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Abstract 

This paper investigates the relationship between spectral graph theory and graph properties, specifically 
focusing on the spectral radius, which is the largest eigenvalue of the adjacency matrix of a graph. Our 
problem is finding sharp upper bounds for the spectral radius of bipartite graphs with given bounde vertex 
sets. We first review existing inequalities, noting and discuss their limitations, noting particularly that 
some, like Hong's inequality, are not always sharp for all graph types. Our primary contribution is an 
elementary and direct approach to solving an optimization problem: finding a bipartite graph with a 
bounded number of vertices that maximizes its spectral radius. We prove that for any bipartite graph with 

bounded vertex sets of 1n  and 2n , the spectral radius ( )G  is bounded by 1 2n n . We demonstrate that 

this inequality is sharp, with equality holding exclusively for the complete bipartite graph 
1 2,n nK . 

Keywords: Spectral graph theory, spectral radius, upper bounds, bipartite graphs, eigenvalues, adjacency 
matrix, graph optimization 

1. Introduction 

Spectral graph theory studies the relation between graph properties and the spectrum of the adjacency 
matrix or Laplacian matrix. Spectral graph theory appeared in the 1950s and they rapidly found some 
applications in quantum chemistry [1] and complex networks [2]–[6]. Spectral radius, or the largest 

eigenvalue of the adjacency matrix of graph G  appears in many applications [3]–[6], such as spreading 

viruses on complex networks [3]–[5]. It is also powerful tool to characterize dynamic processes on 
networks [3]–[5] and investigate the Cheeger inequality in Riemannian geometry [2].  
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The problem on estimating or finding good upper bounds for the spectral radius of a graph is an 
important topic. It is related to some models of virus spreading in networks [4], biogogical networks and 
random graphs [2], [5]. One of the first estimate is of Wilf [7] and Brualdi-Hoffman [8] for a simple 

connected graph with n  vertices and m  edges, then the spectral radius ( )G  of the graph G  satisfies 

( ) 1 ( ) 1G G k     , where 
( 1)

2

k k
m


  and ( )G  is the chromatic number of graph G . 

Another upper bound is of Stanley [9], that is 
8 1 1

( )
2

m
G  

 . In [10], Hong gave an unfamous 

upper bound on the spectral radius of a graph. More explicitly, the author proved that if G  is a simple 

connected graph then  

( ) 2 1,G m n                  (1) 

We call (1) Hong’s inequality. After that, many upper bounds are obtained in many cases of G , for 

instance, the case of 1pK  -free [11], or case of removing some vertices [12]–[14]. Due to the inequality 

(1), we have ( ) 2G m  . 

In [11], Nikiforov extended the result of Nosal [15]. More explicitly, the following inequality 

( ) .G m                (2) 

satisfies if G  is 1pK  -free. It is easy to see that inequality (2) is sharper than both the inequality (1) and 

Stanley’s one.  

In this paper, we formulate and solve the optimization problem for the spectral radius of bipartite 
graphs with bounded numbers of vertices. If we apply the inequality (2), we can see a simpler solution to 
our problem. Here, however, we present another approach. Our approach is more elementary than Nosal-
Nikoforov theorem, as it is based on some very simple observations. In particular, we use inequalities on 
a graph after deleting a vertex [12]–[13]. Besides, we remark the sharpness on the bounds of Hong and 

Nosal for the complete bipartite and complete graphs respectively. 

The rest of paper is organized as follows. In Section 2, we recall some notions in graph theory, some 
properties of spectral radius and some known properties of bipartite graphs. The main results are in 
Section 3, where we give the answer for Problem 3.2 in Theorem 3.3. 

2. Preliminaries 

We present notions and preliminary results from graph theory and spectral graph theory, following 
references [12]–[14]. 

2.1. Some notions in graph theory 

In this paper, we consider finite undirected, and simple graphs, i.e. ( , )G V E  is an undirected 

graph with V  is the finite vertex set, E  is the finite edge set and G  has not loops or multiple edges.  

