An ab initio calculation on the structural, electronic and magnetic properties of Ni-doped \(\text{Bi}_{0.5}\text{Na}_{0.5}\text{TiO}_3\)

Authors

  • Quoc-Van Duong Hanoi National University of Education, Hanoi, Vietnam
  • Anh-Duong Nguyen Hanoi National University of Education, Hanoi, Vietnam
  • Cao-Khang Nguyen Hanoi National University of Education, Hanoi, Vietnam
  • Ngoc-Anh Nguyen Thi Hanoi National University of Education, Hanoi, Vietnam
  • Chinh-Cuong Nguyen Hanoi National University of Education, Hanoi, Vietnam
  • Duc-Dung Dang Hanoi University of Science and Technology, Hanoi, Vietnam
  • Tien-Lam Vu Hanoi University of Science and Technology, Hanoi, Vietnam
  • Minh-Thu Le Hanoi National University of Education, Hanoi, Vietnam

DOI:

https://doi.org/10.56764/hpu2.jos.2024.3.3.10-19

Abstract

The first principle calculation was employed to investigate the formation energies and structural, electronic, and magnetic properties of intrinsic and Ni-doped sodium bismuth titanate Bi0.5Na0.5TiO3 (BNT). The obtained formation energies indicate that Ni atoms prefer to dope into Bi-sites in the lattice of BNT while the calculated band structure shows that the doping leads to the emergence of new mid-gap energy states in the bandgaps, reducing the bandgap value of doped materials. The PDOSs reveal that Bi-6p, O-2p and Ti-3d contribute major parts in BNT valence and conduction bands, while the Ni-3d and 4s play the main roles in the formation of new mid-gap states. The spin-resolved density of states, the integrated spin densities and the charge distributions suggest that all doped models exhibit magnetic behavior, mainly due to the interaction of Ni, O and Ti atoms. The study method of this research can be applied to predict new properties of BNT-based materials.

