An analytical approach to finite time H∞ event-triggered state feedback control of fractional order systems with delay

Authors

  • Truong-Thanh Nguyen School of Applied Mathematics and Informatics, Hanoi University of Science and Technology, Ha Noi, Viet Nam

DOI:

https://doi.org/10.56764/hpu2.jos.2023.2.3.66-76

Abstract

This paper investigates finite time Hevent-triggered state feedback control problem of fractional-order systems with delay. Based on Laplace trasform and “inf-sup” norm, a delay-dependent sufficient condition for designing H event-triggered control is established in terms of the Mittag-Leffler function and Linear matrix inequalities. A numerical example is given to show the effectiveness of the obtained result.

References

[1] I. Podlubny, Fractional differential equations, San Diego, Academic Press, 1999.
[2] A. A. Kilbas, H. Srivastava and J. Trujillo, Theory and Applications of Fractional Differential Equations, Amsterdam, Elsevier Science, 2006.
[3] M. A. Duarte-Mermoud, N. Aguila-Camacho, J. A. Gallegos, and R. Castro-Linares, “Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems”, Commun. Nonlinear Sci. Numer. Simulat., vol. 22, no. 1-3, pp.650-659, 2015, doi: 10.1016/j.cnsns.2014.10.008
[4] B. B. He, H. C. Zhou, C. H. Kou, and Y. Q. Chen, “New integral inequalities and asymptotic stability of fractional order systems with unbounded time delay”, Nonlinear Dynamic., vol. 94, no. 2, pp.1523 -1534, 2018, doi: 10.1007/s11071-018-4439-z
[5] H. Ye, J. Gao, Y. Ding, “A generalized Gronwall inequality and its application to a fractional differential equation”, J. Math. Anal. Appl., vol. 328, no. February, pp.1075-1081, 2007, doi: 10.1186/s13660-016-0991-6
[6] J. Cermak, J. Hornicek, T. Kisela, “Stability regions for fractional differential systems with a time delay”, Commun. Nonl. Sci. Numer. Simul., vol. 31, no.1-3, pp.108-123, 2016, doi: 10.1016/j.cnsns.2015.07.008
[7] M. V. Thuan and D. C. Huong, “Robust guaranteed cost control for time-delay fractional-order neural networks systems”, Optim Control Appl. Methods, vol. 40, no. 20 March 2019, pp.613-625, 2019, doi: 10.1002/oca.2497
[8] D. C. Huong, M.V. Thuan, and D. T. Hong, “New results on stability and stabilization of delayed Caputo fractional-order systems with convex polytopic uncertainties”, J Syst Sci Complex., vol. 33, no. 16 June 2020, pp.563-583, 2020, doi: 10.1007/s11424-020-8338-2
[9] L. Chen, R. Wu, L. Yuan, L. Yin, Y. Chen, and S. Xu, “Guaranteed cost control of fractional-order linear uncertain systems with time-varying delay”, Optim Control Appl Methods, vol. 42, no. 4, pp.1102-1118, 2021, doi: 10.1002/oca.2718
[10] V. N. Phat and N. T. Thanh, "New criteria for finite-time stability of nonlinear fractional-order delay systems: A Gronwall inequality approach", Applied Mathematics Letters, vol. 83, no. September 2018, pp.169-175, 2018, doi: 10.1016/j.aml.2018.03.023
[11] N. Chen, M. Ikeda, and W. Gui, “Design of robust control for interconnected systems”, International Journal of Control, Automation and Systems, vol. 3, no. 2, pp.143-151, 2005.
[12] V. N. Phat, Q. P. Ha, “ control and exponential stability for a class of nonlinear non-autonomous systems with time-varying delay”, Journal of Optimization Theory and Applications, vol. 142, no. September 2009, pp.603-618, 2009, doi: 10.1007/s10957-009-9512-9
[13] H. T. Tuan, H. Trinh, “Stability of fractional-order nonlinear systems by Lyapunov direct method”, IET Control Theory Appl., vol.12, no. 17, pp.2417-2422, 2018, doi: 10.1049/iet-cta.2018.5233
[14] S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, 1994, doi: 10.1137/1.9781611970777
[15] Le Liu, Bin Wang, Sijie Wang, Yuantai Chen, Tasawar Hayat, Fuad E. Alsaadi, “Finite-Time Control of a Fractional-Order Hydraulic Turbine Governing System”, IEEE Access, vol. 6, no. October 2018, pp.57507-57517, 2018, doi: 10.1109/ACCESS.2018.2873769

Downloads

Published

29-12-2023

How to Cite

Nguyen, T.-T. (2023). An analytical approach to finite time H∞ event-triggered state feedback control of fractional order systems with delay . HPU2 Journal of Science: Natural Sciences and Technology, 2(3), 66–76. https://doi.org/10.56764/hpu2.jos.2023.2.3.66-76

Volume and Issue

Section

Natural Sciences and Technology