Definition 2.1. Let ( , )G V E  be a finite undirected simple graph. Suppose that members of V  are 

labelled 1,2, ,n . If vertices i  and j  are joined by an edge, then we say that i  and j  are adjacent and 

write ~i j . We define the adjacency matrix A  of G  as follows: ( ) ( )ijA A G a  , where  
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1 ,

0 otherwise.ij

i j
a


 




 

Definition 2.2. Let ( , )G V E  be a finite undirected simple graph. A graph ( , )H U D  is called 

a subgraph of graph G , written H G  if U V  and D E .  

Definition 2.3. Let ( , )G V E  be a finite undirected simple graph. The characteristic polynomial 

of graph G  is det( )xI A . The eigenvalues of graph G  are the eigenvalues of the adjacency matrix 

( )A G , i.e. roots of the characteristic polynomial of G  and the set of the eigenvalues of G  is said to be 

the spectrum of G . We denote spectrum of G  by ( )Sp G . 

Remark 2.4. Since the above definition of adjacency matrix, ( )A G  is a symmetric matrix. Hence, 

all of eigenvalues of G  are real numbers. 

Definition 2.5. Deletion of an edge e  from a graph ( , )G V E  is the operation that removes e  

from E and results in the subgraph { } ( , \{ })G e V E e   of G . 

Remark 2.6. Note that after deleting an edge from a graph, ' 1E E   but 'V V , i.e., the 

subgraph { }G e  keeps all of vertices of G . 

Definition 2.7. Deletion of a vertex j  from a graph ( , )G V E  is the operation that excludes j  

from V  and all edges with endpoint j  from E. The resulting subgraph of G  is denoted by { }G j . 

Definition 2.8. Let ( , )G V E  be simple undirected graph. G  is called bipartite graph if the set 

V can be partitioned into two disjoint subsets 1V  and 2V , called partite sets such that every edge of G  

joins a vertex of 1V  and a vertex of 2V .  

From the definition of bipartite graph, we have: 1 2 1 2,V V V V V     and there is no edge joins the 

vertex of ( 1,2)iV i   and a vertex of itself. 

Definition 2.9. A simple undirected graph ( , )G V E  is complete if every pair of distinct vertices 

in V  is connected by a unique edge in E . 

Definition 2.10.  A complete bipartite graph is a bipartite graph with partite sets  1 2,V V  such that 

for any 1i V  and 2j V , we have ( , )i j E . We denote the complete bipartite graph by ,m nK  when 

1 2,V m V n  .  

2.2. Some properties of spectral radius 

We recall that the largest eigenvalues of the adjacency of graph G is called the spectral radius of G  

Lemma 2.12 ([12], p.17). If { }G ij  is the graph obtained from a connected graph G  by deleting 

the edge ij , then ( { }) ( )G ij G   . 

Proof. (cf. [12]) Let  1, ,
T

nv x x   be a nonnegative eigenvetor of { }G ij  corresponding to 

( { })G ij   which is a unit vector. Then we have 
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( { }) ( { }) ( ) ( )T TG ij v A G ij v v A G v G      . 

The lemma is proved. 

Lemma 2.13 ([12], p.17). If { }G j  is the graph obtained from a connected graph G  by deleting 

the vertex j , then ( { }) ( )G j G   . 

Proof. (cf. [12]) Let A , 'A  be adjacency matrices of G , G j , respectively, then 
'

0

A r
A

r

 
  
 

. 

Let v  be a unit eigenvector of 'A  corresponding to ( )G j  . Take 
0

v
u

 
  
 

, then 1Tu u   and 

therefore ( { }) ( )TG j u Au G    . The lemma is proved. 

Proposition 2.14 ([12]-[14]). The number of closed walks of length k  in a graph G  is equal to ks , 

where  

1

n
k

k i
i

s 



, 

and 1 2 n      are the eigenvalues of G . Hence, the number of edges of G  is 2

2

s
 and the 

number of triangles in G  is 3

6

s
. 

Theorem 2.15. (Hong, [10]) Let G  be a connected simple graph with m  edges and n  vertices. 