References

[1] G. A. Smolenskii and A. I. Agranovskaya, “Dielectric polarization of a number of complex compounds,” Sov. phys., Solid state, vol. 1, no. 10, pp. 1429–1437, 1960.
[2] G. A. Smolenskii and A. I. Agranovskaya, “New ferroelectrics of complex composition. IV,” Sov. phys., Solid state, vol. 2, pp. 2651–2654, Jan. 1961.
[3] S. -E. Park, S. -J. Chung, and I. -T. Kim, “Ferroic phase transitions in (Na1/2Bi1/2)TiO3 crystals,” J. Am. Ceram. Soc., vol. 79, no. 5, pp. 1290–1296, May 1996, doi: 10.1111/j.1151-2916.1996.tb08586.x.
[4] Y. Wang et al., “Room-temperature ferromagnetism of Co-doped Na0.5Bi0.5TiO3: Diluted magnetic ferroelectrics,” J. Alloys Compd., vol. 475, no. 1–2, pp. L25–L30, May 2009, doi: 10.1016/j.jallcom.2008.07.073.
[5] W. Zhu et al., “A review: (Bi,Na)TiO3 (BNT)-based energy storage ceramics,” J. Mater., vol. 10, no. 1, pp. 86–123, Jan. 2024, doi: 10.1016/j.jmat.2023.05.002.
[6] Y. Wang et al., “Room temperature ferromagnetism in Fe-doped Na0.5Bi0.5TiO3 crystals,” Mater. Sci.-Pol., vol. 27, no. 2, pp. 471–476, Jan. 2009.
[7] D. D. Dung et al., “Tunable magnetism of Na0.5Bi0.5TiO3 materials via Fe defects,” J. Supercond. Nov. Magn., vol. 32, no. 10, pp. 3011–3018, Jun. 2019, doi: 10.1007/s10948-019-05163-z.
[8] P. Bhupaijit et al., “Effect of Co2+ substitution in B-sites of the perovskite system on the phase formation, microstructure, electrical and magnetic properties of Bi0.5(Na0.68K0.22Li0.10)0.5TiO3 ceramics,” Int. J. Miner. Metall. Mater., vol. 29, no. 9, pp. 1798–1808, Jul. 2022, doi: 10.1007/s12613-021-2345-8.
[9] Y. Qiao et al., “Ba and Mg co-doping to suppress high-temperature dielectric loss in lead-free Na0.5Bi0.5TiO3-based systems,” J. Eur. Ceram. Soc., vol. 40, no. 3, pp. 720–727, Mar. 2020, doi: 10.1016/j.jeurceramsoc.2019.11.029.
[10] M. Cernea et al., “Magnetoelectric properties of CoFe2O4/BNT–BT0.08 biphasic nanocomposites, with 0–3 connectivity, prepared by sol-gel method,” J. Alloys Compd., vol. 952, pp. 170041–170041, Aug. 2023, doi: 10.1016/j.jallcom.2023.170041.
[11] M. Cernea et al., “Composite BNT-BT0.08/CoFe2O4 with core-shell nanostructure for piezoelectric and ferromagnetic applications,” Mater. Sci. Eng. B: Solid-State Mater. Adv. Technol., vol. 240, pp. 7–15, Jan. 2019, doi: 10.1016/j.mseb.2019.01.001.
[12] M. Cernea et al., “BiFeO3 doped-BNT-BT0.08 piezoelectric and magnetic nanowires, derived from sol–gel precursor,” J. Nanoparticle Res., vol. 16, no. 2, p. 2231, Jan. 2014, doi: 10.1007/s11051-013-2231-z.
[13] D. D. Dung et al., “Synthesis and characterization of (1−x)Bi1/2Na1/2TiO3 + xSrNiO3-δ solid solution system,” J. Electron. Mater., vol. 51, no. 6, pp. 2716–2731, Mar. 2022, doi: 10.1007/s11664-022-09534-6.
[14] D. D. Dung et al., “Structural, optical, and magnetic properties of a new complex (1−x)Bi1/2Na1/2TiO3 + xMgNiO3−δ solid solution system,” Appl. Phys. A: Mater. Sci. Process., vol. 128, no. 2, p. 129, Jan. 2022, doi: 10.1007/s00339-021-05255-5.
[15] D. D. Dung et al., “Magnetic properties of a (1−x)Bi0.5Na0.5TiO3 + xCaNiO3-δ solid solution system prepared by sol–gel technique,” J. Electron. Mater., vol. 51, no. 5, pp. 1905–1921, Feb. 2022, doi: 10.1007/s11664-022-09457-2.
[16] D. D. Dung et al., “Magnetic properties of new (1−x)Bi1/2Na1/2TiO3 + xBaNiO3−δ solid solution materials,” Appl. Phys. A: Mater. Sci. Process., vol. 128, no. 2, p. 168, Feb. 2022, doi: 10.1007/s00339-022-05281-x.
[17] L. T. H. Thanh et al., “Origin of room temperature ferromagnetism in Cr-doped lead-free ferroelectric Bi0.5Na0.5TiO3 materials,” J. Electron. Mater., vol. 46, no. 6, pp. 3367–3372, Jan. 2017, doi: 10.1007/s11664-016-5248-0.
