Study on the adsorption L- and D- proline on MKN-MWCNT-P5000 carbon nanotubes from aqueous solutions
DOI:
https://doi.org/10.56764/hpu2.jos.2024.3.2.50-58Abstract
Carbon nanotubes (CNTs) are a new type of nano-adsorbent material with unique properties, which are promising adsorbents for the separation of enantiomers. Information regarding the interaction mechanism of enantiomers with carbon nanotubes has not yet been fully explored yet. In this work, we studied the adsorption of L and D-proline on carbon nanotubes in aqueous solution. Adsorption isotherms of enantiomers proline on multi-walled carbon nanotube MKN-MWCNT-P5000 from aqueous solution at 25℃ were constructed. The results of the experiments show that the adsorption capacity of the D-isomer is higher than that of the L-isomer. The separation coefficient of enantiomers on carbon nanotubes is in the range of 1.88–7.92. L-proline was adsorbed on CNTs as zwitterions and clusters of 62 molecules; and D-proline - in the form of zwitterions and clusters of 33 molecules. The results of quantum chemistry show that the adsorption energy of the D-proline monomer on carbon nanotubes is greater than that of the L-isomer. The nature of the bond between enantiomers and nanotubes was Van der Waals force.
References
[1] S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, no. 6348, pp. 56–58, Nov. 1991, doi: 10.1038/354056a0.
[2] M. F. De Volder, S. H. Tawfick, R. H. Baughman, and A. J. Hart, “Carbon nanotubes: Present and future commercial applications,” Science, vol. 339, no. 6119, pp. 535–539, Feb. 2013, doi: 10.1126/science.1222453.
[3] R. Rao et al, “Carbon nanotubes and related nanomaterials: Critical advances and challenges for synthesis towards mainstream commercial applications,” ACS Nano, vol. 12, no. 12, pp. 11756–11784, Dec. 2018, doi: 10.1021/acsnano.8b06511.
[4] F. Yang, M. Wang, D. Zhang, J. Yang, M. Zheng, and Y. Li, “Chirality pure carbon nanotubes: Growth, sorting, and characterization,” Chem. Rev., vol. 120, no. 5, pp. 2693–2758, Feb. 2020, doi: 10.1021/acs.chemrev.9b00835.
[5] D. T. Le, E. V. Butyrskaya, and T. V. Eliseeva, “Sorption interaction between carbon nanotubes and histidine enantiomers in aqueous solutions,” Russ. J. Phys. Chem. A, vol. 95, no. 11, pp. 2280–2286, Nov. 2021, doi: 10.1134/S003602442111011X.
[6] D. T. Le, E. V. Butyrskaya, T. V. Eliseeva, “Cluster adsorption of L-histidine on carbon nanotubes in aqueous solutions at different temperatures,” Russ. J. Phys. Chem. A, vol. 96, no. 8, pp. 1170–1175, Jan. 2022, doi: 10.31857/S004445372208012X.
[7] D. T. Le, E. V. Butyrskaya, A. A. Volkov, and A. S. Gneushev, “Study of adsorption of histidine enantiomers on carbon nanotubes in aqueous solution based on different adsorption models,” Sorbtsionnye i khromatograficheskie protsessy, vol. 22, no. 3, pp. 235–242, Jan. 2022, doi: 10.17308/sorpchrom.2022.22/9330.
[8] L. Yu, C. Shearer, and J. Shapter, “Recent development of carbon nanotube transparent conductive films,” Chem. Rev., vol. 116, no. 22, pp. 13413–13453, Oct. 2016, doi: 10.1021/acs.chemrev.6b00179.
[9] B. Socas-Rodríguez, A. V. Herrera-Herrera, M. Asensio-Ramos, and J. Hernández-Borges, “Recent applications of carbon nanotube sorbents in analytical chemistry,” J. Chromatogr. A, vol. 1357, pp. 110–146, Aug. 2014, doi: 10.1016/j.chroma.2014.05.035.