Then the spectral radius of the adjacency matrix A  of graph G  satisfies 

( ) 2 1G m n     

with equality if and only if G  is isomorphic to one of the following two graphs: 

a. the star 1, 1nK  . 

b. the complete graph nK . 

In the master thesis [15], E. Nosal gave an upper bound for the spectral radius in the case of triangle-

free. After that, Nikiforov [11] extended for the graph which is 1pK  -free. 

Theorem 2.16 (Nosal-Nikiforov, [11], [15]) Let G  be a graph with ( )G p   (then G  is 1pK  -

free). Then  

1
( ) 2

p
G m

p
 

 , 

where ( )G  is the clique number of G . 

2.3. Some properties of bipartite graphs 

Here, we recall the following characterizations of bipartite graphs ([14], [16]). 

Theorem 2.17. The following statements are equivalent for a graph G : 

i. G is bipartite; 
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ii. G has no cycle of odd length; 

iii. The characteristic polynomial 
0

( )
n

n i
i

i

p c  



  of ( )A G  satisfies 0kc   for each odd integer

k ; 

iiii. ( ) ( )Sp G Sp G  . 

Lemma 2.18. ([14], 1.4.2) The eigenvalues of complete bipartite graph 
1 2,n nK  are 0  (with 

multiplicity 1 2 2n n  ), 1 2n n  (with multiplicity 1), 1 2n n  (with multiplicity 1). Hence, the spectral 

radius of 
1 2,n nK  is 1 2n n . 

Proposition 2.19. ([14], 1.4.1) The eigenvalues of complete graph nK  are 1n  (with multiplicity 

1) and 1  (with multiplicity 1n ). 

3. Problem and main results  

3.1. On the upper bounds of the spectral radius of Hong 

We give the following remark to show that Hong’s inequality (1) is not sharp in the case of graph 

G , which is a complete bipartite graph. Howerver, it is sharp for complete graph. 

Proposition 3.1. The above upper bound of ( )G  in Hong’s inequality is not sharp for complete 

bipartite graph ,n nK , where 1n  . The upper bound of Hong is sharp for complete graph nK . 

Proof. Consider complete bipartite graph ,n nK , by Lemma 2.18, the spectrum of ,n nK  is

 ,( ) 0, ,n nSpec K n n  . Then the spectral radius of ,n nK  is ,( )n nK n  . By substituting this into (1), 

we have 22 2 1.n n n    This is equivalent to 20 2 1n n   . It is easy to see that this inequality is 

not sharp with n  is an integer and 4n   (because 1,2,3n   are the cases of trivial complete bipartite 

graphs). Therefore, in the inequality (1), we can repair the right-hand side to get the sharper inequality. 

Let us consider complete graph nK , by Proposition 2.19, ( ) 1nK n   . From Hong’s inequality, 

we have 
( 1)

1 2 1.
2

n n
n n


     This is an equality, hence the upper bound of (1) is sharp for nK . 

3.2. An upper bound for spectral radius of bipartite graphs 

By Proposition 3.1, we have proven that the upper bound of Hong [10] is not sharp and it is weaker 
than the bound of Nosal-Nikiforov [11], [15]. Consequently, this is our motivation to propose the 
following problem. 

Problem 3.2. Find a bipartite graph 1 2( , )G V V E   with 1 1| |V n 2 2| |V n  such that of the 

spectral radius of G  gets the maximum values.  

Let 1 2( , )Bip n n  be the set of all bipartite graphs which have two sets of vertices 1 2,V V  such that 
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1 1| |V n 2 2| |V n . Then the problem becomes 

Find 1 2( , )
max ( )

G Bip n n
G

 .  

The following result provides the answer for the problem. Here, we present an upper bound for a 

connected bipartite graph. Our proof is very brief and are based on two simple observations. 

Theorem 3.3. Let ( , )G V E  be a bipartite graph with 1 2V V V   (disjoint), where 1 1 2 2,V n V n 

. Then the spectral radius of G  satisfies the following inequality. 

1 2
1 2

( , )
max ( )

G Bip n n
G n n


 , 

where 1 2,n n   are the numbers of the vertices of two parts of 
1 2,n nK . The inequality holds if and only if G  

is a complete bipartite graph 
1 2,n nK . 

