On the second-order sufficient optimality condition in nonconvex multiobjective optimization problems
DOI:
https://doi.org/10.56764/hpu2.jos.2024.3.3.60-69Abstract
The study of second-order optimality conditions is one of the most important topics in optimization theory and attracting the attention and interest of many authors. In this paper, we introduce a novel solution concept called “essential local efficient solutions of second-order” for nonconvex constrained multiobjective optimization problems. We then show that the new solution concept is stronger than the quadratic growth condition and under a mild constraint qualification, these solution concepts are equivalent. By using the second subderivative, we derive a sufficient optimality condition for a feasible solution to become an essential local efficient solution of second-order for the considered problem. Examples are provided to illustrate the obtained results.
References
[1] J. F. Bonnans and A. Shapiro, Perturbation analysis of optimization problems (Springer series in operations research and financial engineering). New York, USA: Springer, 2000. doi: 10.1007/978-1-4612-1394-9.
[2] R. Cominetti, “Metric regularity, tangent sets, and second-order optimality conditions”, Appl. Math. Optim., vol. 21, pp. 265–287, Jan. 1990, doi: 10.1007/bf01445166.
[3] N. Q. Huy and N. V. Tuyen, “New second-order optimality conditions for a class of differentiable optimization problems”, J. Optim. Theory Appl., vol. 171, pp. 27–44, Jul. 2016, doi: 10.1007/s10957-016-0980-4.
[4] N. Q. Huy, D. S. Kim, and N. V. Tuyen, “New second-order Karush–Kuhn–Tucker optimality conditions for vector optimization”, Appl. Math. Optim. vol. 79, pp. 279–307, Apr. 2019, doi: 10.1007/s00245-017-9432-2.
[5] N. Q. Huy, B. T. Kien, G. M. Lee, and N. V. Tuyen, “Second-order optimality conditions for multiobjective optimization problems with constraints”, Linear and Nonlinear Analysis, vol. 5, no. 2, pp. 237–253, Sep. 2019.
[6] N. H. Hung, H. N. Tuan, and N. V. Tuyen, “On second-order sufficient optimality conditions”, HPU2. J. Sci., vol. 74, pp. 3–11, Aug. 2021.
[7] N. H. Hung, H. N. Tuan, and N. V. Tuyen, “On the tangent sets of constraint systems”, HPU2. Nat. Sci. Tech., vol. 1, no. 1, pp. 31–39, Aug. 2022, doi: 10.56764/hpu2.jos.2022.1.1.31-39.
[8] A. Jourani, “Regularity and strong sufficient optimality conditions in differentiable optimization problems”, Numer. Funct. Anal. Optim., vol. 14, no. 1–2, pp. 69–87, Jan. 1993, doi: 10.1080/01630569308816508.
[9] D. S. Kim and N. V. Tuyen, “A note on second-order Karush-Kuhn-Tucker necessary optimality conditions for smooth vector optimization problems”, RAIRO - Oper. Res., vol. 52, no. 2, pp. 567–575, Jul. 2018, doi: 10.1051/ro/2017026.
[10] A. Mohammadi, B. S. Mordukhovich, and M. E. Sarabi, “Parabolic regularity in geometric variational analysis”, Trans. Amer. Math. Soc., vol. 374, no. 3, pp. 1711–1763, Aug. 2021, doi: 10.1090/tran/8253.
[11] J. P. Penot, “Second-order conditions for optimization problems with constraints”, SIAM J. Control Optim., vol. 37, no. 1, pp. 303–318, Jan. 1998, doi: 10.1137/S0363012996311095.
[12] R. T. Rockafellar and R. J. -B. Wets, Variational analysis (Grundlehren der mathematischen Wissenschaften). Heidelberg, Germany: Springer Berlin, 1998. doi: 10.1007/978-3-642-02431-3.
[13] N. T. Toan, L. Q. Thuy, N. V. Tuyen, and Y. -B. Xiao, “Second-order KKT optimality conditions for multiobjective discrete optimal control problems”, J. Global Optim., vol. 79, no. 1, pp. 203–231, Jan. 2021, doi: 10.1007/s10898-020-00935-7.
[14] N. V. Tuyen, N. Q. Huy, and D. S. Kim, “Strong second-order Karush-Kuhn-Tucker optimality conditions for vector optimization”, Appl. Anal., vol. 99, no. 1, pp. 103–120, Jun. 2018, doi: 10.1080/00036811.2018.1489956.
[15] N. V. Tuyen, C. F. Wen, Y. B. Xiao, and J. C. Yao, “On second-order sufficient optimality conditions for vector optimization problems”, J. Nonlinear Convex Anal., vol. 23, no. 12, pp. 2859–2874, Dec. 2022.
[16] Y. B. Xiao, N. V. Tuyen, J. C. Yao, and C. F. Wen, “Locally Lipschitz vector optimization problems: Second-order constraint qualifications, regularity condition, and KKT necessary optimality conditions”, Positivity, vol. 24, no. 2, pp. 313–337, Apr. 2020, doi: 10.1007/s11117-019-00679-z.
[17] M. Benko and P. Mehlitz, “Why second-order sufficient conditions are, in a way, easy - or - revisiting calculus for second subderivatives”, J. Convex Anal., vol. 30, no. 2, pp. 541–589, Jun. 2023.
[18] M. Benko, H. Gfrerer, J. J. Ye, J. Zhang, and J. Zhou, “Second-order optimality conditions for general nonconvex optimization problems and variational analysis of disjunctive systems”, SIAM J. Optim., vol. 33, no. 4, pp. 2625–2653, Otc. 2023, doi: 10.1137/22m1484742.
[19] N. T. V. Hang and M. E. Sarabi, “A chain rule for strict twice epi-differentiability and its applications”, SIAM J. Optim., vol. 34, no. 1, pp. 918–945, Feb. 2024, doi: 10.1137/22M1520025.
[20] A. Mohammadi and M. E. Sarabi, “Twice epi-differentiability of extended-real-valued functions with applications in composite optimization”, SIAM J. Optim. vol. 30, no. 3, pp. 2379–2409, Jan. 2020, doi: 10.1137/19M1300066.
Downloads
Published
How to Cite
Volume and Issue
Section
Copyright and License
Copyright (c) 2024 Van-Tuyen Nguyen, Thi-Yen Nguyen
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.