On the second Hilbert coefficients and Cohen-Macaulay rings
DOI:
https://doi.org/10.56764/hpu2.jos.2023.2.2.3-10Abstract
In this paper, we investigate the relationship between second Hilbert coeficients and the index of reducibility of parameter ideals. We give some characterazations of Cohen-Macaulay rings via the above invariants.
References
. N. T. Cuong and D.T. Cuong, On Sequentially Cohen-Macaulay Modules, Kodai Mathematical Journal, 30(3) (2007), 409-28.
. N. T. Cuong, P. Schenzel and N. V. Trung, Verallgemeinerte CohenMacaulay-Moduln, M. Nachr., 85 (1978), 57–73.
. N. T. Cuong and H. L. Truong, Asymptotic behavior of parameter ideals in generalized Cohen-Macaulay modules, Journal of Algebra, 320(1) (2008), 158–168.
. S. Goto, Approximately Cohen-Macaulay rings, J. Algebra, 76(1) (1982), 214–225.
. S. Goto and Y. Nakamura, Multiplicity and tight closures of parameters, J. Algebra, 244(1) (2001), 302–311.
. L. Ghezzi, S. Goto, J.-Y. Hong, K. Ozeki, T.T. Phuong, W.V. Vasconcelos, The first Hilbert coefficients of parameter ideals , J. Lond. Math. Soc., 81(2) (2010), 679–695.
. S. Goto and K. Ozeki, Hilbert coefficients of integrally closed ideals, J. Algebra, 446 (2016), 58–76.
. H. Matsumura, Commutative ring theory, Cambridge University Press, 1986.
. M. Nagata, Local Rings, Tracts in Pure & Applied Mathematics, John Wiley & Sons, Nashville, TN, December 1962.
. E. Noether, Ideal theorie in ringbereichen, Mathematische Annalen, 83(1-2) (1921), 24–66.
.K. Ozeki, , H.L. Truong, and H. N. Yen, On Hilbert Coefficients and Sequentially Cohen-Macaulay Rings, Proceedings of the American Mathematical Society 150(6) (2022): 23-67.
. J. D. Sally, Hilbert coefficients and reduction number 2, J. Algebraic Geom. 1 (1992), 325–333.
. J. Stückrad and W. Vogel, Toward a theory of Buchsbaum singularities, Amer. J. Math., 100 (1978), 727-746.
.N.T.T. Tam and H. L. Truong, A Note on Chern Coefficients and Cohen-Macaulay Rings, Arkiv För Matematik, 58 (1) (2020), 197-212.
. H. L. Truong, Index of reducibility of distinguished parameter ideals and sequentially Cohen-Macaulay modules, Proceedings of the American Mathematical Society, 141(6) (2013), 1971– 1978.
. H. L. Truong, Chern Coefficients and Cohen–Macaulay Rings, Journal of Algebra 490 (2017), 316-29.
. H. L. Truong, The eventual index of reducibility of parameter ideals and the sequentially Cohen–Macaulay property, Archiv der Mathematik, 112(5) (2019), 475–488.
.W. V. Vasconcelos. The Chern Coefficients of Local Rings. The Michigan Mathematical Journal, 57 (2008), 725-43.
Downloads
Published
How to Cite
Volume and Issue
Section
Copyright and License
Copyright (c) 2023 Do Van Kien, Khanh-Linh Ha, Dai-Tan Tran, Ngoc-Yen Hoang
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.