On the multiplicity of graded fiber cones with arbitrary dimensions
DOI:
https://doi.org/10.56764/hpu2.jos.2025.4.01.31-38Abstract
Let \((A,\mathfrak{m})\) be a Noetherian local ring with maximal ideal \(\mathfrak{m}\), \(J\subset A\) an -\(\mathfrak{m}\) primary ideal, \(S=\mathop\oplus \limits_{n\ge 0}S_n\) a finitely generated standard graded algebra over A and \(M=\mathop\oplus \limits_{n\ge 0}M_n\) a finitely generated graded -module. Then \(F_J(M)=\mathop\oplus \limits_{n\ge 0}\dfrac{M_n}{JM_n}\) is called the fiber cone of the graded module \(M\) with respect to \(J\) . As we know, the concept of multiplicities in commutative algebra is an object that plays an important role in determining the properties and classifying the structure of rings and modules including the Cohen-Macaulay property. In this paper, we establish the multiplicity formula of the fiber cone \(F_J(M)=\mathop\oplus \limits_{n\ge 0}\dfrac{M_n}{JM_n}\) with arbitrary dimensions. The concept we used to prove the results is filter-regular sequences of graded modules. Our approach is based on the formulas of multiplicities of fiber cones of graded modules in the case that the dimensions of those fiber cones equal 1 and by induction on dimensions of fiber cones of graded modules.
References
[1] C. Huneke, J. D. Sally, “Birational extensions in dimension two and integrally closed ideals,” J. Algebra, vol. 115, no. 2, pp. 481–500, Jun. 1988, doi: 10.1016/0021-8693(88)90274-8.
[2] A. V. Jayanthan, J. K. Verma, “Hilbert coefficients and depth of fiber cones,” J. Pure Appl. Algebra, vol. 201, no. 1-3, pp. 97–115, Oct. 2005, doi: 10.1016/J.JPAA.2004.12.025.
[3] A. V. Jayanthan, T. J. Puthenpurakal and J. K. Verma, “On fiber cones of m-primary ideals,” Canad. J. Math., vol. 59, no. 1, pp. 109–126, Feb. 2007, doi: 10.4153/CJM-2007-005-8.
[4] N. T. Manh, T. A. Tuan, “On the multiplicity of fiber cones of good filtrations,” Hung Vuong Uni. J. Sci. Tech., vol. 3, no. 2, pp. 17–21, 2016.
[5] N. T. Manh, N. T. T. Tam, “On the Cohen-Macaulayness of fiber cones of good filtrations,” HPU2 J. Sciences, vol. 43, pp. 3–9, Jun. 2016.
[6] N. T. Mạnh, N. T. T. Tam, “The multiplicity of fiber cones of general good filtrations,” HPU2 J. Sciences, vol. 48, pp. 3–11, Apr. 2017.
[7] N. T. Manh, N. T. T. Tam, “The Cohen-Macaulayness of fiber cones of general good filtrations,” HPU2 J. Sciences, vol. 51, pp. 15–22, Oct. 2017.
[8] N. T. Manh, “On the multiplicity and the Cohen-Macaulayness of Fiber cones of Graded Modules,” Algebra Colloquium, vol. 28, no. 1, pp. 13–32, Mar. 2021, doi: 10.1142/S1005386721000031.
[9] N. T. Manh, “On the multiplicity and the Cohen-Macaulayness of graded fiber cones with dimensions one,” HPU2 J. Sciences, no. 78, pp. 17–25, Apr. 2022.
[10] K. Shah, “On the Cohen-Macaulayness of the fiber cone of an ideal,” J. Algebra, vol. 143, no. 1, pp. 156–172, Oct. 1991, doi: 10.1016/0021-8693(91)90257-9.
[11] K. Shah, “On equimultiple ideals,” Math. Z., vol. 215, pp. 13–24, Jan. 1994, doi: 10.1007/BF02571697.
[12] D. Q. Viet, “On the Cohen-Macaulayness of fiber cones,” Proc. Am. Math. Soc., vol. 136, no. 12, pp. 4185–4195, Dec. 2008, doi: 10.1090/S0002-9939-08-09438-0.
[13] D. Q. Viet, “On the multiplicity and the Cohen-Macaulayness of fiber cones of graded algebras,” J. Pure Appl. Algebra, vol. 213, no. 1, pp. 2104–2116, Nov. 2009, doi: 10.1016/j.jpaa.2009.03.006.
[14] D. Q. Viet, T. T. H. Thanh, “Multiplicity and Cohen - Macaulayness of fiber cones of good filtrations,” Kyushu J. Math., vol. 65, no. 1, pp. 1–13, 2011, doi: 10.2206/kyushujm.65.1.
[15] D. Q. Viet, N. T. Mạnh, “Mixed multiplicities of multigraded modules,” Forum Mathematicum, vol. 25, no. 2, pp. 337–361, Mar. 2013, doi: 10.1515/form.2011.120.
[16] N. Tu Cuong, Schenzel, P. and N. V. Trung, “Verallgemeinerte Cohen-Macaulay Moduln,” Math. Nachr., vol. 85, pp. 57–73, Jan. 1978, doi: 10.1002/MANA.19780850106.
[17] J. Stückrad and W. Vogel, Buchsbaum Rings and Applications. Berlin: VEB Deutscher Verlag der Wissenschaften, 1986, doi: 10.1007/978-3-662-02500-0.
[18] D. Rees, “Generalizations of reductions and mixed multiplicities,” J. London. Math. Soc., vol. 29, no. 3, pp. 397–414, Jun. 1984, doi: 10.1112/JLMS/S2-29.3.397.
[19] N. V. Trung, “Reduction exponents and degree bound for the defining equation of graded rings,” Proc. Amer. Mat. Soc., vol. 101, no. 2, pp. 229–234, Oct. 1987, doi: 10.1090/S0002-9939-1987-0902533-1.
[20] M. Herrmann, E. Hyry, J. Ribble, and Z. Tang, “Reduction numbers and multiplicities of multigraded structures,” J. Algebra, vol. 197, no. 2, pp. 311–341, Nov. 1997, doi: 10.1006/JABR.1997.7128.
Downloads
Published
How to Cite
Volume and Issue
Section
Copyright and License
Copyright (c) 2025 Tien-Manh Nguyen

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.