ON THE p−CURVATURES OF t-CONNECTIONS OVER A RELATIVE SMOOTH PROJECTIVE SCHEME

Authors

  • Thanh-Tam Pham Hanoi Pedagogical University 2, 32 Nguyen Van Linh, Phuc Yen, Vinh Phuc, Vietnam

DOI:

https://doi.org/10.56764/hpu2.jos.2022.2.1.102-111

Abstract

Let  be a global function of an integral -scheme  and  be a smooth projective scheme over . We show that the characteristic polynomial of the curvature of an integrable connection over  is horizontal.

 

References

B. Dwork, Lectures on p-adic differential equations, volume 253 of Grundlehren der mathematischen Wissenschaften. Springer, New York, 1982.

H. Esnault, M. Groechenig, Rigid connections and F-isocrytals, Acta Mathematica, Volume 225 (2020), Number 1, p. 103 – 158.

N. Hitchin, Stable bundles and intergrable systems, Duke Mathematical Journal 54 (1987), pp. 91-114.

T. Honda, Algebraic differential equations, In Symposia Mathematica, Vol. XXIV, pages 169–204. Academic Press, London, 1981.

N.M. Katz, Nilpotent connections and the monodromy theorem: applications of a result of Turrittin, Publications math'ematiques de I.H.'E.S. 39 (1970), pp. 175-232.

Y. Laszlo and C. Pauly, On the Hitchin morphism in positive characteristic, Internat. Math. Res. Notices (2001), no. 3, pp. 129-143.

T. Mochizuki, Good formal structure for meromorphic flat connections on smooth projective surfaces, Advanced Studies Pure Mathematics 54 (2009), Algebraic Analysis and Around, pp.223–253.

Carlos T.Simpson, Moduli of representations of the fundamental group of a smooth projective variety II, Publications math'ematiques de I.H.'E.S. 80 (1994), pp.5-79.

Published

28-12-2022

How to Cite

Pham, T.-T. (2022). ON THE p−CURVATURES OF t-CONNECTIONS OVER A RELATIVE SMOOTH PROJECTIVE SCHEME. HPU2 Journal of Science: Natural Sciences and Technology, 1(2), 102–111. https://doi.org/10.56764/hpu2.jos.2022.2.1.102-111

Volume and Issue

Section

Natural Sciences and Technology