# A non-existence result for higher-order Hardy-Hénon inequality on punctured balls

## DOI:

https://doi.org/10.56764/hpu2.jos.2024.3.2.87-92## Abstract

Let *n* and *m* be two positive integers such that \(n>2m\ge 4\). Let and be real such that \(\sigma<-2m\) and *p* > 1 . In this note, we are mainly concerned with non-negative and classical solutions of the high-order harmonic inequality \[(-\Delta)^{m} u \geq |x|^{\sigma} u^{p} ,\]

on the punctured ball \(B_R\setminus\{0\}\subset R^n\). Using the method of test functions, the Hölder's inequality, and integral estimates, we will prove that this inequality has no \(C^{2m}\)** ** positive solution satisfying some sufficient conditions. It should be mentioned that our result, see Theorem 1.1 in the next section, in the high-order setting is analogous to that of Laptev for the case \(m=2\)**.**

## References

[1] G. G. Laptev, “On the absence of solutions to a class of singular semilinear differential inequalities,” *Tr. Mat. **Inst. Steklova*, vol. 232, pp. 223–235, 2001.

[2] E. Mitidieri and S. I. Pohozaev, “A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities,” *Trudy Mat. Inst. Steklova*, vol. 234, pp. 3–383, 2001.

[3] T. T. Ngoan, Q. A. Ngô, and T. V. Tuan, “Non-existence results for fourth order Hardy–Hénon equations in dimensions 2 and 3,” *J. Differ. Equ.*, vol. 397, pp. 55–79, Jul. 2024, doi: 10.1016/j.jde.2024.02.057.

[4] Y. Giga and Q. A. Ngô, “Exhaustive existence and non-existence results for Hardy–Hénon equations in ,” *Partial Differ. Equ. Appl.*, vol. 3, no. 6, p. 81, Nov. 2022, doi: 10.1007/s42985-022-00190-3.

[5] Q. A. Ngô and D. Ye, “Existence and non-existence results for the higher order Hardy–Hénon equation revisited,” *J. Math. Pures Appl.*, vol. 163, pp. 265–298, Jul. 2022, doi: 10.1016/j.matpur.2022.05.006.

[6] M. Burgos-Pérez, J. García-Melián, and A. Quaas, “Some nonexistence theorems for semilinear fourth-order equations,” *Proc. R. Soc. Edinb. A: Math.*, vol. 149, no. 03, pp. 761–779, Dec. 2018, doi: 10.1017/prm.2018.47.

[7] W. Dai and G. Qin, “Liouville type theorems for Hardy–Hénon equations with concave nonlinearities,” *Math. Nachr.*, vol. 293, no. 6, pp. 1084–1093, Apr. 2020, doi: 10.1002/mana.201800532.

[8] E. N. Dancer, Y. Du, and Z. Guo, “Finite Morse index solutions of an elliptic equation with supercritical exponent,” *J. Differ. Equ.*, vol. 250, no. 8, pp. 3281–3310, Apr. 2011, doi: 10.1016/j.jde.2011.02.005.

[9] J. Liu, Y. Guo, and Y. Zhang, “Existence of positive entire solutions for polyharmonic equations and systems,” *J. Partial Diff. Eqs.,* vol. 19, no. 3, pp. 256–270, Jan. 2006, [Online]. Available: https://global-sci.org/intro/article_detail/jpde/5331.html.

[10] Q. A. Ngô, V. H. Nguyen, Q. H. Phan, and D. Ye, “Exhaustive existence and non-existence results for some prototype polyharmonic equations,” *J. Differ. Equ.*, vol. 269, no. 12, pp. 11621–11645, Dec. 2020, doi: 10.1016/j.jde.2020.07.041.

[11] A. Hyder and Q. A. Ngô, “On the Hang-Yang conjecture for GJMS equations on ,” *Math. Ann.*, vol. 389, no. 3, pp. 2519–2560, Sep. 2023, doi: 10.1007/s00208-023-02678-8.

[12] Q. H. Phan and P. Souplet, “Liouville-type theorems and bounds of solutions of Hardy–Hénon equations,”* J. Differ. Equ., *vol. 252, no. 3, pp. 2544–2562, Feb. 2012, doi: 10.1016/j.jde.2011.09.022.

[13] P. Poláčik, P. Quittner, and P. Souplet, “Singularity and decay estimates in superlinear problems via Liouville-type theorems. I. Elliptic equations and systems,” *Duke Math. J.*, vol. 139, no. 3, pp. 555–579, Sep. 2007, doi: 10.1215/S0012-7094-07-13935-8.

[14] R. Soranzo, “Isolated singularities of positive solutions of a superlinear biharmonic equation,” *Potential Anal.*, vol. 6, pp. 57–85, Feb. 1997, doi: 10.1023/A:1017927605423.

[15] J. Wei and X. Xu, “Classification of solutions of higher order conformally invariant equations,” *Math. Ann.*, vol. 313, no. 2, pp. 207–228, Feb. 1999, doi: 10.1007/s002080050258.

[16] S. Serrin and H. Zou, “Non-existence of positive solutions of Lane-Emden systems,” *Differ. Integral Equ.*, vol. 9, no. 4, pp. 635–653, Jan. 1996, doi: 10.57262/die/1367969879.

[17] W. Reichel and H. Zou, “Non-existence results for semilinear cooperative elliptic systems via moving spheres,” *Differ. Equ.,* vol. 161, no. 1, pp. 219–243, Feb. 2000, doi: 10.1006/jdeq.1999.3700.

[18] A. Hyder and J. Wei, “Non-radial solutions to a bi-harmonic equation with negative exponent,” *Calc. Var. Partial Differ. Equ., *vol. 58, no. 6, p. 198, Otc. 2019 doi: 10.1007/s00526-019-1647-4.

[19] F. Hang and P. C. Yang, “Lectures on the fourth-order Q curvature equation,” in G*eometric analysis around scalar curvatures *(Lecture notes series, Inst. Math. Sci, National University of Singapore: Vol. 31), F. Han, X. Xu, and W. Zhang., Singapore: WORLD SCIENTIFIC 2016, pp. 1–33, doi: 10.1142/9789813100558_0001.

[20] B. Gidas and J. Spruck, “Global and local behaviour of positive solutions of nonlinear elliptic equations,” *Commun. Pure Appl. Math.*, vol. 34, no. 4, pp. 525–598, Jul. 1981, doi: 10.1002/cpa.3160340406.

## Downloads

## Published

## How to Cite

*HPU2 Journal of Science: Natural Sciences and Technology*,

*3*(2), 87–92. https://doi.org/10.56764/hpu2.jos.2024.3.2.87-92

## Volume and Issue

## Section

## Copyright and License

Copyright (c) 2024 Thi-Ngoan Tran, Van-Tuan Tran

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.