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Quadratic programming and quadratically constrained quadratic 
programming: theory, algorithms, and applications 

Kim-Thuy Dinh Thi* 

Hanoi Pedagogical University 2, Phu Tho, Vietnam 

Abstract 

This survey provides a systematic review of quadratic programming (QP) and quadratically constrained 
quadratic programming (QCQP) problems. The paper reviews mathematical formulations and problem 
taxonomies based on convexity properties, surveys optimality conditions through Lagrangian theory and 
KKT conditions, and examines foundational work by Markowitz, Wolfe, and Frank-Wolfe and key 
algorithmic developments. Four major algorithmic paradigms are examined: (1) active-set methods with 
finite convergence properties, (2) polynomial-time interior-point methods, (3) modern operator-splitting 
approaches including OSQP and ADMM, and (4) semidefinite programming relaxations for non-convex 
cases, with review of their theoretical properties and convergence guarantees. The methodology is 
illustrated through case studies in facility location optimization and production planning that demonstrate 
the application of KKT conditions and Lagrange multiplier theory, while examples from portfolio 
optimization to model predictive control illustrate broader applicability. This work connects classical 
optimization theory with contemporary algorithmic approaches, providing insights for researchers and 
guidance for practitioners in operations research, engineering, and applied mathematics. 

Keywords: Quadratic programming, QCQP, Lagrange multipliers, KKT conditions, constrained 
optimization, facility location, production planning 

1. Introduction 

Quadratic programming represents one of the most fundamental and well-studied classes of 
optimization problems, with roots tracing back to the pioneering work of Markowitz [1] in portfolio theory 

and the subsequent developments by Wolfe [2] and Frank and Wolfe [3] in algorithmic approaches. The 
extension to quadratically constrained quadratic programs emerged naturally as researchers recognized 

                                                           
* Corresponding author, E-mail: dinhthikimthuy@hpu2.edu.vn  

https://doi.org/10.56764/hpu2.jos.2025.4.3.80-96 



HPU2. Nat. Sci. Tech. 2025, 4(3), 80-96 

https://sj.hpu2.edu.vn 81   

the need to model more complex real-world phenomena involving nonlinear relationships in both 
objectives and constraints. 

The significance of QP extends far beyond its mathematical elegance. These problems arise naturally 
in numerous applications including portfolio optimization, support vector machines [4], [5], model 
predictive control [6], [7], and facility location problems. The computational tractability of convex QP 
problems, combined with their modeling flexibility, has made them indispensable tools in modern 
optimization practice. 

Main contributions. We provide a systematical review of quadratic programming (QP) and 
quadratically constrained quadratic programming (QCQP), outlining problem structures, key optimality 
conditions, and influential algorithmic paradigms including active-set, interior-point, operator-splitting 
(OSQP, ADMM), and semidefinite relaxations. Notably, highlights on practical relevance through case 
studies in facility location and production planning are presented. The paper effectively bridges 
foundational theory, modern algorithms, and real-world applications, offering guidance for researchers 

and practitioners alike. 

1.1. Canonical Formulation of Quadratic Programming 

Definition 1.1 (Quadratic Programming Problem). A quadratic programming problem is an 
optimization problem of the form: 

min
௫∈ℝ೙

  𝑓(𝑥) =
1

2
𝑥ୃ𝑄𝑥 + 𝑐ୃ𝑥 + 𝑟

subject to  𝐴𝑥 ≤ 𝑏

𝐸𝑥 = 𝑑
𝑥 ≥ 0

 

where 𝑥 ∈ ℝ௡ is the vector of decision variables, 𝑄 ∈ 𝕊௡ is a symmetric 𝑛 × 𝑛 matrix (e.g. an Hessian of 

an objective), 𝑐 ∈ ℝ௡  is the linear coefficient vector, 𝑟 ∈ ℝ  is a scalar constant, 𝐴 ∈ ℝ௠×௡  defines 

inequality constraints with 𝑏 ∈ ℝ௠ , 𝐸 ∈ ℝ௣×௡  defines equality constraints with 𝑑 ∈ ℝ௣ . When 𝑄  is 

positive semidefinite (𝑄 ≽ 0), the problem is convex and possesses desirable computational properties. 

1.2. Extension to Quadratically Constrained Quadratic Programming (QCQP) 

A quadratically constrained quadratic programming problem (QCQP) is an optimization problem in 
which both the objective function and the constraints are quadratic functions. 

Definition 1.2 (Quadratically Constrained Quadratic Programming). A QCQP extends QP by 
allowing quadratic constraints 

min
௫∈ℝ೙

  𝑓଴(𝑥) =
1

2
𝑥ୃ𝑄𝑥 + 𝑐ୃ𝑥 + 𝑟

subject to  𝑓௜(𝑥) =
1

2
𝑥ୃ𝑃௜𝑥 + 𝑞௜

ୃ𝑥 + 𝑟௜ ≤ 0,  𝑖 = 1, … , 𝑚

𝐸𝑥 = 𝑑

 

where 𝑃௜ ∈ 𝕊௡ for 𝑖 = 0,1, … , 𝑚 are symmetric matrices defining the quadratic terms in the objective and 
constraint functions. 

If  𝑃ଵ, … , 𝑃௠ and 𝑄 are all positive semidefinite, then the problem is convex. When  𝑃ଵ, … , 𝑃௠ are all 
zero, then the problem is a quadratic program as all the constraints are linear. 
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1.3. History and Development of QCQP 

Foundational Contributions. The theoretical foundations of quadratic programming were 
established through several seminal contributions in the mid-20th century. Markowitz [1] introduced 

quadratic programming in the context of portfolio optimization, formulating the mean-variance model 
that became a cornerstone of modern finance theory. This work demonstrated the practical importance of 

optimization problems with quadratic objectives and linear constraints. The algorithmic development of 
QP methods began with the work of Wolfe [2], who proposed the first systematic approach for solving 
QP problems using variants of the simplex method. Concurrently, Frank and Wolfe [3] developed 
gradient-based methods that could handle more general convex programming problems, including QP as 
a special case. 

