Assessment of antibacterial activity of Spirulina platensis cultivated on camel urine medium, in vitro
DOI:
https://doi.org/10.56764/hpu2.jos.2025.4.02.32-41Abstract
This research sheds new light on the evolution of microalgae behaviour, specifically their interaction and adaptation strategies to atypical media. The present study was conducted to evaluate the antibacterial activity of Spirulina platensis cultivated in a medium made from camel urine at concentrations of 1:1, 1:2, 1:3 and 1:4 (v:v) during periods (7, 28, and 42 day). The test was performed by the disc diffusion method, against five types of human pathogenic bacteria [Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 10145), Staphylococcus aureus (ATCC 25923), Methicillin-Resistant Staphylococcus aureus and Proteus spp]. Results showed that S. platensis grew and adapted well in most camel urine media, especially in T2 medium with biomass (5.1 g/L), chlorophyll a and b (2.4 and 1.2µg/ml), carbohydrates 40.0% (w/w), and total protein (24µg/ml). In contrast, the bacterial susceptibility test's results were unexpected. The maximum rate of pathogen-bacteria inactivation was attained in the last phase following 42 days. In detail, Significant activity was observed for S. platensis extracts cultivated in low-concentration camel urine medium (T4) against all bacterial species compared to S. platensis extracts naturally cultivated in standard medium. Staphylococcus aureus was the most sensitive species of bacteria to S. platensis extracts with an inhibition zone of 5.0 cm.
References
[1] S. A. Razzak, K. Bahar, K.O. Islam, A.K. Haniffa, M.O. Faruque, S.Z.Hossain, M. M. Hossain, “Microalgae cultivation in photobioreactors: Sustainable solutions for a greener future,” Green Chemical Engineering, vol. 5, no. 4, Oct. 2023, doi: 10.1016/j.gce.2023.10.004.
[2] J. B. Garcia-Martinez, N. A. Urbina-Suarez, A. Zuorro, A.F. Barajas-Solano, V. Kafarov, “Fisheries wastewater as a sustainable media for the production of algae-based products,” Chemical Engineering Transactions, vol. 76, pp. 1339–1344, Oct. 2019, doi: 10.3303/cet1976224.
[3] J. Tang, X. Qu, S. Chen, Y. Pu, X. He, Z. Zhou, H. Wang, N. Jin, J. Huang, F. Shah, Y. Hu, A. Abomohra, “Microalgae cultivation using municipal wastewater and anaerobic membrane effluent: Lipid production and nutrient removal,” Water, vol. 15, no. 13, pp. 2388–2388, Jun. 2023, doi: 10.3390/w15132388.
[4] A. Alhaidar, A.G.M. Abdel Gader, S.A. Mousa, “The antiplatelet activity of camel urine,” The Journal of Alternative and Complementary Medicine, vol. 17, no. 9, pp. 803–808, Sep. 2011, doi: 10.1089/acm.2010.0473.
[5] C. Iglesias Pastrana, J. V. Delgado Bermejo, M. N. Sgobba, F. J. Navas González, L. Guerra, D. C. Pinto, A. M. Gil, I. F. Duarte, G. Lentini, E. Ciani, “Camel (Camelus spp.) Urine Bioactivity and Metabolome: A Systematic Review of Knowledge Gaps, Advances, and Directions for Future Research,” International Journal of Molecular Sciences, vol. 23, no. 23, p. 15024, Jan. 2022, doi: 10.3390/ijms232315024.
[6] A. A. Alhaider, M. A. El Gendy, H. M. Korashy, A. O. El-Kadi, “Camel urine inhibits the cytochrome P450 1a1 gene expression through an AhR-dependent mechanism in Hepa 1c1c7 cell line,” J. Ethnopharmacol, vol. 133, no. 1, pp. 184–190, Jan. 2011, doi: 10.1016/j.jep.2010.09.012.
