Study of the melting of FeSi interstitial alloy films by SMM
DOI:
https://doi.org/10.56764/hpu2.jos.2025.4.02.92-104Abstract
This study utilizes the statistical moment method to investigate the effects of high temperature and pressure on the structure and melting process of Fe thin films and FeSi interstitial alloy thin films with a BCC structure. The theory is developed and validated through calculations with Fe films, then extended for application to FeSi films. When the number of layers increases to 200, corresponding to a film thickness of 70 nm, the melting temperature approaches that of the bulk material. The research results indicate that the addition of Si to FeSi films causes significant changes in melting temperature and structure, reducing the material's heat resistance.
References
[1] H. Haibo and F. Spaepen, “Tensilie testing of free – standing Cu, Ag and Al thin films and Ag/Cu multilayers,” Act. Mater., vol. 48, no. 12, pp. 3261-3269, Jul. 2000, doi: 10.1016/S1359-6454(00)00128-2.
[2] Sangmoon Park, Benjamin L. Clark, Douglas A. Keszler, Jeffrey P. Bender, John F. Wager, Thomas A. Reynolds, and Gregory S. Herman, “Low-Temperature Thin-Film Deposition and Crystallization,” Sci., vol. 297, no. 5578, p. 65, Jul. 2002, doi: 10.1126/science.1072009.
[3] A. R. Vaz, M. C. Salvadori and M. Cattani, “Young modulus measurement of nanostructured metallic thin films,” Jour. Metas. Nano. Mater., Vols. 20-21, pp. 758-762, Jul. 2004, doi: 10.4028/www.scientific.net/JMNM.20-21.758.
[4] B. Weiss, V. Groger, G. Khatibi, A. Kotas, P. Zimprich, R. Stickler and B. Zagar, “Characterization of mechanical and thermal properties of thin Cu foils and wires,” Sen. Act. A, vol. 99, no. 1-2, pp. 172-182, Apr. 2002, doi: 10.1016/S0924-4247(01)00877-9.
[5] Y. Kuru, M. Wohlschlogel, U. Welzel and E. J. Mittemeijer, “Coefficients of thermal expansion of thin metal films investigated by non-ambient X-ray diffraction stress analysis,” Sur. & Coat. Tech., vol. 202, no. 11, pp. 2306-2309, Feb. 2008, doi: 10.1016/j.surfcoat.2007.08.002.
[6] D. Fuks, S. Dorfman, F. Zhukovskii, A. Kotomin and A. M. Stoneham, “Theory of the growth mode for a thin metallic film on an insulating substrate,” Sur. Sci., vol. 499, no. 1, pp. 24-40, Feb. 2002, doi: 10.1016/S0039-6028(01)01692-2.
[7] Richard P. Vinci & Joost J. Vlassak, “Mechanical behavior of thin films,” Rev. Mater. Sci., vol. 26, pp. 431-462, Aug. 1996, doi: 10.1146/annurev.ms.26.080196.002243.
[8] Vu Van Hung, Duong Dai Phuong and Nguyen Thi Hoa, “Investigation of thermodynamic properties of metal thin film by statistical moment method,” Phys., vol. 23, no. 4, pp. 301–311, Feb. 2014, doi: 10.15625/0868-3166/23/4/3351.
[9] Vu Van Hung, Duong Dai Phuong and Nguyen Thi Hoa, “Thermodynamic properties of free standing thin metal films: Temperature and pressure dependences,” Phys., vol. 24, no. 2, pp. 177–191, Jul. 2014, doi: 10.15625/0868-3166/24/2/177/3731.
[10] M. N. Magomedov , “The calculation of the parameters of the mie-lennard jones potential,” High Temp., vol. 44, no. 4, pp. 513-529, Jul. 2006, doi: 10.1007/s10740-006-0064-5.
[11] S. M. Rezende, J. A. S. Moura, W. H. Schreiner and F. M. de Aguiar, “Ferromagnetic resonance of Fe(111) thin films and Fe(111)/Cu(111) multilayers,” Phys. Rev. B, vol. 49, no. 21, Jun. 1994, doi: 10.1103/PhysRevB.49.15105.
[12] A. F. Guillermet & P. Gustafson, “An assessment of the thermodynamic properties and the (p, T) phase diagram of iron,” High Temp-High Press, vol. 16, no. 6, pp. 591-610, 1984.
[13] Nguyen Quang Hoc, Bui Duc Tinh and Nguyen Duc Hien, “Elastic moduli and elastic constants of interstitial alloy AuCuSi with FCC structure under pressure,” High Temp. Mater. Proc., 38, pp. 264–272, Sep. 2018, doi: 10.1515/htmp-2018-0027.
[14] Duong Dai Phuong, Nguyen Thi Hoa, Vu Van Hung, Doan Quoc Khoa, Ho Khac Hieu, “Mechanical properties of metallic thin films: Theoretical approach,” The Eur. Phys. Jour. B, 89, no. 3, pp. 1–7, Mar. 2016, doi: 10.1140/epjb/e2016-60583-y.
[15] Vu Van Hung, Statistical method of moment in studying thermodynamic and elastic properties of crystals, Hanoi: University of Education Publishing House, 2009.
[16] Bui Duc Tinh, Nguyen Quang Hoc, Dinh Quang Vinh, Tran Duc Cuong and Nguyen Duc Hien, “Thermodynamic and elastic properties of interstitial alloy FeC with BCC structure at zero pressure,” Mater. Sci. Eng., vol. 2018, no. 4, pp. 1–8, Oct. 2018, doi: 10.1155/2018/5251741.
[17] Nguyen Tang and Vu Van Hung, “Investigation of the thermodynamic properties of anharmonic crystals by the momentum method, I. General results for FCC crystals,” Stat. Sol. (b), vol. 149, no. 2, pp. 511–519, Oct. 1988, doi: 10.1002/pssb.2221490212.
[18] R. Knepper and S. P. Baker, “Coefficient of thermal expansion and biaxial elastic modulus of b phase tantalum thin films,” Appl. Phys. Lett., vol. 90, no. 18, Apr. 2007, doi: 10.1063/1.2734468.
[19] N. Magomedov, “On calculating the Debye temperature and the Gruneisen parameter,” Russ. J. Phys. Chem. A, vol. 61, p. 1003–1009., 1987. (In Russian).
[20] E. Y. Tonkov and E. G. Ponyatovsky, Phase transformations of elements under high pressure, USA: CRC Press, Jan. 2004, doi: 10.1201/9781420037609.
Downloads
Published
How to Cite
Volume and Issue
Section
Copyright and License
Copyright (c) 2025 Dai-Phuong Duong, Quang-Hoc Nguyen, Xuan-Dat Hua, Manh-Hung Doan, Minh-Hanh Pham Thi, Thi-Hanh Ngo, Thu-Hang Dao

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.