Algorithmic Evolution. The 1970s and 1980s witnessed significant advances in QP algorithms. Gill 

and Murray [8] developed numerically stable active-set methods that became the standard approach for 
medium-scale problems. This work was extended by Goldfarb and Idnani [9], who developed a dual 
active-set method that remains widely implemented in modern solvers. These methods systematically 
identify the optimal active constraint set by solving a sequence of equality-constrained quadratic 
subproblems. The introduction of interior-point methods by Karmarkar [10] for linear programming was 

quickly extended to QP by Megiddo [11] and others. Mehrotra's predictor-corrector method [12] further 
improved the practical performance of interior-point algorithms. These methods demonstrated 
polynomial-time complexity and excellent practical performance, particularly for large-scale problems 
with sparse structure. 

Modern Developments. The 21st century has seen remarkable progress in both algorithmic 
sophistication and software implementation. The development of OSQP (Operator Splitting Quadratic 

Program) by Stellato et al. [13] represents a significant breakthrough in making high-performance QP 
solvers accessible through open-source software. OSQP’s operator-splitting approach enables efficient 
warm-starting and real-time applications. Other important modern QP solvers include qpOASES [14] for 
parametric problems arising in model predictive control and commercial solvers such as Gurobi [15], 
CPLEX [16], and MOSEK [17]. Research in quadratically constrained quadratic programming has 
focused primarily on relaxation techniques due to the general NP-hardness of non-convex QCQP. The 
seminal work of Shor [18] on semidefinite relaxations provided the theoretical foundation for many 
modern approaches.  

2. Preliminaries, Taxonomy and Structural Properties 

2.1. Fundamental Properties and Definitions 

Definition 2.1 (Positive Definite and Semidefinite Matrices). Let 𝑄 ∈ 𝕊௡.   

- 𝑄 is positive definite (denoted 𝑄 ≻ 0) if 𝑥ୃ𝑄𝑥 > 0 for all 𝑥 ≠ 0  

- 𝑄 is positive semidefinite (denoted 𝑄 ≽ 0) if 𝑥ୃ𝑄𝑥 ≥ 0 for all 𝑥 ∈ ℝ௡. 

Theorem 2.2 (Spectral Characterization). A symmetric matrix 𝑄 ∈ 𝕊௡ is positive definite if and only 

if all its eigenvalues are strictly positive. Similarly, 𝑄  is positive semidefinite if and only if all its 

eigenvalues are nonnegative. 

Proof. By the spectral theorem, any symmetric matrix 𝑄 can be diagonalized as 𝑄 = 𝑈𝛬𝑈ୃ where 

𝑈 is an orthogonal matrix whose columns are the eigenvectors of 𝑄, and 𝛬 = diag(𝜆ଵ, … , 𝜆௡) contains 

the eigenvalues 𝜆ଵ, … , 𝜆௡. 
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For any 𝑥 ≠ 0, let 𝑦 = 𝑈ୃ𝑥. Since 𝑈 is orthogonal, ∥ 𝑦 ∥=∥ 𝑥 ∥> 0, so 𝑦 ≠ 0. Then: 

𝑥ୃ𝑄𝑥 = 𝑥ୃ𝑈𝛬𝑈ୃ𝑥 = 𝑦ୃ𝛬𝑦 = ෍ 𝜆௜

௡

௜ୀଵ

𝑦௜
ଶ 

Since 𝑦 ≠ 0, at least one component 𝑦௜ ≠ 0, so 𝑦௜
ଶ > 0. Therefore 𝑥ୃ𝑄𝑥 > 0 for all 𝑥 ≠ 0 if and 

only if 𝜆௜ > 0 for all 𝑖; and 𝑥ୃ𝑄𝑥 ≥ 0 for all 𝑥 if and only if 𝜆௜ ≥ 0 for all 𝑖. 

This completes the proof. □ 

Theorem 2.3 (Global Optimality for Convex QP). Consider the QP problem (1.1) with 𝑄 ≽ 0. If the 
feasible region is nonempty and bounded, then: 1. The problem has a global minimum 2. Any local 
minimum is also a global minimum 

3. If 𝑄 ≻ 0, the global minimum is unique 

Proof. (1) Since 𝑄 ≽ 0, the objective function 𝑓(𝑥) =
ଵ

ଶ
𝑥ୃ𝑄𝑥 + 𝑐ୃ𝑥 + 𝑟 is convex. The feasible 

region defined by linear constraints is a convex polyhedron. A continuous function on a compact convex 

set attains its minimum. 

For convex functions on convex sets, any local minimum is necessarily global. To see this, suppose 

𝑥∗ is a local minimum but not global, so there exists a feasible 𝑥‾ with 𝑓(𝑥‾) < 𝑓(𝑥∗). For any 𝛼 ∈ (0,1), 

the point 𝑥ఈ = 𝛼𝑥‾ + (1 − 𝛼)𝑥∗ is feasible by convexity. By convexity of 𝑓: 

𝑓(𝑥ఈ) ≤ 𝛼𝑓(𝑥‾) + (1 − 𝛼)𝑓(𝑥∗) < 𝑓(𝑥∗) 

For sufficiently small 𝛼, 𝑥ఈ is arbitrarily close to 𝑥∗, contradicting the local minimality of 𝑥∗. 

When 𝑄 ≻ 0, the objective function is strictly convex. Suppose 𝑥∗ and 𝑥‾ are both global minima with 

𝑥∗ ≠ 𝑥‾. Then for 𝛼 ∈ (0,1): 

𝑓(𝛼𝑥∗ + (1 − 𝛼)𝑥‾) < 𝛼𝑓(𝑥∗) + (1 − 𝛼)𝑓(𝑥‾) = 𝑓(𝑥∗) 

This contradicts the global minimality of 𝑥∗. □ 

2.2. Problem Classification 

The computational complexity and solution approaches for quadratic programming problems depend 
critically on the properties of the matrices involved. We present a comprehensive taxonomy based on 
these structural characteristics. 

Table 1. Classification of QCQP Problems. 

