On minimization of quadratic functions over closed convex sets in Hilbert spaces
DOI:
https://doi.org/10.56764/hpu2.jos.2024.3.3.70-79Abstract
Quadratic programming problems are of primary importance in various applications and arise as subproblems in many optimization algorithms. In this paper, we investigate quadratic programming problems in Hilbert spaces. By utilizing the Legendre property of quadratic forms and an asymptotically linear set with respect to a cone, we establish a sufficient condition for the existence of solutions to the considered problems through a Frank-Wolfe type theorem. The proposed condition is based on the special structure of Hilbert spaces, extending the applicability of quadratic programming methods. Finally, we provide a numerical example to illustrate the results obtained and demonstrate that existing approaches cannot be applied in certain cases.
References
[1] M. Frank and P. Wolfe, “An algorithm for quadratic programming,” Nav. Res. Log. Qua., vol. 3, no. 1–2,pp. 95–110, Jun. 1956, doi: 10.1002/nav.3800030109.
[2] E. Blum and W. Oettli, “Direct proof of the existence theorem in quadratic programming,” Oper. Res., vol. 20, no. 1, pp. 165–167, Feb. 1972, doi: 10.1287/opre.20.1.165.
[3] E. G. Belousov, Introduction to convex analysis and integer programming, Moscow, Russia: Moscow Univ. Publisher, 1977.
[4] E. G. Belousov and D. Klatte, “A Frank-Wolfe type theorem for convex polynomial programs,” Comput. Optim. Appl., vol. 22, no.1, pp. 37– 42, Apr. 2002, doi: 10.1023/A:1014813701864.
[5] D. P. Bertsekas and P. Tseng, “Set intersection theorems and existence of optimal solutions,” Math. Program., vol. 110, no. 2, pp. 287– 314, Jul. 2007, doi: 10.1007/s10107-006-0003-6.
[6] J. Semple, “Infinite positive-definite quadratic programming in a Hilbert space,” J. Optim. Theory Appl., vol. 88, pp. 743–749, Mar. 1996, doi: 10.1007/BF02192208.
[7] I. E. Schochetman, R. L. Smith and S. K. Tsui, “Solution existence for infinite quadratic programming,” In Mathematical programming with data perturbations, A. V. Fiacco, Ed., Boca Raton, FL, USA: CRC Press, 2020, pp. 363–385, doi: 10.1201/9781003072119-16.
[8] J. M. Borwein, “Necessary and sufficient conditions for quadratic minimality,” Numer. Funct. Anal. Appl., vol. 5, no. 2, pp. 127–140, Dec. 1981, doi: 10.1080/01630568208816135.
[9] J. E. Martínez-Legaz, D. Noll and W. Sosa, “Non-polyhedral extensions of the Frank and Wolfe Theorem,” In Splitting algorithms, modern operator theory, and applications, H. Bauschke, R. Burachik, and D. Luke, Ed., Cham, Switzerland: Springer, 2019, pp. 309–329, doi: 10.1007/978-3-030-25939-6_12.
[10] B. C. Eaves, “On Quadratic Programming,” Manag. Sci., vol. 17, no. 11, pp. 698–711, Jul. 1971, doi: 10.1287/mnsc.17.11.698.
[11] Z. Q. Luo and S. Zhang, “On extensions of the Frank-Wolfe theorems”, Comput. Optimi. Appl., vol. 13, pp. 87–110, Apr. 1999, doi: 10.1023/A:1008652705980.
[12] J. F. Bonnans and A. Shapiro, Eds., Perturbation analysis of optimization problems (Springer series in operations research and financial engineering). New York, USA: Springer, 2000, doi: 10.1007/978-1-4612-1394-9.
[13] V. V. Dong, N. N. Tam, “On the solution existence for nonconvex quadratic programming problems in Hilbert spaces,” Acta Math. Vietnam., vol. 43, no. 1, pp. 155–174, Mar. 2018, doi: 10.1007/s40306-017-0237-9.
[14] F. Flores-Bazán and G. Cárcamo, “A geometric characterization of strong duality in nonconvex quadratic programming with linear and nonconvex quadratic constraints,” Math. Program., vol. 145, no. 1, pp. 263–290, Jun. 2014, doi: 10.1007/s10107-013-0647-y.
[15] M. R. Hestenes, “Applications of the theory of quadratic forms in Hilbert space to the calculus of variations,” Pacific. J. Math., vol. 1, no. 4, pp. 525–581, Dec. 1951, doi: 10.2140/PJM.1951.1.525.
[16] H. H. Bauschke and P. L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces (CMS books in mathematics), Cham, Switzerland: Springer, 2017, doi: 10.1007/978-3-319-48311-5.
[17] A. Auslender, M. Teboulle, Asymptotic cones and functions in optimization and variational inequalities (Springer monographs in mathematics), New York, USA: Springer, 2003, doi: 10.1007/b97594.
[18] T. V. Nghi, “An Eaves type theorem for quadratic fractional programming problems and its applications,” J. Convex. Anal., vol. 28, no. 4, pp. 1073–1086, Oct. 2021.
[19] F. Lara, “Quadratic fractional programming under asymptotic analysis,” J. Convex. Anal., vol. 26, no. 1, pp. 15–32, Jan. 2019.
[20] T. V. Nghi and N. N. Tam, Quadratic programming. Hanoi, Vietnam: Publishing House for Science and Technology (in Vietnamese), 2022.
Downloads
Published
How to Cite
Volume and Issue
Section
Copyright and License
Copyright (c) 2024 Van-Nghi Tran, Nang-Tam Nguyen, Chi-Thanh Le
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.