_A}(\underline{u}(n)) = 0$ for all positive integers n_1, \dots, n_r , which implies that

$$\ell\left(A / (u_1^{n_1}, \dots, u_r^{n_r})\right) = \sum_{i=0}^r n_1 \dots n_i e(u_1, \dots, u_i; A_i)$$

for all positive integers n_1, \dots, n_r , where $A_0 \subseteq A_1 \subseteq \dots \subseteq A_r$ is the dimension filtration of A and $u_1 = (x_1, 0), \dots, u_r = (x_r, 0)$.

(b) \Rightarrow (c). We consider into two cases.

The case $d = r$. Since $\underline{u} = (x_1, 0), \dots, (x_r, 0)$ is a good system of parameters. Following [18, Remark 2.3], $\underline{u}(n) = (x_1^{n_1}, 0), \dots, (x_r^{n_r}, 0)$ is a good system of parameters of A for all $n_1, \dots, n_r \geq 1$, we get by Proposition 2.4 that $\underline{x}(n) = x_1^{n_1}, \dots, x_r^{n_r}$ is a good system of parameters of both R and M for all positive integers n_1, \dots, n_r . By the assumption (a) and Lemma 3.1, and Lemma 3.2, we have

$$0 = I_{\mathfrak{F}_A}(\underline{u}(n)) = I_{\mathfrak{F}_R}(\underline{x}(n)) + I_{\mathfrak{F}_M}(\underline{x}(n)) \geq 0$$

for all $n_1, \dots, n_r \geq 1$. Therefore, $I_{\mathfrak{F}_R}(\underline{x}(n)) = 0$ and $I_{\mathfrak{F}_M}(\underline{x}(n)) = 0$ for all positive integers n_1, \dots, n_r . The statement follows.

The case $d < r$. By Proposition 2.4, we have $x_1^{n_1}, \dots, x_r^{n_r}$ is a good system of parameters of R , $x_1^{n_1}, \dots, x_d^{n_d}$ is a good system of parameters of M and $x_{d+1}, \dots, x_r \in \text{Ann}_R M$ for all positive integers n_1, \dots, n_r . Put $\underline{x} = x_1, \dots, x_r$ and $\underline{y} = x_1, \dots, x_d$. By the assumption (a) and Lemma 3.1, and Lemma 3.2, we have

$$0 = I_{\mathfrak{F}_A}(\underline{u}(n)) = I_{\mathfrak{F}_R}(\underline{x}(n)) + I_{\mathfrak{F}_M}(\underline{y}(n)) \geq 0$$

for all positive integers n_1, \dots, n_r . Therefore, $I_{\mathfrak{F}_R}(\underline{x}(n)) = 0$ and $I_{\mathfrak{F}_M}(\underline{y}(n)) = 0$ for all positive integers n_1, \dots, n_r . Thus, the statement follows.

(c) \Rightarrow (b). Suppose that the condition (i) is satisfied. Since x_1, \dots, x_r is a good system of parameters of both R and M , we get by Proposition 2.4 that $\underline{u} = (x_1, 0), \dots, (x_r, 0)$ is a good system of parameters of A . According to the assumption (i) and by Lemma 3.2, we have

$$I_{\mathfrak{F}_A}(\underline{u}(n)) = I_{\mathfrak{F}_R}(\underline{x}(n)) + I_{\mathfrak{F}_M}(\underline{x}(n)) = 0$$

implying that

$$\ell\left(A / (u_1^{n_1}, \dots, u_r^{n_r})\right) = \sum_{i=0}^r n_1 \dots n_i e(u_1, \dots, u_i; A_i)$$

for all positive integers n_1, \dots, n_r .

Suppose that the condition (ii) is satisfied. By Proposition 2.4 that $\underline{u} = (x_1, 0), \dots, (x_r, 0)$ is a good system of parameters of A . Combining the assumption (ii) and by Lemma 3.2, we have

$$I_{\mathfrak{F}_A}(\underline{u}(\underline{n})) = I_{\mathfrak{F}_R}(\underline{x}(\underline{n})) + I_{\mathfrak{F}_M}(\underline{y}(\underline{m})) = 0$$

implying that

$$\ell\left(A / (u_1^{n_1}, \dots, u_r^{n_r})\right) = \sum_{i=0}^r n_1 \dots n_i e(u_1, \dots, u_i; A_i)$$

for all $n_1, \dots, n_r \geq 1$.

(b) \Rightarrow (a) is trivial by [18, Theorem 4.2].

From Theorem 1.1 and its proof, we immediately obtain the following corollary (also see [24, Corollary 2]).

Corollary 3.3. The following assertions are equivalent:

- (i) A is sequentially Cohen-Macaulay.
- (ii) R and M are sequentially Cohen-Macaulay.

We end this paper with the following examples.