[10] E. V. Butyrskaya, N. V. Belyakova, L. S. Nechaeva, V. A. Shaposhnik, and V. F. Selemenev, “Sorption interactions between ethylene glycol and carbon nanotubes,” Russ. J. Phys. Chem. A, vol. 91, pp. 567–571, 2017, doi: 10.1134/S0036024417030062.
[11] A. Speltini, D. Merli, and A. Profumo, “Analytical application of carbon nanotubes, fullerenes and nanodiamonds in nanomaterials-based chromatographic stationary phases: A review,” Anal. Chim. Acta, vol. 783, pp. 1–16, Jun. 2013, doi: 10.1016/j.aca.2013.03.041.
[12] M. Zhang and H. Qiu, “Progress in stationary phases modified with carbonaceous nanomaterials for high-performance liquid chromatography,” TrAC, Trends Anal. Chem., vol. 65, pp. 107–121, Feb. 2015, doi: 10.1016/j.trac.2014.10.008.
[13] A. Speltini, D. Merli, D. Dondi, G. Paganini, and A. Profumo, “Improving selectivity in gas chromatography by using chemically modified multi-walled carbon nanotubes as stationary phase,” Anal. Bioanal. Chem., vol. 403, no. 4, pp. 1157–1165, Jan. 2012, doi: 10.1007/s00216-011-5606-y.
[14] G. Ankur, M. Nirmal, K. Surajit, R. Harsh, C. Nai-Tzu, and Z. Guan-Yu, “Enantiomeric recognition and separation by chiral nanoparticles,” Molecules, vol. 24, no. 6, p. 1007, Mar. 2019, doi: 10.3390/molecules24061007.
[15] E. Butyrskaya, S. Zapryagaev, E. Izmailova, and L. Nechaeva, “Sorption interactions between L/D-alanine and carbon nanotubes in aqueous solutions,” J. Phys. Chem. C, vol. 121, no. 37, pp. 20524–20531, Sep. 2017, doi: 10.1021/acs.jpcc.7b06849.
[16] G. Barrett, “Chemistry and biochemistry of the amino acids,” Springer Dordrecht, 1985, doi: 10.1007/978-94-009-4832-7.
[17] S. Miertuš, E. Scrocco, and J. Tomasi, “Electrostatic interaction of a solute with a continuum. A direct utilization of AB initio molecular potentials for the prevision of solvent effects,” Chem. Phys., vol. 55, no.1, pp. 117–129, Feb. 1981, doi: 10.1016/0301-0104(81)85090-2.
[18] E. V. Butyrskaya, S. A. Zapryagaev, and E. A. Izmailova, “Cooperative model of the histidine and alanine adsorption on single-walled carbon nanotubes,” Carbon, vol. 143, pp. 276–287, Mar. 2019, doi: 10.1016/j.carbon.2018.10.086.
[19] G. K. E. Scriba, “Chiral recognition mechanisms in analytical separation sciences,” Chromatographia, vol. 75, no. 15, pp. 815–838, Jun. 2012, doi: 10.1007/s10337-012-2261-1.
[20] K. Şarkaya et al, “Separation of histidine enantiomers by capillary electrochromatography with molecularly imprinted monolithic columns,” Sep. Sci. Plus, vol. 11, no. 6, pp. 235–245, Mar. 2000, doi: 10.1002/sscp.201900101.
[21] N. Sarvin, R. Puzankov, G. Vasiyarov, P. N. Nesterenko, and S. M. Staroverov, “Silica immobilised chloro- and amido- derivatives of eremomycine as chiral stationary phases for amino acids enantiomers separation by reversedphase liquid chromatography,” Molecules, vol. 28, no. 1, p. 85, Dec. 2023, doi: 10.3390/molecules28010085.
[22] E. V. Butyrskaya, “Single-layer cluster adsorption model and its application for the estimation of the CO2 structure on metal-organic frameworks,” Mater. Today Commun., vol. 33, p. 104327, Dec. 2022, doi: 10.1016/j.mtcomm.2022.104327.
Downloads
Published
How to Cite
Volume and Issue
Section
Copyright and License
Copyright (c) 2024 Dinh-Tuan Le, Anh-Van Chu
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.