Investigation of structural and electronic properties of ZnO using first principle calculations

Authors

  • Quoc-Van Duong Hanoi National University of Education, Hanoi, Vietnam

DOI:

https://doi.org/10.56764/hpu2.jos.2024.3.1.78-87

Abstract

In this research, first-principle calculations have been performed to study the geometry structure and electronic properties of ZnO. All possible exchange-correlation energy functionals were used to perform geometry optimization of ZnO in order to find the efficient calculation conditions. Bandgap energy, density of states (DOS), projected DOS (PDOS); and other properties of ZnO were also calculated and discussed. The calculated band-gap value of ZnO is less than 1.0 eV, much smaller than experimental value of 3.37 eV; while the PDOS results indicate the important roles of O 2p and Zn 3d orbitals in ZnO band structures. The well-known limitation of band-gap value calculations using Density Functional Theory (DFT) was solved by applying Hubbard potential on Zn 3d and O 2p orbitals. A full investigation with Hubbard value varying from 0.5 to 10 eV has been performed and the selected value is 8.0 eV for both Zn 3d and O 2p electrons. 

References

[1] Ü. Özgür et al., “A comprehensive review of ZnO materials and devices,” J. Appl. Phys., vol. 98, no. 4, p. 041301, Aug. 2005, doi: 10.1063/1.1992666.
[2] A. Janotti and C. G. Van de Walle, “Fundamentals of zinc oxide as a semiconductor,” Reports Prog. Phys., vol. 72, no. 12, p. 126501, Oct. 2009, doi: 10.1088/0034-4885/72/12/126501.
[3] C. Klingshirn, “ZnO: Material, physics and applications,” ChemPhysChem, vol. 8, no. 6, pp. 782–803, Apr. 2007, doi: 10.1002/cphc.200700002.
[4] S. Bhatia and N. Verma, “Photocatalytic activity of ZnO nanoparticles with optimization of defects,” Mater. Res. Bull., vol. 95, no. 6, pp. 468–476, Nov. 2017, doi: 10.1016/j.materresbull.2017.08.019.
[5] J. R. Torres-Hernández et al., “Structural, optical and photocatalytic properties of ZnO nanoparticles modified with Cu,” Mater. Sci. Semicond. Process., vol. 37, no. 6, pp. 87–92, Sep. 2015, doi: 10.1016/j.mssp.2015.02.009.
[6] K. Yu, J. Shi, Z. Zhang, Y. Liang, and W. Liu, “Synthesis, characterization, and photocatalysis of ZnO and Er-doped ZnO,” J. Nanomater., vol. 2013, pp. 1–5, Sep. 201, doi: 10.1155/2013/372951.
[7] Z. L. Wang, “Zinc oxide nanostructures: growth, properties and applications,” J. Phys. Condens. Matter, vol. 16, no. 25, pp. R829–R858, Jun. 2004, doi: 10.1088/0953-8984/16/25/r01.
[8] T. Vu Anh, T. A. T. Pham, V. H. Mac, and T. H. Nguyen, “Facile controlling of the physical properties of zinc oxide and its application to enhanced photocatalysis,” J. Anal. Methods Chem., vol. 2021, no. 25, pp. 1–12, Apr. 2021, doi: 10.1155/2021/5533734.
[9] F. Zhang et al., “Recent advances and applications of semiconductor photocatalytic technology,” Appl. Sci., vol. 9, no. 12, p. 2489, Jun. 2019, doi: 10.3390/app9122489.
[10] R. Elilarassi and G. Chandrasekaran, “Optical, electrical and ferromagnetic studies of ZnO:Fe diluted magnetic semiconductor nanoparticles for spintronic applications,” Spectrochim. Acta Part A Mol. Biomol. Spectrosc., vol. 186, no. 12, pp. 120–131, Nov. 2017, doi: 10.1016/j.saa.2017.05.065.
[11] J. Wojnarowicz, T. Chudoba, S. Gierlotka, K. Sobczak, and W. Lojkowski, “Size control of cobalt-doped ZnO nanoparticles obtained in microwave solvothermal synthesis,” Crystals, vol. 8, no. 4, p. 179, Apr. 2018, doi: 10.3390/cryst8040179.