[7] F. A. Gole, A. J. Hamido, “Review on health benefits of camel urine: Therapeutics effects and potential impact on public health around east hararghe district,” Am. J. Pure Appl., Biosci, vol. 2, pp. 183–190, Dec. 2020, doi: 10.34104/ajpab.020.018300191.
[8] J. De Paepe, D. G. Gragera, C. A. Jimenez, K. Rabaey, S. E. Vlaeminck, F. Gòdia, “Continuous cultivation of microalgae yields high nutrient recovery from nitrified urine with limited supplementation,” Journal of Environmental Management, vol. 345, pp. 118500–118500, Nov. 2023, doi: 10.1016/j.jenvman.2023.118500.
[9] J. Jiang, J. Huang, H. Zhang, Z. Zhang, Y. Du, Z. Cheng, B. Feng, T. Yao, A. Zhang, Z. Zhao, “Potential integration of wastewater treatment and natural pigment production by Phaeodactylum tricornutum: Microalgal growth, nutrient removal, and fucoxanthin accumulation,” Journal of Applied Phycology, vol. 34, no. 3, pp. 1411–1422, Feb. 2022, doi: 10.1007/s10811-022-02700-7.
[10] E. Tolpeznikaite, V. Bartkevics, A. Skrastina, R. Pavlenko, M. Ruzauskas, V. Starkute, E. Zokaityte, D. Klupsaite, R. Ruibys, J. M. Rocha, E. Bartkiene, “Submerged and Solid-State Fermentation of Spirulina with Lactic Acid Bacteria Strains: Antimicrobial Properties and the Formation of Bioactive Compounds of Protein Origin,” Biology, vol. 12, no. 2, p. 248, Feb. 2023, doi: 10.3390/biology12020248.
[11] Q. Xiong, L. X. Hu, Y. S. Liu, J. L. Zhao, L. Y. He, G. G. Ying, “Microalgae-based technology for antibiotics removal: From mechanisms to application of innovational hybrid systems,” Environment international, vol. 155, p. 106594, Oct. 2021, doi: 10.1016/j.envint.2021.106594.
[12] S. N. Vahdati, H. Behboudi, S. Tavakoli, F. Aminian, R. Ranjbar, “Antimicrobial Potential of the Green Microalgae Isolated from the Persian Gulf,” Iranian Journal of Public Health., vol.51, no.5, p. 1134, May. 2022, doi: 10.18502/ijph.v51i5.9428.
[13] C. Zarrouk, “Contribution a l'etude d'une Cyanophycee. Influence de Divers Facteurs Physiques et Chimiques sur la croissance et la photosynthese de Spirulina mixima,” 1966, [Thesis. University of Paris, France].
[14] A. A. Abdulrraziq, S. M. Salih, “Cultivation of Spirulina platensis in human urine medium or/and fish liver oil medium (home design) ,” Algerian journal of Biosciences., vol. 4, no. 2, pp.102–108, 2023, doi: 10.57056/ajb.v4i02.143.
[15] S. Sarkar, M. S. Manna, T. K. Bhowmick, K. Gayen, “Extraction of chlorophylls and carotenoids from dry and wet biomass of isolated Chlorella Thermophila: Optimization of process parameters and modelling by artificial neural network,” Process Biochem., vol. 96, pp.58–72, 2020, doi: 10.1016/j.procbio.2020.05.025.
[16] A. G. Waghmare, M. K. Salve., J. G. LeBlanc, S. S. Arya, “Concentration and characterization of microalgae proteins from Chlorella pyrenoidosa,” Bioresources and Bioprocessing, vol. 3, no. 1, Mar. 2016, doi: 10.1186/s40643-016-0094-8.
[17] A. P. Peter, K. W. Chew, A. K. Koyande, S. Yuk-Heng, H. Y. Ting, S. Rajendran, H. S. H. Munawaroh, C. K. Yoo, P. L. Show. “Cultivation of Chlorella Vulgaris on dairy waste using vision imaging for biomass growth monitoring,” Bioresour. Technol, vol. 341, p.125892, 2021, doi: 10.1016/j.biortech.2021.125892.