Problem Class Mathematical Definition Complexity 
Representative 
Applications 

Linear Programming (LP) 𝑄 = 0 in (1.1) P Transportation, resource 
allocation 

Convex QP 𝑄 ≽ 0 in (1.1) P Portfolio optimization, SVM 
dual [4], [5] 

Non-convex QP 𝑄 indefinite in (1.1) NP-hard AC optimal power flow 
Convex QCQP 𝑃௜ ≽ 0, ∀𝑖 in (1.2) P (with 

qualification) 
Trust region subproblems 

[6], [7] 
Non-convex QCQP Some 𝑃௜  indefinite in (1.2) NP-hard AC power flow, facility 

location 
Mixed-Integer QP (MIQP) Mixed integer and 

continuous variables 
NP-hard Production planning, 

scheduling 
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Definition 2.4 (Convex Quadratic Programming). A QP problem (1.1) is convex if 𝑄 ≽ 0. In this 

case, the problem belongs to the class P (polynomial-time solvable). 

Definition 2.5 (Non-convex Quadratic Programming). A QP problem (1.1) is non-convex if 𝑄 has at 
least one negative eigenvalue. Such problems are generally NP-hard. 

2.3. Special Structure and Tractable Cases 

Theorem 2.6 (Exactness of SDP Relaxation). Consider a QCQP of the form (1.2). If all matrices 𝑃௜ 
have at most one positive eigenvalue, then the semidefinite programming relaxation provides the exact 
optimal value. 

This result follows from the S-lemma [19] and the structure of the optimal solution to the SDP 

relaxation. The key insight is that under these conditions, the rank-one constraint 𝑋 = 𝑥𝑥ୃ  is 
automatically satisfied at the SDP optimum. For a complete proof, see Luo et al. [20].  

2.4. Geometric Interpretation 

The feasible region of a QCQP is characterized by the intersection of ellipsoids (when 𝑃௜ ≻ 0), 
hyperplanes (linear constraints), and possibly non-convex quadratic surfaces. This geometric perspective 
provides important insights: 

 Convex Case: The feasible region is convex, and any local optimum is global 

 Non-convex Case: Multiple local optima may exist, requiring global optimization techniques 

 Degenerate Cases: When constraint matrices are singular, the feasible region may be unbounded 
or empty. 

3. Optimality Conditions and Lagrangian Theory 

The method of Lagrange multipliers provides the fundamental theoretical framework for 
characterizing optimal solutions to constrained optimization problems. We develop this theory 
systematically for both QP and QCQP problems. 

Definition 3.1 (Lagrangian Function). For the QCQP problem (1.2), the Lagrangian function is 

defined as 

ℒ(𝑥, 𝜆, 𝜈) = 𝑓଴(𝑥) + ෍ 𝜆௜

௠

௜ୀଵ

𝑓௜(𝑥) + 𝜈ୃ(𝐸𝑥 − 𝑑) 

where 𝑥 ∈ ℝ௡  is the primal variable vector, 𝜆 = (𝜆ଵ, … , 𝜆௠) ∈ ℝ௠  are the inequality constraint 

multipliers, and 𝜈 ∈ ℝ௣ are the equality constraint multipliers. 

3.1. First-Order Necessary Conditions (KKT Conditions) 

Definition 3.2 (Regular Point). A feasible point 𝑥∗ is called regular if the gradients of all active 

constraints are linearly independent. 

Theorem 3.3 (Karush-Kuhn-Tucker Necessary Conditions). Let 𝑥∗  be a local minimum of the 

QCQP problem (1.2), and assume that 𝑥∗ is a regular point. Then there exist multipliers 𝜆∗ ∈ ℝ௠ and 

𝜈∗ ∈ ℝ௣ such that: 
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∇𝑓଴(𝑥∗) + ෍ 𝜆௜
∗

௠

௜ୀଵ

∇𝑓௜(𝑥∗) + 𝐸ୃ𝜈∗ = 0 (Stationarity)

𝑓௜(𝑥∗) ≤ 0,  𝑖 = 1, … , 𝑚 (Primal feasibility)
𝐸𝑥∗ = 𝑑 (Equality feasibility)

𝜆௜
∗ ≥ 0,  𝑖 = 1, … , 𝑚 (Dual feasibility)

𝜆௜
∗𝑓௜(𝑥∗) = 0,  𝑖 = 1, … , 𝑚 (Complementary slackness)

 

Proof. We provide a complete proof using the method of Lagrange multipliers. 

Let 𝒜(𝑥∗) = {𝑖: 𝑓௜(𝑥∗) = 0} denote the active inequality constraints at 𝑥∗. Since 𝑥∗ is a local minimum, 

there exists a neighborhood 𝑁(𝑥∗) such that 𝑓଴(𝑥) ≥ 𝑓଴(𝑥∗) for all feasible 𝑥 ∈ 𝑁(𝑥∗). 

Step 1: Define the cone of feasible directions at 𝑥∗: 

ℱ(𝑥∗) = {𝑑 ∈ ℝ௡: ∇𝑓௜(𝑥∗)ୃ𝑑 ≤ 0,  𝑖 ∈ 𝒜(𝑥∗),  𝐸𝑑 = 0} 

Step 2: For any 𝑑 ∈ ℱ(𝑥∗), there exists 𝛼଴ > 0 such that 𝑥∗ + 𝛼𝑑 is feasible for all 𝛼 ∈ (0, 𝛼଴). 

Since 𝑥∗ is a local minimum: 

𝑓଴(𝑥∗ + 𝛼𝑑) ≥ 𝑓଴(𝑥∗) 

Step 3: Taking the directional derivative: 

lim
ఈ→଴శ

𝑓଴(𝑥∗ + 𝛼𝑑) − 𝑓଴(𝑥∗)

𝛼
= ∇𝑓଴(𝑥∗)ୃ𝑑 ≥ 0 

Therefore, ∇𝑓଴(𝑥∗)ୃ𝑑 ≥ 0 for all 𝑑 ∈ ℱ(𝑥∗). 