[12] S. Kunj and K. Sreenivas, “Defect mediated ferromagnetism in cluster free Zn 1−x Ni x O nanopowders prepared by combustion method,” J. Ind. Eng. Chem., vol. 60, no. 4, pp. 151–159, Apr. 2018, doi: 10.1016/j.jiec.2017.10.051.
[13] M. Khuili, G. El Hallani, N. Fazouan, H. A. El Makarim, and E. H. Atmani, “First-principles calculation of (Al,Ga) co-doped ZnO,” Comput. Condens. Matter, vol. 21, no. 4, p. e00426, Dec. 2019, doi: 10.1016/j.cocom.2019.e00426.
[14] B. Ul Haq, R. Ahmed, A. Shaari, R. Hussain, and M. binti Mohamad, “DFT Investigations of Ti, V doped ZnO based diluted magnetic semiconductors,” Adv. Mater. Res., vol. 1107, pp. 502–507, Jun. 2015, doi: 10.4028/www.scientific.net/amr.1107.502.
[15] A. Kołodziejczak-Radzimska and T. Jesionowski, “Zinc oxide-from synthesis to application: A review,” Materials, vol. 7, no. 4, pp. 2833–2881, Apr. 2014, doi: 10.3390/ma7042833.
[16] O. Długosz, K. Szostak, M. Krupiński, and M. Banach, “Synthesis of Fe3O4/ZnO nanoparticles and their application for the photodegradation of anionic and cationic dyes,” Int. J. Environ. Sci. Technol., vol. 18, no. 3, pp. 561–574, Jul. 2020, doi: 10.1007/s13762-020-02852-4.
[17] Y. Wu, B. Dong, J. Zhang, H. Song, and C. Yan, “The synthesis of ZnO/SrTiO3 composite for high-efficiency photocatalytic hydrogen and electricity conversion,” Int. J. Hydrogen Energy, vol. 43, no. 28, pp. 12627–12636, Jul. 2018, doi: 10.1016/j.ijhydene.2018.03.206.
[18] S. Haffad, G. Cicero, and M. Samah, “Structural and electronic properties of ZnO nanowires: A theoretical study,” Energy Procedia, vol. 10, pp. 128–137, Jul. 2011, doi: 10.1016/j.egypro.2011.10.165.
[19] X. H. Zhou, Q.-H. Hu, and Y. Fu, “First-principles LDA+U studies of the In-doped ZnO transparent conductive oxide,” J. Appl. Phys., vol. 104, no. 6, p. 063703, Sep. 2008, doi: 10.1063/1.2978324.
[20] H. V. Thang, D. V. T. Tram, P. L. M. Thong, D. T. Quang, and P. C. Nam, “B and Au doped ZnO and ZnO/Cu(111) bilayer films: A DFT investigation,” Vietnam J. Chem., vol. 60, no. 3, pp. 323–332, Jun. 202224, doi: 10.1002/vjch.202100125.
[21] B. Ul Haq, R. Ahmed, A. Shaari, and S. Goumri-Said, “GGA+U investigations of impurity d-electrons effects on the electronic and magnetic properties of ZnO,” J. Magn. Magn. Mater., vol. 362, pp. 104–109, Aug. 2014, doi: 10.1016/j.jmmm.2014.03.033.
[22] B. U. Haq, A. Afaq, R. Ahmed, and S. Naseem, “Structural, electronic, and magnetic properties of Co-doped ZnO,” Chinese Phys. B, vol. 21, no. 9, p. 097101, Sep. 2012, doi: 10.1088/1674-1056/21/9/097101.
[23] A. Apaolaza, D. Richard, and M. Tejerina, “Experimental and ab initio study of the structural and optical properties of ZnO coatings: Performance of the DFT+U approach,” Process. Appl. Ceram., vol. 14, no. 4, pp. 362–371, Otc. 2020, doi: 10.2298/pac2004362a.
[24] H. Soleimani, “CASTEP study on electronic and optical properties of zinc oxid,” Recent Adv. Petrochemical Sci., vol. 1, no. 3, May 2017, doi: 10.19080/rapsci.2017.01.555563.
[25] N. Hamzah et al., “A DFT+U study of structural, electronic and optical properties of Ag- and Cu-doped ZnO,” Microelectron. Int., vol. 40, no. 1, pp. 53–62, Jan. 2023, doi: 10.1108/mi-05-2022-0088.
[26] J. Gulomov, O. Accouche, R. Aliev, R. Ghandour, and I. Gulomova, “Investigation of n-ZnO/p-Si and n-TiO2 /p-Si Heterojunction Solar Cells: TCAD + DFT,” IEEE Access, vol. 11, pp. 38970–38981, Jan. 2023, doi: 10.1109/access.2023.3268033.