Example 3.4. Let $S = k[[X_1, X_2, X_3, X_4]]$ denote the formal power series ring in four variables over a field k . Set $R = S / \mathfrak{a}$ and $M = S / I$, where $I = (X_1X_2, X_1X_3, X_2X_3)$ and $\mathfrak{a} = (X_4) \cap I$. Let x, y, z, t denote the images of X_1, X_2, X_3, X_4 in R , respectively. Then $\dim R = 3$, and the dimension filtration of R is given by

$$\mathfrak{F}_R : (0) = R_0 = R_1 \subsetneq R_2 = (t)R \subsetneq R_3 = R,$$

where R_2 is a Cohen-Macaulay module of dimension 2. We have $\dim M = 2$, and the dimension filtration of M is

$$\mathfrak{F}_M : (0) = M_0 = M_1 \subsetneq M_2 = M.$$

Define the elements $x_1 = t + z, x_2 = x + y + z$, and $x_3 = yz$.

Then $x_3 \in \text{Ann}_R(M)$ and

$$\ell(R / (x_1^{n_1}, x_2^{n_2}, x_3^{n_3})) = 2n_1 n_2 n_3 + 3n_1 n_2,$$

$$\ell(M / (x_1^{n_1}, x_2^{n_2})M) = 3n_1 n_2,$$

for all $n_1, n_2, n_3 \geq 1$. By [25, Definition 2.1] and [18, Corollary 3.7], \underline{x} is a good system of parameters of R and \underline{y} is a good system of parameters of M . Therefore, we have

$$I_{\mathfrak{F}_R}(\underline{x}(\underline{n})) = \ell(R / (x_1^{n_1}, x_2^{n_2}, x_3^{n_3})R) - n_1 n_2 n_3 e(\underline{x}, R) - n_1 n_2 e(\underline{y}; R_1) = 0,$$

$$I_{\mathfrak{F}_M}(\underline{y}(\underline{n})) = \ell(M / (x_1^{n_1}, x_2^{n_2})M) - n_1 n_2 e(\underline{y}; M) = 0,$$

for all $n_1, n_2, n_3 \geq 1$. By Theorem 1.1(c), $R \ltimes M$ is sequentially Cohen-Macaulay.

Example 3.5. Let $S = k[[X, Y, Z, T]]$ denote the formal power series ring in four variables over a field k . Put $R = S/\mathfrak{a}$ and $M = S/I$, where $I = (X, Y, Z)$ and $\mathfrak{a} = (X, Y, Z) \cap (T)$. Let x, y, z, t denote the images of X, Y, Z, T in R , respectively. Then the dimension filtration of R is

$$\mathfrak{F}_R : (0) = R_0 = R_1 \subsetneq R_2 = (t)R \subsetneq R_3 = R,$$

We have R is a sequentially Cohen-Macaulay ring with $\dim R = 3$ and M is a Cohen-Macaulay module. By Corollary 3.3, $R \times M$ is sequentially Cohen-Macaulay.

4. Conclusions

In this paper, we have studied the sequential Cohen-Macaulayness of the idealization $R \times M$ of a finitely generated module M over a Noetherian local ring R . By examining the length function of $R \times M$ with respect to a good system of parameters of the form $(x_1, 0), \dots, (x_r, 0)$, we obtained a necessary and sufficient condition for the idealization to be sequentially Cohen-Macaulay. These results offer insight into the structure of idealizations and contribute to the broader understanding of sequential Cohen-Macaulay modules and their invariants.

Acknowledgments

This research is funded by Hanoi Pedagogical University 2 Foundation for Sciences and Technology Development under Grant Number: HPU2.2024-CS.04