Proof. Let us consider a bipartite graph G , where 1 1 2 2,V n V n  . Recall that 1 2( , )Bip n n  be the 

set of all bipartite graphs which have two sets of vertices 1 2,V V  such that 1 1| |V n 2 2| |V n . The 

following claim is similar to Proposition 2.2.7 about k -regular graph in [16]. 

Claim 1. Any graph 1 2( , )G Bip n n  can be obtained from 
1 2,n nK  after deleting a finite number of 

edges and vertices. Moreover, we can see G  can be viewed as subgraph of 
1 2,n nK . 

Proof of Claim 1.  

Suppose that 1 2( , )G Bip n n , then G  is a bipartite graph with 1 1 2 2,V n V n  . Assume that 

1 2,n nK  has the sets of vertices that are 1 2,U U  such that 1 1 2 2,U n U n   and 
1 2,( )n nE K  is the edges set 

of 
1 2,n nK . We prove that G  becomes 

1 2,n nK  after adding some vertices and edges structurally. G  can be 

obtained to 
1 2,n nK  by the following procedure. It has two steps. 

 Step 1: From G , we can consider iV  is a subset of iU  ( 1,2i  ). Add \i iU V  into the set iV . 

Hence, we have the new graph 1 2' ( , )G V V E    with 1 1 2 2,V n V n    . Graph G  is a subgraph of 

graph 'G  and graph 'G  is a subgraph of 
1 2,n nK . 

 Step 2: From 'G , we add 
1 2,| ( ) | | |n nE K E  edges into the set E  from new edges in 'G . 

After doing the aforementioned two steps, 
1 2,n nK  is obtained from G , hence proving the claim. 

Now, return to the theorem. Using Claim 1, we can assume that after deleting k  edges and l  vertices 

of 
1 2,n nK , we obtain the graph G  is obtained. By Lemma 2.13,  

1 2 1 1 2 1 1( ) ( ' { , , , , }) ( ' { , , , }) ( ' { }) ( '),l l lG G v v v v G v v v G v G                

where 'G  is the bipartite graph which obtained after making deletion of l  vertices  1, , lv v . Now, 

using Lemma 2.12, 

1 2 1 2 1 2 1 2, 1 2 1 , 1 2 1 , 1 ,( ') ( { , , , , }) ( { , , , }) ( { }) ( ).n n k k n n k n n n nG K e e e e K e e e K e K              
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Since Lemma 2.18, the inequality 1 2( )G n n   is obtained.  

It is easy to see that the equality holds if and only if G  is a complete bipartite graph 
1 2,n nK . The 

theorem is then completely proved. 

Remark 3.4. Above problem can approach by Theorem 2.16 because the bipartite G  has no cycle 

of odd length (Theorem 2.17). In Problem 3.2, G  is a bipartite graph, then G  is triangle-free, therefore 

we can apply Theorem 2.17. Our approach is more elemetary, as there is no need to apply the Nosal-

Nikoforov theorem. By Remark 3.1, we can see that 1 2n n  is the sharpest bound for ( )G  on 

1 2( , )G Bip n n . If G  is the complete graph nK , then the number of edges of G  is 
( 1)

2

n n
m


 . 

Hence  

2( ) 1 ( 1) ( 1) 2G n n n n m        . 

Consequently, the Nosal-Nikiforov’s inequaltiy does not satisfy. The reason is that nK  contains 

some triangles when 3n . 

4. Conclusion 

i. Here, we solved the combinatorial optimization problem which is finding the maximum of the 
spectral radius of a bibartite graph with bounded vertex sets.  

ii. Recently, there are several works about the bounds of spectral radius in many cases [17]–[19]. 
More explicitly, the authors in [19] proved the conjecture in [18], that is 

2( ) ( ) 2 1k kG G v d    
, 

where kv  is a vertex of graph G  with the degree 1kd  . 

iii. The theory of graph spectra continues to find many powerful applications in complex networks. 
Recently, there have been applications in both physics and machine learning [20]–[21]. 
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