Step 4: By the Fundamental Theorem of Linear Programming (Farkas’ Lemma), there exist 𝜆௜
∗ ≥ 0 

for 𝑖 ∈ 𝒜(𝑥∗) and 𝜈∗ ∈ ℝ௣ such that: 

∇𝑓଴(𝑥∗) + ෍ 𝜆௜
∗

௜∈𝒜(௫∗)

∇𝑓௜(𝑥∗) + 𝐸ୃ𝜈∗ = 0 

Step 5: Set 𝜆௜
∗ = 0  for 𝑖 ∉ 𝒜(𝑥∗) . Then 𝜆௜

∗𝑓௜(𝑥∗) = 0  for all 𝑖 , establishing complementary 

slackness. 

The remaining conditions follow directly from the problem definition and the construction.  

3.2. Second-Order Conditions 

Definition 3.4 (Active Set). At a feasible point 𝑥, the active set is defined as: 

𝒜(𝑥) = {𝑖: 𝑓௜(𝑥) = 0} ∪ {𝑖: 𝐸𝑥 = 𝑑} 

Theorem 3.5 (Second-Order Sufficient Conditions). Let (𝑥∗, 𝜆∗, 𝜈∗) satisfy the KKT conditions 

(3.3). Define the Lagrangian Hessian: 

∇ଶℒ(𝑥∗, 𝜆∗, 𝜈∗) = ∇ଶ𝑓଴(𝑥∗) + ෍ 𝜆௜
∗

௠

௜ୀଵ

∇ଶ𝑓௜(𝑥∗) 

If this Hessian is positive definite on the subspace: 

𝒯(𝑥∗) = {𝑑 ∈ ℝ௡: ∇𝑓௜(𝑥∗)ୃ𝑑 = 0,  𝑖 ∈ 𝒜(𝑥∗),  𝐸𝑑 = 0} 

then 𝑥∗ is a strict local minimum. 

The proof follows from a second-order Taylor expansion analysis. For details, see Nocedal and 
Wright Chapter 12 [21].  
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3.3. Specialized Results for Quadratic Programming 

For the standard QP problem (1.1), the KKT conditions simplify considerably due to the quadratic 
structure. 

Theorem 3.6 (QP Optimality Conditions). For the QP problem (1.1), the KKT conditions become: 

𝑄𝑥∗ + 𝑐 + 𝐴ୃ𝜆∗ + 𝐸ୃ𝜈∗ = 0

𝐴𝑥∗ ≤ 𝑏, 𝜆∗ ≥ 0, 𝜆∗ୃ(𝐴𝑥∗ − 𝑏) = 0
𝐸𝑥∗ = 𝑑

 

Proof. For the QP problem, ∇𝑓଴(𝑥) = 𝑄𝑥 + 𝑐 and the constraints are linear, so ∇𝑓௜(𝑥) = 𝐴௜  (the 𝑖-

th row of 𝐴). Substituting into the general KKT conditions (Theorem 3.3) yields the result directly. □ 

Corollary 3.7 (Convex QP Global Optimality). If 𝑄 ≽ 0 in problem (1.1), then any point satisfying 

the KKT conditions (4.2) is a global optimum. If additionally 𝑄 ≻ 0, the global optimum is unique. 

Proof. This follows immediately from Theorem 1.2 and the equivalence of KKT conditions with 

global optimality for convex problems. □ 

3.4. Constraint Qualifications 

The regularity condition in Theorem 4.1 is one of several constraint qualifications that ensure the 
KKT conditions are necessary for optimality. 

Definition 3.8 (Linear Independence Constraint Qualification - LICQ). The LICQ holds at 𝑥∗ if the 

gradients {∇𝑓௜(𝑥∗): 𝑖 ∈ 𝒜(𝑥∗)} are linearly independent. 

Definition 3.9 (Mangasarian-Fromovitz Constraint Qualification - MFCQ). The MFCQ holds at 𝑥∗ 
if:  

1. The gradients of equality constraints are linearly independent  

2. There exists 𝑑 ∈ ℝ௡  such that ∇𝑓௜(𝑥∗)ୃ𝑑 < 0  for all 𝑖 ∈ 𝒜(𝑥∗)  corresponding to inequality 
constraints 

These constraint qualifications are progressively weaker (LICQ ⇒ MFCQ), with MFCQ being 
sufficient for the KKT conditions to hold at local optima. 

4 Algorithmic Approaches 

4.1. Active-Set Methods 

Active-set methods represent one of the most fundamental and well-established approaches for 
solving quadratic programming problems. These methods work by systematically identifying the optimal 
active constraint set through a sequence of equality-constrained quadratic subproblems. 

Algorithm 4.1 (Primal Active-Set Method). Given a QP problem (1.1): 

Initialization: Choose a feasible starting point 𝑥(଴) and an initial working set 𝒲(଴) 

Iteration k: Given 𝑥(௞) and 𝒲(௞), solve the equality-constrained quadratic program: 

min
ௗ∈ℝ೙

 
1

2
𝑑ୃ𝑄𝑑 + ൫𝑄𝑥(௞) + 𝑐൯

ୃ
𝑑

subject to  𝐴𝒲(ೖ)𝑑 = 0

𝐸𝑑 = 0

 

where 𝐴𝒲(ೖ)  represents the rows of 𝐴 corresponding to the working set. 
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Optimality Test: If 𝑑(௞) = 0 , check the multiplier signs. If all multipliers are non-negative, 

terminate with optimal solution 𝑥(௞). 

Working Set Update: If 𝑑(௞) ≠ 0, perform a line search and update the working set by adding or 
removing constraints. 

Theorem 4.2 (Finite Convergence). For non-degenerate QP problems with 𝑄 ≻ 0, the active-set 

method converges in a finite number of iterations, bounded by ൫௠ା௣
௡

൯ where 𝑚 is the number of inequality 

constraints. 

The proof follows from the fact that each iteration either decreases the objective value or changes 
the working set. Since there are only finitely many possible working sets and no working set can be 

repeated (due to non-degeneracy), the algorithm must terminate. For numerical stability considerations in 
implementing active-set methods, see Goldfarb and Idnani [9] and the matrix computation techniques in 

Golub and Van Loan [22], or see Nocedal and Wright [21], Chapter 16, for complete details.  