[18] M. R. Zaidan, A. Noor Rain, A. R. Badrul, A. Adlin, A. Norazah, I. Zakiah, “In vitro screening of five local medicinal plants for antibacterial activity using disc diffusion method,” Trop biomed., vol. 22, no. 2, pp.165–170, 2005.
[19] I. Abdalla, E. Haroun, H. Abdalla, “Effects of type of nutrition on the chemical composition of camels milk and urine,” Gezira Journal of Agricultural Science., vol. 16, no. 2, pp.1–11, 2018.
[20] B. E. Read, “Chemical constituents of camel's urine,” Journal of Biological Chemistry, vol. 64, no. 3, pp. 615–617, Jul. 1925, doi: 10.1016/S0021-9258(18)84901-8.
[21] T. Sopandi, T. Rohmah, S. A. Tri Agustina, “Biomass and nutrient composition of Spirulina platensis grown in goat manure media,” Asian Journal of Agriculture and Biology, vol. 8, no. 2, pp. 158–167, Apr. 2020, doi: 10.35495/ajab.2019.06.274.
[22] R. Dineshkumar, R. Narendran, P. Sampathkumar, “Cultivation of Spirulina platensis in different selective media,” Indian journal of Geo marine scinences., vol.45, no.12, pp.1749–1754, 2016.
[23] D. A. Jahan, S. T. Lupa, Nur-A-Raushon, H. Rahman, H. Z. Md, M. Z. Ali, A. Bhadra, Y. Mahmud, “Evaluation of the Growth Performance of Spirulina platensis in Different Concentrations of Kosaric Medium (KM) and Papaya Skin Powder Medium (PSPM) ,” Asian Journal of Biological and Life Sciences., vol. 12, no. 2, pp.435–441, 2023, doi: 10.5530/ajbls.2023.12.58.
[24] F. A. Shaieb, A. A. Issa, A. Meragaa, “Antimicrobial activity of crude extracts of cyanobacteria Nostoc commune and Spirulina platensis,” Archives of Biomedical Sciences., vol. 2, no. 2, pp.34–41, 2014.
[25] A. L. Pereira, C. Santos, J. Azevedo, T. P. Martins, R. Castelo-Branco, V. Ramos, “Effects of two toxic cyanobacterial crude extracts containing microcystin-LR and cylindrospermopsin on the growth and photosynthetic capacity of the microalga Parachlorella kessleri,” Algal Research, vol. 34, pp. 198–208, Sep. 2018, doi: 10.1016/j.algal.2018.07.016.
[26] M. Zaparoli, F. G. Ziemniczak, L. Mantovani, J. A. V. Costa, L. M. Colla, “Cellular stress conditions as a strategy to increase carbohydrate productivity in Spirulina platensis,” BioEnergy Research, vol. 13, no. 4, pp. 1221–1234, May 2020, doi: 10.1007/s12155-020-10133-8.
[27] G. Procházková, I. Brányiková, V. Zachleder, T. Brányik, “Effect of nutrient supply status on biomass composition of eukaryotic green microalgae,” Journal of applied phycology, vol. 26, no. 3, pp. 1359–1377, Sep. 2013, doi: 10.1007/s10811-013-0154-9.
[28] O. A. Alkhamees, S. M. Alsanad, “A review of the therapeutic characteristics of camel urine,” African Journal of Traditional, Complementary and Alternative Medicines, vol. 14, no. 6, pp. 120–126, Nov. 2017, doi: 10.21010/ajtcam.v14i6.12.
Downloads
Published
How to Cite
Volume and Issue
Section
Copyright and License
Copyright (c) 2025 Ahmed-Amrajaa Abdulrraziq, Sami-Mohammed Salih, Amani-Amrajaa Abdulrraziq

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.