References

- [1] M. Nagata, *Local rings*. Tracts in Pure and Applied Mathematics, No. 13, 1962.
- [2] Y. Aoyama, “Some basic results on canonical modules,” *J. Math. Kyoto Univ.*, vol. 23, pp. 85–94, 1983, doi: 10.1215/kjm/1250521612.
- [3] D. D. Anderson and M. Winders, “Idealization of a module,” *J. Commut. Algebra*, vol. 1, pp. 3–56, 2009, doi: 10.1216/JCA-2009-1-1-3.
- [4] S. Goto and S. Kumashiro, “When is $R \times I$ an almost Gorenstein ring?,” *Proc. Amer. Math. Soc.*, vol. 146, pp. 1431–1437, Nov. 2018, doi: 10.1090/proc/13835.
- [5] I. Reiten, “The converse of a theorem of Sharp on Gorenstein modules,” *Proc. Amer. Math. Soc.*, vol. 32, pp. 417–420, 1972, doi: 10.1090/S0002-9939-1972-0296067-7.
- [6] S. Goto, R. Takahashi, and N. Taniguchi, “Almost Gorenstein rings-towards a theory of higher dimension,” *J. Pure Appl. Algebra*, vol. 219, no. 7, pp. 2666–2712, Jul. 2015, doi: 10.1016/j.jpaa.2014.09.022.
- [7] K. Yamagishi, “Idealizations of maximal Buchsbaum modules over a Buchsbaum ring,” *Math. Proc. Camb. Phil. Soc.*, vol. 104, pp. 451–478, Nov. 1988, doi: 10.1017/S0305004100065658.
- [8] D. T. Cuong, P. H. Nam and L. T. Nhan, “On almost p-standard system of parameters on Idealization and Applications,” *J. Pure Appl. Algebra*, vol. 228, no. 3, p. 107540, Mar. 2024, doi: 10.1016/j.jpaa.2023.107540.
- [9] P.H. Nam, D.V. Kien and P.V. Loc, “When is $R \times M$ an approximately Cohen-Macaulay local rings?,” *Rocky Mountain J. Math.*, accepted, 14 pages, 2024.
- [10] P. H. Nam, “On the local cohomology of powers of ideals in idealizations,” *Periodica Math. Hungar.*, vol. 87, pp. 441–455, Apr. 2023, doi: 10.1007/s10998-023-00526-5.
- [11] P. H. Nam, “An almost p-standard system of parameters and approximately Cohen-Macaulay modules,” *Acta Math. Hungar.*, vol. 173, no. 2, pp. 366–399, Jul. 2024, doi: 10.1007/s10474-024-01447-6.
- [12] P. H. Nam, “Unmixed torsions and Hilbert coefficients of d-sequences,” *J. Algebra*, vol. 664, pp. 738–755, Feb. 2025, doi: 10.1016/j.algebra.2024.10.014.
- [13] P. H. Nam, “New characterizations of sequentially Cohen-Macaulay modules,” preprint, 2025.

- [14] P.V. Loc, P.H. Nam, “An almost p-standard system of parameters and the sequential Cohen-Macaulayness of idealizations,” *Comm. Algebra*, accepted, 15 pages, May 2025, doi: 10.1080/00927872.2025.2499956.
- [15] D. T. Cuong, P. H. Nam and P.H. Quy, “On the length function of saturations of ideal powers,” *Acta Math. Vietnam.*, vol. 43, pp. 275–288, Jun. 2018, doi: 10.1007/s40306-018-0245-4
- [16] R. P. Stanley, *Combinatorics and Commutative Algebra*, Second edition, Birkhäuser Boston, 1996, doi: 10.1007/b139094.
- [17] P. Schenzel, “On the dimension filtration and Cohen-Macaulay filtered modules,” in *Proc. of the Ferrara Meeting in honor of Mario Fiorentini*, University of Antwerp, Wilrijk, Belgium, 1998, pp. 245–264.
- [18] N. T. Cuong and D. T. Cuong, “On sequentially Cohen-Macaulay modules,” *Kodai Math. J.*, vol. 30, no. 1, pp. 409–428, Oct. 2007, doi: 10.2996/kmj/1193924944.
- [19] N. T. Cuong and D. T. Cuong, “On the structure of sequentially generalized Cohen-Macaulay modules,” *J. Algebra*, vol. 317, pp. 714–742, Nov. 2007, doi: 10.1016/j.jalgebra.2007.06.026.
- [20] N. T. Cuong, S. Goto, and H. L. Truong, “Hilbert coefficients and sequentially Cohen-Macaulay modules,” *J. Pure Appl. Algebra*, vol. 217, pp. 470–480, Mar. 2013, doi: 10.1016/j.jpaa.2012.06.026.
- [21] K. Ozeki, H. L. Truong, and H. N. Yen, “Hilbert coefficients and sequentially Cohen-Macaulay rings,” *Proc. Amer. Math. Soc.*, vol. 150, pp. 2367–2383, Mar. 2022, doi: 10.1090/proc/15883.
- [22] M. Tousi, S. Yassemi, “Sequentially Cohen-Macaulay modules under base change,” *Commun. Algebra*, vol. 33, pp. 3977–3987, Feb. 2005, doi: 10.1080/00927870500261132.
- [23] P. H. Nam, “On the partial Euler-Poincaré characteristics of Koszul complexes of idealization,” *J. Commut. Algebra*, vol. 16, no. 1, pp. 75–93, 2024, doi: 10.1216/jca.2024.16.75.
- [24] P. H. Nam, “On the uniform bound of reducibility index of parameter ideals of idealizations,” *J. Algebra Appl.*, vol. 22, no. 9, p. 2350183, 2023, doi: 10.1142/S0219498823501839.
- [25] D. T. Cuong and P. H. Nam, “Hilbert coefficients and partial Euler-Poincaré characteristics of Koszul complexes of d-sequences,” *J. Algebra*, vol. 441, pp. 125–158, Nov. 2015, doi: 10.1016/j.jalgebra.2015.06.024.