4.2. Interior-Point Methods 

Interior-point methods have revolutionized large-scale quadratic programming by achieving 
polynomial-time complexity and excellent practical performance on sparse problems. 

Algorithm 4.3 (Primal-Dual Interior-Point Method). For the QP problem (1.1), introduce slack 

variables 𝑠 ≥ 0 and consider the barrier subproblem: 

min
௫,௦

 
1

2
𝑥ୃ𝑄𝑥 + 𝑐ୃ𝑥 − 𝜇 ෍ ln

௠

௜ୀଵ

𝑠௜

subject to  𝐴𝑥 + 𝑠 = 𝑏

𝐸𝑥 = 𝑑

 

The perturbed KKT conditions are: 

𝑄𝑥 + 𝑐 − 𝐴ୃ𝜆 − 𝐸ୃ𝜈 = 0
𝐴𝑥 + 𝑠 − 𝑏 = 0

𝐸𝑥 − 𝑑 = 0
𝑆𝛬𝑒 − 𝜇𝑒 = 0

𝑠, 𝜆 ≥ 0

 

where 𝑆 = diag(𝑠), 𝛬 = diag(𝜆), and 𝑒 is the vector of ones. 

Theorem 4.4 (Polynomial Complexity). The primal-dual interior-point method for QP requires at 

most 𝑂 ቀ𝑛ଵ.ହln(𝜖ିଵ)ቁ  iterations to achieve 𝜖 -optimality, where each iteration costs 𝑂(𝑛ଷ)  for dense 

problems. 

This follows from the general theory of interior-point methods for convex optimization. The 
predictor-corrector variant [12] typically requires fewer iterations in practice. See Wright [23] for a 

comprehensive treatment.  

4.3. Operator-Splitting Methods (ADMM Framework) 

The Alternating Direction Method of Multipliers (ADMM) has gained significant attention for its 
ability to decompose large-scale problems and enable warm-starting in real-time applications. 

Algorithm 4.5 (OSQP: Operator-Splitting QP). Consider the QP problem in the form: 

min
௫

 
1

2
𝑥ୃ𝑄𝑥 + 𝑐ୃ𝑥

subject to  𝑙 ≤ 𝐴𝑥 ≤ 𝑢
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The ADMM iterations are: 

𝑥௞ାଵ = argmin
௫

൜
1

2
𝑥ୃ𝑄𝑥 + 𝑐ୃ𝑥 +

𝜌

2
∥ 𝐴𝑥 − 𝑧௞ + 𝑢௞ ∥ଶൠ

𝑧௞ାଵ = 𝛱[௟,௨]൫𝐴𝑥௞ାଵ + 𝑢௞൯

𝑢௞ାଵ = 𝑢௞ + 𝐴𝑥௞ାଵ − 𝑧௞ାଵ

 

where 𝛱[௟,௨] denotes projection onto the box [𝑙, 𝑢] and 𝜌 > 0 is a penalty parameter. 

Theorem 4.6 (ADMM Convergence). Under standard assumptions, the ADMM iterations (4.5) 

converge to the optimal solution with 𝑂(1/𝑘) convergence rate in objective value. 

See Boyd et al. [24] for the complete convergence analysis. For problems with parametric variations, 
specialized solvers like qpOASES [14] can exploit warm-starting more effectively than general-purpose 
methods. The theory of warm-starting for interior-point methods is developed in [25]. 

4.4. Semidefinite Programming Relaxations for QCQP 

For non-convex QCQP problems, semidefinite programming provides a powerful relaxation 
framework that often yields tight bounds or exact solutions. 

Algorithm 4.7 (SDP Relaxation). For the QCQP problem (1.2), introduce the matrix variable 𝑋 ∈

𝕊௡ାଵ and consider: 

min
௑≽଴

  ⟨൮
Q

1

2
𝑐

1

2
𝑐ୃ 𝑟

൲ , 𝑋⟩

subject to  ⟨൮
𝑃௜

1

2
𝑞௜

1

2
𝑞௜

ୃ 𝑟௜

൲ , 𝑋⟩ ≤ 0,  𝑖 = 1, … , 𝑚

𝑋௡ାଵ,௡ାଵ = 1

 

Theorem 4.8 (SDP Relaxation Quality). The SDP relaxation provides a lower bound on the optimal 

value of the QCQP. Under certain conditions (e.g., when all 𝑃௜ have at most one positive eigenvalue), the 
relaxation is exact. 

Kim and Kojima [26] provide conditions under which SDP relaxations are exact for specific classes 
of QCQP problems. The relaxation bound follows from the fact that any feasible solution to the original 
QCQP induces a rank-one feasible solution to the SDP. For exactness conditions, see Luo et al. [20].  

4.5. Lagrange Multiplier Methods: Computational Implementation 

The theoretical Lagrangian framework developed in Section 4 requires careful numerical 
implementation to ensure stability and efficiency. 

Algorithm 4.9 (Newton-Lagrange Method). For equality-constrained QP: 

min
௫

 
1

2
𝑥ୃ𝑄𝑥 + 𝑐ୃ𝑥 + 𝑟

subject to  𝐸𝑥 = 𝑑
 

Form the KKT system: 

ቀ𝑄 𝐸ୃ

𝐸 0
ቁ ቀ

𝑥
𝜈

ቁ = ቀ
−𝑐
𝑑

ቁ 
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Theorem 4.10 (KKT System Solvability). If 𝑄 ≻ 0 and 𝐸 has full row rank, then the KKT matrix in 

(3.6) is nonsingular and the system has a unique solution. 

Proof. The KKT matrix is a saddle-point matrix of the form ቀ𝐴 𝐵ୃ

𝐵 0
ቁ where 𝐴 = 𝑄 ≻ 0 and 𝐵 = 𝐸 

has full row rank. To show nonsingularity, suppose ቀ
𝑥
𝜈

ቁ is in the null space: 

𝑄𝑥 + 𝐸ୃ𝜈 = 0 and 𝐸𝑥 = 0 

From the first equation: 𝑥ୃ𝑄𝑥 + 𝑥ୃ𝐸ୃ𝜈 = 0 . From the second equation: 𝑥ୃ𝐸ୃ𝜈 = 𝜈ୃ𝐸𝑥 = 0 . 

