Spreading dynamic of a fractional network-based SIQR epidemic model with fuzzy transmission rate

Authors

  • Phuong-Dong Nguyen Hanoi Pedagogical University 2, 32 Nguyen Van Linh, Phuc Yen, Vinh Phuc, Vietnam
  • Thanh-Dung Dao Department of Mathematics, Hanoi Pedagogical University 2
  • Van-Huy Kieu Department of Mathematics, Hanoi Pedagogical University 2
  • Hong-Ngat Kieu Thi Department of Mathematics, Hanoi Pedagogical University 2
  • Chi-Nguyen Nguyen Department of Mathematics, Hanoi Pedagogical University 2
  • Thu-Trang Han Thi Department of Mathematics, Hanoi Pedagogical University 2

DOI:

https://doi.org/10.56764/hpu2.jos.2022.1.1.16-30

Abstract

For better understanding the influence of heterogeneity of complex networks and quarantine treatment on epidemic spreading, we present a study on a fractional network-based epidemic model with fuzzy transmission. Based on the next-generation method, we determine an important threshold value of the epidemiology theory, say Then, we indicate that significantly depends on the topology structure of the network and malware load. Next, we prove that the threshold value  not only determines the unique existence of endemic equilibrium  but also ensures the clean of malware programs on the network

References

A.L.Barabási, R.Albert, (1999), Emergence of scaling in random networks, Science, Vol. 286 (5439), pp. 509 - 512.

N. Aguila-Camacho, M.A. Duarte-Mermoud, J.A. Gallegos, (2014), Lyapunov functions for fractional order systems, Commun Nonlinear Sci. Numer. Simul., Vol. 19, 2951–7.

N.D. Cong, D.T. Son, S. Stefan, H.T. Tuan, (2016), Linearized asymptotic stability for fractional differential equations, Electron. J. Qual. Theory Differ. Equ., Vol. 39, pp. 1 – 13.

O. Diekman, J.A.P. Heesterbeek, J.A.J. Metz, (1990), On the definition and the computation of the basic reproduction ratio in models for infectious diseases in heterogeneous populations, J. Math. Bio., Vol. 28 (4), pp. 365 – 382.

K. Diethelm (2010), The analysis of fractional differential equations, An application-oriented exposition using differential operators of Caputo type, Lecture Notes in Mathematics, Vol. 2004, Springer-Verlag, Berlin.

N.P. Dong, H.V. Long, A. Khastan, (2020), Optimal control of a fractional order model for granular SEIR epidemic model, Commun. Nonlinear Sci. Numer. Simul., Vol. 88, 105312.

N.P. Dong, H.V. Long, N.L. Giang, (2021), The fuzzy fractional SIQR model of computer virus propagation in Wireless Sensor Network using Caputo Atangana – Baleanu derivatives, Fuzzy Sets Syst. DOI.10.1016/j.fss.2021.04.012.

H. Hu, X. Yuan, L. Huang, C. Huang, (2019), Global dynamics of an SIRS model with demographics and transfer from infectious to susceptible on heterogeneous networks, Math. Biosci. Eng., Vol.16 (5), pp. 5729 – 5749.

H.F. Huo, P. Yang, H. Xiang, (2019), Dynamics for an SIRS epidemic model with infection age and relapse on a scale – free network, J. Franklin Inst., Vol. 365 (13), pp. 7411 – 7443.

A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, (2006), Theory and Applications of Fractional Differential Equations, vol. 204 of North – Holland Mathematics Studies, Elsevier, Amsterdam, Netherlands.

Q. Kong, (2005), A Short Course in Ordinary Differential Equations, Springer, New York.

C. Vargas de León, (2015), Volterra-type Lyapunov functions for fractional-order epidemic systems, Commun. Nonlinear Sci. Numer. Simul., Vol. 24, pp. 75 – 85.

Y. Li, Y. Chen, I. Podlubny, (2009), Mittag - Leffler stability of fractional order nonlinear dynamic systems, Automatica, Vol. 45 (8), pp. 1965 – 1969.

C.H. Li, C.C. Tsai, S.Y. Yang, (2014), Analysis of epidemic spreading of an SIRS model in complex heterogeneous networks, Commun. Nonlinear Sci. Number. Simul., Vol. 19 (4), pp. 1042 – 1054.

T. Li, Y. Wang, Z.H. Guan, (2014), Spreading dynamics of a SIQRS epidemic model on scale-free networks, Commun. Nonlinear Sci. Numer. Simul., Vol. 19, pp. 686–692.

P.K. Mondal, S. Jana, P. Haldar, (2015), Dynamical behavior of an epidemic model in a fuzzy transmission, Inter. J. Uncertain. Fuzziness Knowledge-Based Systems, Vol. 23 (5), pp. 651–665.

C. Nakul, J.M. Hyman, J.M. Cushing, (2008), Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull. Math. Biol., Vol. 70, pp. 1272-1296.

S.K. Nandi, S. Jana, M. Manadal, T.K. Kar, (2018), Analysis of a fuzzy epidemic model with saturated treatment and disease transmission, Int. J. Biomath., Vol. 11 (1), pp. 1–18.

Z.M. Odibat, N.T. Shawagfeh, (2007), Generalized Taylor’s formula, Appl. Math. Comput., Vol. 186 (1), pp. 286-293.

H.A.A. El-Saka, A.A.M. Arafa, M.I. Gouda, (2019), Dynamical analysis of a fractional SIRS model on homogeneous networks, Adv. Differ. Equ., Vol. 144.

R. Pastor-Satorras, A. Vespignani, (2001), Epidemic spreading in scale-free networks, Phys. Rev. Lett., Vol. 86, pp. 3200–3203.

H.T. Tuan, Hieu Trinh (2018), Stability of fractional-order nonlinear systems by Lyapunov direct method, IET Control Theory Appl., Vol. 12, pp. 2417-2422.

L.A. Zadeh, (1965), Fuzzy Sets, Inf. Contr., Vol. 8, pp. 338-353

Published

31-08-2022

How to Cite

Nguyen, P.-D., Dao, T.-D., Kieu, V.-H., Kieu Thi, H.-N., Nguyen, C.-N., & Han Thi, T.-T. (2022). Spreading dynamic of a fractional network-based SIQR epidemic model with fuzzy transmission rate. HPU2 Journal of Science: Natural Sciences and Technology, 1(1), 16–30. https://doi.org/10.56764/hpu2.jos.2022.1.1.16-30

Volume and Issue

Section

Natural Sciences and Technology