Final value problem for fractional reaction-subdiffusion equations

Authors

  • Thanh-Tuan Pham Hanoi Pedagogical University 2, Phu Tho, Vietnam
  • Thi-Ngan Nguyen Him Lam International School, Bac Ninh, Vietnam

DOI:

https://doi.org/10.56764/hpu2.jos.2025.4.02.80-91

Abstract

We investigate the existence of a mild solution to the final value problem for a class of fractional reaction-subdiffusion nonlinear equations, where the nonlinearity may take weak values. We want to demonstrate the unique existence of a mild solution by using the Banach fixed-point theorem. In order to do this, we construct some new estimates for the resolvent function and the resolvent operator, based on the existing resolvent theory. From our point of view, the nonlinearity, which takes values in Hilbert scales, presents some technical difficulties but allows us to examine broader classes of problems, since by which it can contain a polynomial or gradient term arising from various physical circumstances.

References

[1] K. Seki, M. Wojcik, and M. Tachiya, “Fractional reaction-diffusion equation,” J. Chem. Phys., vol. 119, no. 4, pp. 2165–2170, Jul. 2003, doi: 10.1063/1.1587126.
[2] S. B. Yuste, L. Acedo, and K. Lindenberg, “Reaction front in an A + B → C reaction-subdiffusion process.,” Phys. Rev. E, vol. 69, no. 3, p. 036126, Mar. 2004, doi: 10.1103/PHYSREVE.69.036126.
[3] S. D. Traytak, “Fractional differentiation method: Some applications to the theory of subdiffusion-controlled reactions,” Phys. Rev. E, vol. 110, no. 4, Oct. 2024, doi: 10.1103/physreve.110.044145.
[4] D. D. Trong, N. M. Dien, and T. Q. Viet, “Global solution of space-fractional diffusion equations with nonlinear reaction source terms,” Appl. Anal., vol. 99, no. 15, pp. 2709–2739, Nov. 2020, doi: 10.1080/00036811.2019.1582030.
[5] J. C. Pozo and V. Vergara, “Long and Short Time Behavior of Non-local in Time Subdiffusion Equations,” Appl. Math. Optim., vol. 89, no. 2, Mar. 2024, doi: 10.1007/s00245-024-10116-7.
[6] N. H. Tuan, V. V. Au, V. A. Khoa, and D. Lesnic, “Identification of the population density of a species model with nonlocal diffusion and nonlinear reaction,” Inverse Problems, vol. 33, no. 5, p. 055019, Apr. 2017, doi: 10.1088/1361-6420/aa635f.
[7] Y. Zhou, H. Qin, and M. Stynes, “A second-order implicit–explicit (IMEX) method on graded meshes for nonlinear time-fractional reaction–subdiffusion problems,” Calcolo, vol. 62, no. 1, Jan. 2025, doi: 10.1007/s10092-025-00634-3.
[8] Y. Jiang and H. Chen, “Convergence analysis of a L1‐ADI scheme for two‐dimensional multiterm reaction‐subdiffusion equation,” Numer. Methods Partial Differ. Equ., vol. 40, no. 6, May 2024, doi: 10.1002/num.23115.
[9] T. Kumari and Pradip Roul, “An efficient computational technique for solving a time-fractional reaction-subdiffusion model in 2D space,” Comput. Math. Appl., vol. 160, pp. 191–208, Apr. 2024, doi: 10.1016/j.camwa.2024.02.018.
[10] X. Cheng, W. Xiong, and H. Wang, “An optimal estimate for linear reaction subdiffusion equations with Neumann boundary conditions,” Stoch. Dyn., vol. 23, no. 08, Oct. 2023, doi: 10.1142/s021949372340004x.
[11] R. Castillo, M. Loayza, and A. Viana, “Local Existence and Non-Existence for a Fractional Reaction-Diffusion Equation in Lebesgue Spaces,” Fract. Calc. Appl. Anal., vol. 24, no. 4, pp. 1193–1219, Aug. 2021, doi: 10.1515/fca-2021-0051.
[12] B. de Andrade, G. Siracusa, and A. Viana, “A nonlinear fractional diffusion equation: Well-posedness, comparison results, and blow-up,” J. Math. Anal. Appl., vol. 505, no. 2, p. 125524, Jan. 2022, doi: 10.1016/j.jmaa.2021.125524.
[13] T. V. Tuan, “Existence and regularity in inverse source problem for fractional reaction-subdiffusion equation perturbed by locally Lipschitz sources,” Evol. Equ. Control Theory, vol. 12, no. 1, p. 336, 2023, doi: 10.3934/eect.2022032.
[14] N. Van Dac, T. D. Ke, and V. N. Phong, “On stability and regularity of solutions to generalized Rayleigh-Stokes equations involving delays in Hilbert scales,” Evol. Equ. Control Theory, vol. 14, no. 2, pp. 289–312, 2025, doi: 10.3934/eect.2024055.
[15] N. T. V. Anh, T. D. Ke, and D. Lan, “The final value problem for anomalous diffusion equations involving weak-valued nonlinearities,” J. Math. Anal. Appl., vol. 532, no. 1, p. 127916, Apr. 2024, doi: 10.1016/j.jmaa.2023.127916.
[16] Nguyen Van Dac, T. D. Ke, and T. Phuong, “On stability and regularity for semilinear anomalous diffusion equations perturbed by weak-valued nonlinearities,” Discrete Contin. Dyn. Syst. - S, vol. 16, no. 10, pp. 2883–2901, Jan. 2023, doi: 10.3934/dcdss.2023071.
[17] B. Kaltenbacher and W. Rundell, “On an inverse potential problem for a fractional reaction–diffusion equation,” Inverse Problems, vol. 35, no. 6, p. 065004, May 2019, doi: 10.1088/1361-6420/ab109e.
[18] D. Lan and P. Tuan, “On stability for semilinear generalized Rayleigh-Stokes equation involving delays,” Q. Appl. Math., vol. 80, no. 4, pp. 701–715, May 2022, doi: 10.1090/qam/1624.
[19] T. D. Ke, T. B. Ngoc, and N. H. Tuan, “Final value problem governed by a class of time-space fractional pseudo-parabolic equations with weak nonlinearities,” Math. Methods Appl. Sci., vol. 47, no. 6, pp. 5307–5328, Feb. 2024, doi: 10.1002/mma.9866.
[20] P. T. Tuan, T. D. Ke, and N. N. Thang, “Final value problem for Rayleigh-Stokes type equations involving weak-valued nonlinearities,” Fract. Calc. Appl. Anal., vol. 26, no. 2, pp. 694–717, Feb. 2023, doi: 10.1007/s13540-023-00133-8.

 

Downloads

Published

28-08-2025

How to Cite

Pham, T.-T., & Nguyen , T.-N. (2025). Final value problem for fractional reaction-subdiffusion equations . HPU2 Journal of Science: Natural Sciences and Technology, 4(02), 80–91. https://doi.org/10.56764/hpu2.jos.2025.4.02.80-91

Volume and Issue

Section

Natural Sciences and Technology