Therefore: 𝑥ୃ𝑄𝑥 = 0. Since 𝑄 ≻ 0, this implies 𝑥 = 0. Substituting back: 𝐸ୃ𝜈 = 0. Since 𝐸 has full row 

rank, 𝐸ୃ has full column rank, so 𝜈 = 0. Thus, the only solution to the homogeneous system is the trivial 
solution, proving nonsingularity. □ 

For sparse problems, specialized linear algebra techniques [27] can significantly improve the 
computational efficiency of solving these KKT systems. The numerical stability of these computations is 
thoroughly analyzed in [22]. 

4.6. Contemporary Algorithmic Comparison and Performance Analysis 

The landscape of quadratic programming algorithms has evolved significantly with recent advances 
in computational hardware and specialized software implementations. This section provides a 
comprehensive comparison of the four major algorithmic paradigms based on recent empirical evidence 

and theoretical developments. 

4.6.1. Comprehensive Algorithmic Comparison 

Table 2 presents a systematic comparison of quadratic programming methods based on recent 
literature and standardized benchmarking studies. The analysis incorporates findings from the 
qpbenchmark project [31], which provides standardized evaluation across multiple solver 

implementations, and recent advances in GPU acceleration [32]. 

4.6.2. Empirical Performance Analysis 

Recent standardized benchmarking studies provide quantitative evidence for algorithmic 
performance across different problem classes. The qpbenchmark project [31] has established 

comprehensive test suites, including the Maros-Meszaros collection, model predictive control problems, 
and community-contributed test cases. 

GPU Acceleration Impact. The integration of graphics processing units has significantly impacted 
large-scale quadratic programming performance. Schubiger et al. [32] demonstrate substantial speedups 
for GPU-accelerated ADMM implementations, with particularly strong performance on problems with 
sparse structure and large numbers of variables. The authors report speedups of up to two orders of 
magnitude compared to CPU implementations on appropriately sized problems. 

Interior-Point Method Advances. Recent developments in interior-point methods include proximal 
stabilization techniques that improve robustness and convergence properties [34]. These methods address 
numerical challenges in degenerate problems while maintaining polynomial-time complexity guarantees. 
The enhanced preconditioning strategies reduce the computational burden of Newton system solutions 
across multiple iterations. 
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4.6.3. Contemporary Software Ecosystem 

The modern quadratic programming software landscape reflects both theoretical advances and 
practical implementation requirements. Open-source frameworks have gained significant adoption, with 

standardized interfaces enabling fair performance comparisons [31]. 

Benchmarking Infrastructure. The establishment of systematic benchmarking protocols [31], [35] 
has improved the ability to make objective algorithm comparisons. These benchmarks evaluate multiple 
metrics, including solution accuracy, computation time, and robustness across diverse problem instances. 

The Mittelmann benchmarks [35] provide additional comparative data, though recent changes in 
commercial solver participation have affected the benchmarking landscape. 

Specialized Applications. Different algorithmic approaches show distinct advantages for specific 
application domains. Active-set methods with parametric capabilities [14] remain competitive for model 
predictive control with frequent problem updates. Interior-point methods continue to excel for large-scale 
optimization problems where sparse structure can be exploited effectively. 

Table 2. Contemporary Comparison of Quadratic Programming Algorithms. 

Criterion Active-Set Methods Interior-Point 
Methods 

Operator-
Splitting 
(ADMM/OSQP) 

SDP Relaxations 

Representative 
Work 

Goldfarb & Idnani 
[9] 

Mehrotra [12] Stellato et al. [13] Luo et al. [20] 

Latest 
Developments 

qpOASES 
parametric 
extensions [14] 

Proximal stabilized 
methods [34] 

GPU acceleration 
[32] 

Differentiable SDP 
layers [30] 

Theoretical 
Complexity 

Finite: ≤ ൫௠ା௣
௡

൯ 
iterations 

𝑂൫𝑛ଵ.ହln(𝜖ିଵ)൯ 
iterations 

𝑂(1/𝑘) 
convergence rate 

Polynomial (SDP 
solver dependent) 

Memory 
Scaling 

𝑂(𝑛ଶ)  (working set 
dependent) 

𝑂(𝑛ଶ)  to 𝑂(𝑛ଷ) 
(factorizations) 

𝑂(𝑛)  (matrix-free 
iterations) 

𝑂(𝑛ଶ)  (PSD 
matrices) 

Convergence 
Properties 

Finite (non-
degenerate) 

Enhanced with 
regularization [34] 

Operator splitting 
advantages [13] 

Problem-dependent 

Warm-Starting Excellent (working 
set preservation) 

Improved with 
stabilization [34] 

Natural ADMM 
structure [13] 

Not commonly used 

Current 
Software 

qpOASES [14], 
commercial 
integration 

Gurobi [15], CPLEX 
[16], MOSEK [17]  

OSQP ecosystem 
[13], GPU [32] 

MOSEK [17], 
CVXPY [28] 

Standardized 
Benchmarking 

Competitive on 
medium-scale 
problems [31] 

Strong on sparse 
problems [35] 

Excellent for MPC 
applications [31] 

Provides global 
bounds 

Hardware 
Optimization 

Single-core Multi-core sparse 
solvers 

GPU [32] Hardware support 
[30] 

GPU 
Acceleration 

Limited parallel 
structure 

Moderate (sparse 
linear algebra) 

Significant speedup 
[32] 

Moderate (matrix 
operations) 
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5. Application Snapshots with Detailed Case Studies 

5.1. Facility Location and Logistics Optimization 

5.1.1. Problem Formulation: Multi-Facility Warehouse Location 

Consider a logistics company that needs to optimally position warehouses to minimize transportation 
costs while satisfying operational constraints. This class of problems exemplifies the practical importance 

of constrained quadratic optimization in supply chain management. 