[27] M. Basseem, A. A. Emam, F. H. Kamal, A. M. Gamal, and S. A. Abo Faraha, “Novel functionalized of ZnO with Sm3+, La3+, and Sr2+/ZnO single and tri-doped nanomaterials for photocatalytic degradation: synthesis, DFT, kinetics,” J. Mater. Sci., vol. 58, no. 33, pp. 13346–13372, Aug. 2023, doi: 10.1007/s10853-023-08829-1.
[28] A. Ali, “Hubbard model calculations for zinc oxide semiconductor,” Univ. Thi-Qar J. Sci., vol. 10, no. 1, pp. 101–106, Jun. 2023, doi: 10.32792/utq/utjsci/v10i1.988.
[29] M. Adnan et al., “DFT Investigation of the structural, electronic, and optical properties of AsTi (Bi)-phase ZnO under pressure for optoelectronic applications,” Materials, vol. 16, no. 21, p. 6981, Oct. 2023, doi: 10.3390/ma16216981.
[30] E. S. Goh, J. W. Mah, and T. L. Yoon, “Effects of Hubbard term correction on the structural parameters and electronic properties of wurtzite ZnO,” Comput. Mater. Sci., vol. 138, pp. 111–116, Oct. 2017, doi: 10.1016/j.commatsci.2017.06.032.
[31] G. A. Alharshan et al., “Optical band gap tuning, DFT understandings, and photocatalysis performance of ZnO nanoparticle-doped Fe compounds,” Materials, vol. 16, no. 7, p. 2676, Mar. 2023, doi: 10.3390/ma16072676.
[32] A. A. Mohamad et al., “First-principles calculation on electronic properties of zinc oxide by zinc–air system,” J. King Saud Univ.-Eng. Sci., vol. 29, no. 3, pp. 278–283, Jul. 2017, doi: 10.1016/j.jksues.2015.08.002.
[33] K. Harun, N. Mansor, Z. A. Ahmad, and A. A. Mohamad, “Electronic properties of ZnO nanoparticles synthesized by sol-gel method: A LDA+U calculation and experimental study,” Procedia Chem., vol. 19, pp. 125–132, Jan. 2016, doi: 10.1016/j.proche.2016.03.125.
[34] A. Janotti and C. G. Van de Walle, “LDA + U and hybrid functional calculations for defects in ZnO, SnO2 , and TiO2,” Phys. status solidi, vol. 248, no. 4, pp. 799–804, Apr. 2011, doi: 10.1002/pssb.201046384.
[35] M. Mohammadzaheri, S. Jamehbozorgi, M. D. Ganji, M. Rezvani, and Z. Javanshir, “Toward functionalization of ZnO nanotubes and monolayers with 5-aminolevulinic acid drugs as possible nanocarriers for drug delivery: A DFT based molecular dynamic simulation,” Phys. Chem. Chem. Phys., vol. 25, no. 32, pp. 21492–21508, Jan. 2023, doi: 10.1039/d3cp01490h.
[36] Y. El Arfaoui, M. Khenfouch, and N. Habiballah, “DFT and SCAPS-1D calculations of FASnI 3 -based perovskite solar cell using ZnO as an electron transport layer,” Eur. Phys. J. Appl. Phys., vol. 98, p. 60, Oct. 2023, doi: 10.1051/epjap/2023230099.
[37] N. E. Kirchner-Hall, W. Zhao, Y. Xiong, I. Timrov, and I. Dabo, “Extensive benchmarking of DFT+U calculations for predicting band gaps,” Appl. Sci., vol. 11, no. 5, p. 2395, Mar. 2021, doi: 10.3390/app11052395.
[38] L. Qiao, C. Chai, Y. Yang, X. Yu, and C. Shi, “Strain effects on band structure of wurtzite ZnO: a GGA + U study,” J. Semicond., vol. 35, no. 7, p. 073004, Jul. 2014, doi: 10.1088/1674-4926/35/7/073004.
[39] J. Goldsby, S. Raj, S. Guruswamy, and D. D. Azbill, “First-Principle and Experimental Study of a Gadolinium-Praseodymium-Cobalt Pseudobinary Intermetallic Compound,” J. Mater., vol. 2015, p. 753612, Jun. 2015, doi: 10.1155/2015/753612.

Downloads

Published

26-04-2024

How to Cite

Duong, Q.-V. (2024). Investigation of structural and electronic properties of ZnO using first principle calculations. HPU2 Journal of Science: Natural Sciences and Technology, 3(1), 78–87. https://doi.org/10.56764/hpu2.jos.2024.3.1.78-87

Volume and Issue

Section

Natural Sciences and Technology