[18] D. D. Dung et al., “Role of Co dopants on the structural, optical and magnetic properties of lead-free ferroelectric Na0.5Bi0.5TiO3 materials,” J. Sci.: Adv. Mater. Devices, vol. 4, no. 4, pp. 584–590, Dec. 2019, doi: 10.1016/j.jsamd.2019.08.007.
[19] D. D. Dung et al., “Experimental and theoretical studies on the room-temperature ferromagnetism in new (1-x)Bi1/2Na1/2TiO3 + xCoTiO3 solid solution materials,” Vacuum, vol. 179, Sep. 2020, Art. no. 109551,  doi: 10.1016/j.vacuum.2020.109551.
[20] L. Ju, T. -S. Xu, Y. -J. Zhang, and L. Sun, “First-principles study of magnetism in transition metal doped Na0.5Bi0.5TiO3 system,” Chin. J. Chem. Phys., vol. 29, no. 4, pp. 462–466, Aug. 2016, doi: 10.1063/1674-0068/29/cjcp1602023.
[21] S. J. Clark et al., “First principles methods using CASTEP,” Z. fur Krist. -Cryst. Mater., vol. 220, no. 5–6, pp. 567–570, Jan. 2005, doi: 10.1524/zkri.220.5.567.65075.
[22] M. D. Segall et al., “First-principles simulation: Ideas, illustrations and the CASTEP code,” J. Phys. Condens. Matter., vol. 14, no. 11, pp. 2717–2744, Mar. 2002, doi: 10.1088/0953-8984/14/11/301.
[23] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett., vol. 77, no. 18, pp. 3865–3868, Oct. 1996, doi: 10.1103/physrevlett.77.3865.
[24] J. P. Perdew et al., “Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation,” Phys. Rev. B, vol. 46, no. 11, pp. 6671–6687, Sep. 1992, doi: 10.1103/physrevb.46.6671.
[25] D. Vanderbilt, “Soft self-consistent pseudopotentials in a generalized eigenvalue formalism,” Phys. Rev. B, vol. 41, no. 11, pp. 7892–7895, Apr. 1990, doi: 10.1103/physrevb.41.7892.
[26] H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B, vol. 13, no. 12, pp. 5188–5192, Jun. 1976, doi: 10.1103/physrevb.13.5188.
[27] D. Q. Van, L. M. Thu, and N. M. Thuy, “V-doped TiO2 anatase: Calculation and experiment,” Journal of Science of HNUE: Math and Phys. Sci., vol. 62, no. 8, pp. 127–134, Sep. 2017.
[28] H. Lü, S. Wang, and X. Wang, “The electronic properties and lattice dynamics of (Na0.5Bi0.5)TiO3: From cubic to tetragonal and rhombohedral phases,” J. Appl. Phys., vol. 115, no. 12, Mar. 2014, Art. no. 124107, doi: 10.1063/1.4869733.
[29] G. O. Jones and P. A. Thomas, “Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3,Acta Crystallogr. B: Struct. Sci. Cryst. Eng. Mater., vol. 58, no. 2, pp. 168–178, Mar. 2002, doi: 10.1107/s0108768101020845.
[30] R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A: Found. Adv., vol. 32, no. 5, pp. 751–767, Sep. 1976, doi: 10.1107/s0567739476001551.
[31] N. H. Linh, N. H. Tuan, D. D. Dung, P. Q. Bao, B. T. Cong, and L. T. H. Thanh, “Alkali metal-substituted bismuth-based perovskite compounds: A DFT study,” J. Sci.: Adv. Mater. Devices, vol. 4, no. 3, pp. 492–498, Sep. 2019, doi: 10.1016/j.jsamd.2019.06.005.
[32] J. Goldsby, S. Raj, S. Guruswamy, and D. D. Azbill, “First-principle and experimental study of a gadolinium-praseodymium-cobalt pseudobinary intermetallic compound,” J. Mater., vol. 2015, Jun. 2015, Art. no.  753612, doi: 10.1155/2015/753612

Downloads

Published

30-12-2024

How to Cite

Duong, Q.-V., Nguyen, A.-D., Nguyen, C.-K., Nguyen Thi, N.-A., Nguyen, C.-C., Dang, D.-D., Vu, T.-L. ., & Le, M.-T. (2024). An ab initio calculation on the structural, electronic and magnetic properties of Ni-doped \(\text{Bi}_{0.5}\text{Na}_{0.5}\text{TiO}_3\). HPU2 Journal of Science: Natural Sciences and Technology, 3(3), 10–19. https://doi.org/10.56764/hpu2.jos.2024.3.3.10-19

Volume and Issue

Section

Natural Sciences and Technology