On the second Hilbert coefficients and Cohen-Macaulay rings

Authors

  • Do Van Kien Department of Mathematics, Hanoi Pedagogical University 2, 32 Nguyen Van Linh, Phuc Yen, Vinh Phuc, Vietnam
  • Khanh-Linh Ha Department of Mathematics, Thai Nguyen University of education, 20 Luong Ngoc Quyen, Thai Nguyen City, Thai Nguyen, Vietnam
  • Dai-Tan Tran Institute of Mathematics, VAST, 18 Hoang Quoc Viet, 10307 Hanoi, Viet Nam
  • Ngoc-Yen Hoang Department of Mathematics, Thai Nguyen University of education, 20 Luong Ngoc Quyen, Thai Nguyen City, Thai Nguyen, Vietnam

DOI:

https://doi.org/10.56764/hpu2.jos.2023.2.2.3-10

Abstract

In this paper, we investigate the relationship between second Hilbert coeficients and the index of reducibility of parameter ideals. We give some characterazations of Cohen-Macaulay rings via the above invariants.

References

. N. T. Cuong and D.T. Cuong, On Sequentially Cohen-Macaulay Modules, Kodai Mathematical Journal, 30(3) (2007), 409-28.

. N. T. Cuong, P. Schenzel and N. V. Trung, Verallgemeinerte CohenMacaulay-Moduln, M. Nachr., 85 (1978), 57–73.

. N. T. Cuong and H. L. Truong, Asymptotic behavior of parameter ideals in generalized Cohen-Macaulay modules, Journal of Algebra, 320(1) (2008), 158–168.

. S. Goto, Approximately Cohen-Macaulay rings, J. Algebra, 76(1) (1982), 214–225.

. S. Goto and Y. Nakamura, Multiplicity and tight closures of parameters, J. Algebra, 244(1) (2001), 302–311.

. L. Ghezzi, S. Goto, J.-Y. Hong, K. Ozeki, T.T. Phuong, W.V. Vasconcelos, The first Hilbert coefficients of parameter ideals , J. Lond. Math. Soc., 81(2) (2010), 679–695.

. S. Goto and K. Ozeki, Hilbert coefficients of integrally closed ideals, J. Algebra, 446 (2016), 58–76.

. H. Matsumura, Commutative ring theory, Cambridge University Press, 1986.

. M. Nagata, Local Rings, Tracts in Pure & Applied Mathematics, John Wiley & Sons, Nashville, TN, December 1962.

. E. Noether, Ideal theorie in ringbereichen, Mathematische Annalen, 83(1-2) (1921), 24–66.

.K. Ozeki, , H.L. Truong, and H. N. Yen, On Hilbert Coefficients and Sequentially Cohen-Macaulay Rings, Proceedings of the American Mathematical Society 150(6) (2022): 23-67.

. J. D. Sally, Hilbert coefficients and reduction number 2, J. Algebraic Geom. 1 (1992), 325–333.

. J. Stückrad and W. Vogel, Toward a theory of Buchsbaum singularities, Amer. J. Math., 100 (1978), 727-746.

.N.T.T. Tam and H. L. Truong, A Note on Chern Coefficients and Cohen-Macaulay Rings, Arkiv För Matematik, 58 (1) (2020), 197-212.

. H. L. Truong, Index of reducibility of distinguished parameter ideals and sequentially Cohen-Macaulay modules, Proceedings of the American Mathematical Society, 141(6) (2013), 1971– 1978.

. H. L. Truong, Chern Coefficients and Cohen–Macaulay Rings, Journal of Algebra 490 (2017), 316-29.

. H. L. Truong, The eventual index of reducibility of parameter ideals and the sequentially Cohen–Macaulay property, Archiv der Mathematik, 112(5) (2019), 475–488.

.W. V. Vasconcelos. The Chern Coefficients of Local Rings. The Michigan Mathematical Journal, 57 (2008), 725-43.

Downloads

Published

31-08-2023

How to Cite

Van-Kien, Ha, K.-L., Tran, D.-T., & Hoang, N.-Y. (2023). On the second Hilbert coefficients and Cohen-Macaulay rings. HPU2 Journal of Science: Natural Sciences and Technology, 2(2), 3–10. https://doi.org/10.56764/hpu2.jos.2023.2.2.3-10

Volume and Issue

Section

Natural Sciences and Technology