A Lagrange function approach to study second-order optimality conditions for infinite-dimensional optimization problems
DOI:
https://doi.org/10.56764/hpu2.jos.2025.4.01.20-30Abstract
In this paper, we focus on the second-order optimality conditions for infinite-dimensional optimization problems constrained by generalized polyhedral convex sets. Our aim is to further explore the role of the generalized polyhedral convex property, which is inspired by the findings of other authors. To this end, we employ the concept of Fréchet second-order subdifferential, a tool in variational analysis, to establish optimality conditions. Furthermore, by applying this concept to the Lagrangian function associated with the problem, we are able to derive refined optimality conditions that surpass existing results. The unique properties of generalized polyhedral convex sets play a crucial role in enabling these improvements.
References
[1] D.T.V. An, N.D. Yen, “Optimality conditions based on the Fréchet second-order subdifferential,” J. Glob. Optim., vol. 81, pp. 351–365, Mar. 2021, doi: 10.1007/s10898-021-01011-4.
[2] A. Ben-Tal, “Second-order and related extremality conditions in nonlinear programming,” J. Optim. Theory Appl., vol. 31, pp. 143–165, Jun. 1980, doi: 10.1007/BF00934107.
[3] J.F. Bonnans, A. Shapiro, Perturbation analysis of optimization problems, Springer, New York, 2000, doi: 10.1007/978-1-4612-1394-9.
[4] R. Cominetti, “Metric regularity, tangent sets, and second-order optimality conditions,” Appl. Math. Optim., vol. 21, pp. 265–287, Jan. 1990, doi: 10.1007/BF01445166.
[5] G.P. McCormick, “Second order conditions for constrained minima,” SIAM J. Appl. Math., vol. 15, no. 3, pp. 641–652, May 1967, doi: 10.1007/978-3-0348-0439-4_12.
[6] B.S. Mordukhovich, R.T. Rockafellar, “Second-order subdifferential calculus with applications to tilt stability in optimization,” SIAM J. Optim., vol. 22, no. 3, pp. 953–986, Jan. 2012, doi: 10.1137/110852528.
[7] J-.P. Penot, “Optimality conditions in mathematical programming and composite optimization,” Mathematical Programming, vol. 67, pp. 225–245, Oct. 1994, doi: 10.1007/BF01582222.
[8] A. Ruszczyński, Nonlinear optimization, Princeton University Press, New Jersey, 2006.
[9] D.T.V. An, H.K. Xu, N.D. Yen, “Fréchet second-order subdifferentials of Lagrangian functions and optimality conditions,” SIAM J. Optim., vol. 33, no. 2, pp. 766–784, Jun. 2023, doi: 10.1137/22M1512454.
[10] N.H. Chieu, G.M. Lee, N.D. Yen, “Second-order subdifferentials and optimality conditions for -smooth optimization problems,” Appl. Anal. Optim., vol. 1, no. 3, pp. 461–476, Jan. 2017, yokohamapublishers.jp/online2/opaao/vol1/p461.html.
[11] L.V. Dai, Necessary and sufficient optimality conditions with Lagrange multipliers, Undergraduate Thesis, University of Science, Vietnam National University, 2014.
[12] N.Q. Huy, N.V. Tuyen, “New second-order optimality conditions for a class of differentiable optimization problems,” J. Optim. Theory Appl., vol. 171, pp. 27–44, Jul. 2016, doi: 10.1007/s10957-016-0980-4.
[13] M.T. Nadi, J. Zafarani, “Second-order optimality conditions for constrained optimization problems with data via regular and limiting subdifferentials,” J. Optim. Theory Appl., vol. 193, pp. 158–179, Jun. 2022, doi: 10.1007/s10957-021-01890-3.
[14] L. Ban, B.S. Mordukhovich, W. Song, “Lipschitzian stability of parametric variational inequalities over generalized polyhedra in Banach spaces,” Nonlinear Anal. Theory Methods Appl., vol. 74, no. 2, pp. 441–461, Jan. 2011, doi: 10.1016/j.na.2010.09.001.
[15] L. Ban, W. Song, “Linearly perturbed generalized polyhedral normal cone mappings and applications,” Optimization, vol. 65, no. 1, pp. 9–34, Jan. 2016, doi: 10.1080/02331934.2014.979819.
[16] D.T.V. An, “Second-order optimality conditions for infinite-dimensional quadratic programs,” J. Optim. Theory Appl., vol. 192, pp. 426–442, Nov. 2022, doi: 10.1007/s10957-021-01967-z.
[17] N.D. Yen, X. Yang, “Affine variational inequalities on normed spaces,” J. Optim. Theory Appl., vol. 178, pp. 36–55, May 2018, doi: 10.1007/s10957-018-1296-3.
[18] B.S. Mordukhovich, R.T. Rockafellar, M.E. Sarabi, “Characterizations of full stability in constrained optimization,” SIAM J. Optim., vol. 23, no. 3, pp. 1810–1849, Jan. 2013, doi: 10.1137/120887722.
[19] N.N. Luan, J.-C. Yao, “Generalized polyhedral convex optimization problems,” J. Glob. Optim., vol. 75, pp. 789–811, Mar. 2019, doi: 10.1007/s10898-019-00763-4.
[20] N.N. Luan, N.D. Yen, “A representation of generalized convex polyhedra and applications,” Optimization, vol. 69, no. 3, pp. 471–492, May 2020, doi: 10.1080/02331934.2019.1614179.
[21] N.N. Luan, J.-C. Yao, N.D. Yen, “On some generalized polyhedral convex constructions,” Numer. Funct. Anal. Optim., vol. 39, no. 5, pp. 537-570, Nov. 2018, doi: 10.1080/01630563.2017.1387863.
[22] B.S. Mordukhovich, Variational analysis and generalized differentiation. Volume I: Basic theory, Springer, Berlin, 2006, doi: 10.1007/3-540-31246-3.
[23] A.D. Ioffe, V.M. Tihomirov, Theory of extremal problems, North-Holland Publishing Company, Amsterdam, 1979.
[24] B.S. Mordukhovich, Variational analysis and generalized differentiation. Volume II: Applications, Springer, Berlin, 2006, doi: 10.1007/3-540-31246-3.
[25] D.G. Luenberger, Optimization by vector space methods, John Wiley & Sons, Inc., New York-London-Sydney, 1969.
[26] W. Rudin, Principles of mathematical analysis, Third edition, McGraw-Hill Book Co., New York, 1976.
[27] S. Lang, Real analysis, Second edition, Addison-Wesley Publishing Company, Reading, Massachusetts, 1983.
[28] N.H. Chieu, N.Q. Huy, “Second-order subdifferentials and convexity of real-valued functions,” Nonlinear Anal. Theory Methods Appl., vol. 74, no. 1, pp. 154–160, Jan. 2011, doi: 10.1016/j.na.2010.08.029.
Downloads
Published
How to Cite
Volume and Issue
Section
Copyright and License
Copyright (c) 2025 Duc-Tam Luong, Thu-Loan Vu Thi, Thi-Ngoan Dang

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.