Singular value decomposition and applications in data processing and artificial intelligence

Authors

  • Thanh-Xuan Cao Thi University of Economics - Technology for Industries (UNETI), Ha Noi, Viet Nam

DOI:

https://doi.org/10.56764/hpu2.jos.2023.2.3.34-41

Abstract

Computing matrices is a crucial and prevalent topic in the field of data processing and artificial intelligence. One of the significant and effective methods for matrix manipulation is Singular Value Decomposition (SVD). Based on matrix computations using SVD, we can perform various complex operations such as dimensionality reduction, hidden information detection, optimization, and many other applications. Singular Value Decomposition is a valuable method in data science, allowing us to decompose a matrix into its fundamental components. Similar to Principal Component Analysis (PCA), SVD helps reduce the dimensionality of data while preserving the most important information. However, SVD can be applied to non-square, non-invertible matrices, and its ability to separate fundamental components enables us to analyze more complex data. SVD has a wide range of applications in practical scenarios.

References

[1] F. Anowar, S. Sadaoui and B. Selim, “Conceptual and empirical comparison of dimensionality reduction n algorithms,” Computer Science Review, vol. 40, pp.100378, 2021, doi: 10.1016/j.cosrev.2021.100378
[2] F. Anowar and S. Sadaoui, “Incremental neural-network learning for big fraud data,” IEEE International Conference on Systems, Man, and Cybernetics (SMC), IEEE, pp.3551-3557, 2020, doi: 10.1109/SMC42975.2020.9283136
[3] F. Anowar and S. Sadaoui, “Incremental learning framework for real-world fraud detection environment, ” Comput. Intell, pp.1-22, 2021, http://dx.doi.org/10.1111/coin.12434, doi: 10.1111/coin.12434
[4] Z. Bai, E. Kaiser, J. L. Proctor, J. N. Kutz and S. L. Brunton, “Dynamic mode decomposition for compressive system identification,” AIAA Journal, vol. 58, no. 2, pp.561-574, 2020, doi: 10.2514/1.J057870
[5] N. H. Cuong and Đ. C. Tung, “Nghiên cứu một số phương pháp học sâu và ứng dụng phát hiện ảnh giả mạo,” Giao thông Vân tải, vol. 4, 2022.
[6] N. H. Cuong, “Phát hiện chỉnh sửa ảnh trên ảnh số dựa vào các phép phân tích ma trận, ” Tạp chí Khoa học GTVT ĐB Hội nghị KHCN lần thứ XXI, 2018.
[7] N. Donthu, S. Kumar, D. Mukherjee, N. Pandey and W.M. Lim, “How to conduct a bibliometric analysis: An overview and guidelines,” Journal of Business Research, vol. 133, pp.285-296, 2021, doi: 10.1016/j.jbusres.2021.04.070
[8] A. E. Ezugwu, A. K. Shukla, M. B. Agbaje, O. N. Oyelade, A. José-García and J. O. Agushaka, “Automatic clustering algorithms: a systematic review and bibliometric analysis of relevant literature,” Neural Computing and Applications, vol. 33, no. 11, pp.6247-6306, 2021, doi: 10.1007/s00521-020-05395-4
[9] G. H. Golub and V. Loan, “Matrix Computations,” Baltimore, Johns Hopkins University Press, 2012.
[10] Y. Jaradat, M. Masoud, I. Jannoud, A. Manasrah and M. Alia, “A Tutorial on Singular Value Decomposition with Applications on Image Compression and Dimensionality Reduction,” International Conference on Information Technology (ICIT), pp.769-772, 2021, doi: 10.1109/ICIT52682.2021.9491732
[11] Y. Jaradat, M. Alia, M. Masoud, A. Manasrah, I. Jebreil, A. Garaibeh, et al., “A bibliometric analysis of the International Journal of Advances in Soft Computing and its Applications: Research influence and Contributions,” International Journal of Advances in Soft Computing & Its Applications, vol. 14, no. 2, 2022, doi: 10.15849/IJASCA.220720.12
[12] P. Jindal and D. Kumar, “A review on dimensionality reduction techniques, ” Int.J. Comput. Appl, vol. 173, no. 2, pp.42-46, 2017, doi: 10.5120/ijca2017915260
[13] Y.Jaradat, M. Masoud, I. Jannoud, A. Manasrah and M. Alia, “A Tutorial on Singular Value Decomposition with Applications on Image Compression and Dimensionality Reduction,” 2021 International Conference on Information Technology (ICIT), 2021, doi: 10.1109/ICIT52682.2021.9491732
[14] M. Masoud, Y. Jaradat, E. Rababa and A. Manasrah, “Turnover prediction using machine learning: Empirical study,” Int. J. Advance Soft Compu. Appl, vol. 13, no. 1, 2021.
[15] B.N. Parlett and D.S. Scott, “Math Comput,” vol. 33, pp.217-238, 1979, doi: 10.1090/S0025-5718-1979-0514820-3
[16] Đ. T. Phương, T. H. Hai, N. M. Tuong and B. T. T. Xuân, “Giáo trình Toán cao cấp 1,” NXB Đại học Thái Nguyên, 2016.
[17] V. D. Tuan, “Python rất là cơ bản,” 2016.
[18] A. I. Terekhov, “Bibliometric trends in quantum information processing, ” Scientific and Technical Information Processing, vol. 47, no. 2, pp. 94-103, 2020, doi: 10.3103/S0147688220020021
[19] V. Spruyt, “The curse of dimensionality in classification,” Comput. Vision Dummies 21, vol. 3, pp.35-40, 2014.
[20] L.Van Der Maaten, E. Postma and J. Van den Herik, “Dimensionality reduction: A comparative review”J. Mach. Learn. Res, vol. 10, pp.66-71, 2009.
[21] I. Yamazaki, Z. Bai and H. Simon et al, “ACM Trans Math Softw,” vol. 37, pp.1-18, 2010.
[22] C. Xu, U. Xu and K. Jing,“Fast algorithms for singular value decomposition and the inverse of nearly low-rank matrices,” National Science Review, vol.10, 2023.

Downloads

Published

29-12-2023

How to Cite

Cao Thi, T.-X. (2023). Singular value decomposition and applications in data processing and artificial intelligence. HPU2 Journal of Science: Natural Sciences and Technology, 2(3), 34–41. https://doi.org/10.56764/hpu2.jos.2023.2.3.34-41

Volume and Issue

Section

Natural Sciences and Technology