Case Study 5.1 (Central Warehouse Location Problem) 

A manufacturing company operates three production facilities and needs to establish a central 
warehouse to minimize total transportation costs. The problem incorporates both distance minimization 
and operational constraints. 

Problem Data:  

Factory A: Located at coordinates (0,0)  

Factory B: Located at coordinates (4,0) 

Factory C: Located at coordinates (2,3)  

Constraint:  Warehouse must be located on the main transportation route 𝑦 = 1  

Safety requirement: Minimum distance of 2 units from Factory B 

Mathematical Formulation: 

The objective function represents the sum of squared Euclidean distances (proportional to 

transportation costs): 

𝑓(𝑥, 𝑦) = ෍ ∥

௜∈{஺,஻,஼}

(𝑥, 𝑦) − (𝑥௜ , 𝑦௜) ∥ଶ 

Expanding this expression: 

𝑓(𝑥, 𝑦) = (𝑥 − 0)ଶ + (𝑦 − 0)ଶ + (𝑥 − 4)ଶ + (𝑦 − 0)ଶ + (𝑥 − 2)ଶ + (𝑦 − 3)ଶ

= 𝑥ଶ + 𝑦ଶ + 𝑥ଶ − 8𝑥 + 16 + 𝑦ଶ + 𝑥ଶ − 4𝑥 + 4 + 𝑦ଶ − 6𝑦 + 9

= 3𝑥ଶ − 12𝑥 + 3𝑦ଶ − 6𝑦 + 29

 

Constrained Optimization Problem: 

min
௫,௬

  𝑓(𝑥, 𝑦) = 3𝑥ଶ − 12𝑥 + 3𝑦ଶ − 6𝑦 + 29

subject to  𝑔(𝑥, 𝑦) = 𝑦 − 1 = 0

ℎ(𝑥, 𝑦) = (𝑥 − 4)ଶ + (𝑦 − 0)ଶ − 4 ≥ 0 (safety constraint)

 

Solution Using Lagrange Multipliers: 

For the equality constraint 𝑦 = 1, we form the Lagrangian: 

ℒ(𝑥, 𝑦, 𝜆) = 3𝑥ଶ − 12𝑥 + 3𝑦ଶ − 6𝑦 + 29 + 𝜆(𝑦 − 1) 

Step 1: Compute First-Order Conditions 

∂ℒ

∂𝑥
= 6𝑥 − 12 = 0  ⇒   𝑥∗ = 2

∂ℒ

∂𝑦
= 6𝑦 − 6 + 𝜆 = 0

∂ℒ

∂𝜆
= 𝑦 − 1 = 0  ⇒   𝑦∗ = 1
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From the constraint 𝑦∗ = 1 and the second equation: 

𝜆∗ = 6 − 6𝑦∗ = 6 − 6(1) = 0 

Step 2: Verify Optimality 

The Hessian of the objective function is: 

𝐻 = ቀ
6 0
0 6

ቁ ≻ 0 

Since the Hessian is positive definite, (𝑥∗, 𝑦∗) = (2,1) is indeed a minimum. 

Step 3: Verify Constraints 

Equality constraint: 𝑦∗ − 1 = 1 − 1 = 0  

Safety constraint: (𝑥∗ − 4)ଶ + (𝑦∗ − 0)ଶ = (2 − 4)ଶ + (1 − 0)ଶ = 4 + 1 = 5 ≥ 4  

Optimal Solution:  

Warehouse location: (2,1) 

Minimum transportation cost: 𝑓(2,1) = 3(4) − 12(2) + 3(1) − 6(1) + 29 = 14 

Distance to Factory B: √5 ≈ 2.236 > 2 (safety satisfied) 

5.1.2. Economic Interpretation and Sensitivity Analysis 

The optimal location (2,1) represents a compromise between minimizing total transportation costs 

and satisfying operational constraints. The warehouse is positioned to balance access to all three factories 
while maintaining required safety distances. 

Sensitivity Analysis: - If the safety constraint were tightened to distance ≥ 3, the constraint would 

become active. The transportation route constraint (𝑦 = 1) significantly influences the solution; without 

it, the unconstrained optimum would be at the centroid of the factory locations 

5.2 Production Planning and Resource Allocation 

5.2.1 Multi-Product Manufacturing Optimization 

Production planning problems frequently involve quadratic costs due to economies and diseconomies 
of scale, making them natural applications for quadratic programming. 

Case Study 5.2 (Dual-Product Manufacturing with Resource Constraints) 

A manufacturing facility produces two products (A and B) with production costs that exhibit 
increasing marginal costs due to capacity constraints and resource limitations. 

Problem Data:  

Cost Structure: Quadratic production costs with interaction terms  

Resource Constraints: Limited production capacity and raw materials 

Production Requirements: Minimum production targets and quality standards 

Mathematical Model: 

The production cost function incorporates both individual product costs and interaction effects: 

𝑓(𝑥ଵ, 𝑥ଶ) =
1

2
ቀ

𝑥ଵ

𝑥ଶ
ቁ

ୃ

ቀ
6 2
2 4

ቁ ቀ
𝑥ଵ

𝑥ଶ
ቁ − (60 50) ቀ

𝑥ଵ

𝑥ଶ
ቁ 

Expanding the matrix form: 

𝑓(𝑥ଵ , 𝑥ଶ) = 3𝑥ଵ
ଶ + 2𝑥ଵ𝑥ଶ + 2𝑥ଶ

ଶ − 60𝑥ଵ − 50𝑥ଶ 
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Constraint Structure:  

Production capacity: 𝑥ଵ + 𝑥ଶ = 30 (total daily output limit)  

Raw material: 2𝑥ଵ + 𝑥ଶ = 50 (material consumption constraint) 

Complete Optimization Problem: 

min
௫భ ,௫మ

  𝑓(𝑥ଵ, 𝑥ଶ) = 3𝑥ଵ
ଶ + 2𝑥ଵ𝑥ଶ + 2𝑥ଶ

ଶ − 60𝑥ଵ − 50𝑥ଶ

subject to  𝑥ଵ + 𝑥ଶ = 30

2𝑥ଵ + 𝑥ଶ = 50

𝑥ଵ, 𝑥ଶ ≥ 0

 

Solution Method: KKT Conditions 

Step 1: Lagrangian Formulation 

ℒ(𝑥ଵ, 𝑥ଶ, 𝜆ଵ, 𝜆ଶ) = 𝑓(𝑥ଵ, 𝑥ଶ) + 𝜆ଵ(𝑥ଵ + 𝑥ଶ − 30) + 𝜆ଶ(2𝑥ଵ + 𝑥ଶ − 50) 

Step 2: First-Order Conditions 

∂ℒ

∂𝑥ଵ
= 6𝑥ଵ + 2𝑥ଶ − 60 + 𝜆ଵ + 2𝜆ଶ = 0

∂ℒ

∂𝑥ଶ
= 2𝑥ଵ + 4𝑥ଶ − 50 + 𝜆ଵ + 𝜆ଶ = 0

∂ℒ

∂𝜆ଵ
= 𝑥ଵ + 𝑥ଶ − 30 = 0

∂ℒ

∂𝜆ଶ
= 2𝑥ଵ + 𝑥ଶ − 50 = 0

 

Step 3: Solve the Linear System 

From constraints (7.3) and (7.4): 

𝑥ଵ + 𝑥ଶ = 30
2𝑥ଵ + 𝑥ଶ = 50

 

Subtracting the first from the second: 𝑥ଵ = 20 Substituting back: 𝑥ଶ = 10 

Step 4: Determine Lagrange Multipliers 

Substituting 𝑥ଵ
∗ = 20, 𝑥ଶ

∗ = 10 into equations (7.1) and (7.2): 

6(20) + 2(10) − 60 + 𝜆ଵ + 2𝜆ଶ = 0

2(20) + 4(10) − 50 + 𝜆ଵ + 𝜆ଶ = 0
 

Simplifying: 

80 + 𝜆ଵ + 2𝜆ଶ = 0  ⇒   𝜆ଵ + 2𝜆ଶ = −80
30 + 𝜆ଵ + 𝜆ଶ = 0  ⇒   𝜆ଵ + 𝜆ଶ = −30

 

Solving: 𝜆ଶ = −50, 𝜆ଵ = 20 

Step 5: Verification and Interpretation 

Optimality Check: The Hessian matrix is 

𝐻 = ቀ
6 2
2 4

ቁ 

Eigenvalues: 𝜆ଵ,ଶ = 5 ± √5, both positive, confirming 𝐻 ≻ 0. 

Economic Interpretation:  

Optimal Production: 20 units of Product A, 10 units of Product B  

Resource Utilization: Both constraints are active (binding)  
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Lagrange Multipliers:  

 𝜆ଵ = 20: Shadow price of production capacity   

𝜆ଶ = −50: Shadow price of raw materials (negative indicates constraint relaxation would increase 
costs) 

Step 6: Cost Analysis 

Minimum total cost: 

𝑓(20,10) = 3(20)ଶ + 2(20)(10) + 2(10)ଶ − 60(20) − 50(10)

= 1200 + 400 + 200 − 1200 − 500
= 100 monetary units

 

Modern software packages provide high-level modeling interfaces for formulating these problems. 

CVXPY [28] and similar tools allow rapid prototyping and solution of QP problems without requiring 
detailed knowledge of the underlying algorithms. 

5.3. Advanced Applications in Modern Contexts 

5.3.1. Portfolio Optimization with Environmental, Social, and Governance (ESG) Constraints 

Mathematical Formulation: 

min
௪

 
1

2
𝑤ୃ𝛴𝑤 − 𝛾𝜇ୃ𝑤 + 𝛽 ∥ 𝐸𝑤 ∥ଶ

subject to  𝟏ୃ𝑤 = 1,  𝑤 ≥ 0

ESG୫୧୬ ≤ 𝑆ୃ𝑤 ≤ ESG୫ୟ୶

 

where 𝛴 is the covariance matrix, 𝜇 represents expected returns, 𝐸 captures ESG factors, and 𝑆 represents 
ESG scores. For robust formulations that handle uncertainty in these parameters, see [29]. 

5.3.2. Model Predictive Control in Autonomous Systems 

Formulation: 

min
௨బ,…,௨ಿషభ

  ෍൫∥ 𝑥௞ − 𝑥ref ∥ொ
ଶ +∥ 𝑢௞ ∥ோ

ଶ ൯

ேିଵ

௞ୀ଴

+∥ 𝑥ே − 𝑥ref ∥௉
ଶ

subject to  𝑥௞ାଵ = 𝐴𝑥௞ + 𝐵𝑢௞,  𝑘 = 0, … , 𝑁 − 1

𝑢୫୧୬ ≤ 𝑢௞ ≤ 𝑢୫ୟ୶,  𝑘 = 0, … , 𝑁 − 1

 

This formulation is fundamental in MPC applications [6]. Fast solution methods for real-time 
implementation are discussed in [7], while [14] provides specialized algorithms for the parametric QP 

problems that arise when the initial state 𝑥଴ varies. 

6. Conclusion 

This comprehensive survey has presented the mathematical foundations, algorithmic approaches, and 
diverse applications of quadratic programming and quadratically constrained quadratic programming. 
From the classical Lagrangian theory to modern operator-splitting methods, and from facility location to 
production planning applications, QP continues to serve as a cornerstone of optimization science. 

The detailed case studies in facility location and production planning demonstrate the practical power of 
these mathematical tools in solving real-world problems. The warehouse location problem illustrated the 
systematic application of Lagrange multipliers to equality-constrained optimization, while the production 
planning example showcased the complete KKT framework for problems with multiple constraints. 
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The mathematical rigor established over decades continues to provide the foundation for innovations in 
autonomous systems, intelligent infrastructure, and optimization-driven technologies. Recent 
developments include the integration of QP layers in deep learning architectures [30], enabling end-to-

end differentiable optimization within neural networks. As computational capabilities expand and new 
application domains emerge, quadratic programming will undoubtedly remain central to the optimization 

toolkit, bridging theoretical elegance with practical impact across science, engineering, and society. 
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